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Table 2: YOLO - Train and Test Results with Heridal data
Method Dataset Size  Epochs F1-Score mAP50 Inference
YOLOvT Heridal 640x640 950 0.806 0.816 7.8ms
YOLOvT Mobdrone  896x544 300 0.901 0.885 7.4ms
YOLOvT SeaDronesSee 960x768 180 0.899 0.898 6.5ms

YOLOvT7-tiny Heridal 1280x1280 400 0.611 0.569 1.6ms
YOLOvT7-tiny Heridal(S0) 1280x1280 300 0.661 0.610 4.1ms
YOLOvT7-tiny Heridal(S1) 1280x1280 750 0.472 0.421 1.5ms
YOLOv7-tiny  Mobdrone 1280x1280 100 0.952 0.933 1.6ms
YOLOvT7-tiny SeaDronesSee 1280x1280 120 0.777 0.729 1.6ms

TPH-YOLOv5 Heridal 1280x1280 30 0.619 0.614 223ms
TPH-YOLOv5 Mobdrone 1280x1280 10 0.859 0.874 116ms
TPH-YOLOv5 SeaDronesSee 1280x1280 10 0.790 0.731 218ms

APH-YOLOvTt Heridal 1280x1280 400 0.410 0.278 7.9ms
APH-YOLOvTt Mobdrone 1280x1280 100 0.891 0.808 16.8ms
APH-YOLOvT7t SeaDronesSee 1280x1280 120 0.766 0.709 10.0ms

Table 3: YOLO - Computational complexity
Method Layers GFLOPS Parameters
YOLOv7 314  103.2 36.4M

YOLOv7-tiny 208 13 6M
TPH-YOLOv5 371 160 41M
APH-YOLOv7t 300  13.5 7.2M

6 Conclusion

In this paper, the demonstrated APH-Yolov7t has delivered a competitive per-
formance compared to the YOLOvV7-tiny. Results show that, overall, YOLOv7
was more robust on the Heridal, Mobdrone, and SeaDronesSee datasets and
comprehensive for our application. Our method APH-YOLOV7t, with attention
mechanism on baseline, resulted in reasonably well in inference when compared
to TPH-YOLOV5 and competitively well in mAP50 when compared to YOLOv7
and YOLOv7-tiny. Drone images in Search and Rescue Operations often have
varying resolutions and scales, an attention-based head can improve the model’s
e ciency, potentially leading to better person detection. Our method supports
such missions. YOLOvV7-tiny is already a lightweight model known for its real-
time performance. By optimizing the attention-based head for e ciency, one can
maintain fast inference times while bene ting from the attention’s contextual ca-
pabilities. For this, also there is a further chance of tuning TPH-YOLOV7t to
transformer-based YOLOV7-tiny’s head, which is expected to beat the baseline
in terms of MAPS50.

This widens up new possibilities for more widespread adoption of hybrid
transformer prediction head-based YOLO models in the eld, improving the ef-
ciency of object detection models and reducing search time associated with
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Fig.5: Mobdrone APH-YOLOV7t detection (with persons in green boxes)

Fig. 6: SeaDronesSee APH-YOLOV7t detection (with persons in blue boxes)

drone deployment. Our study lays the foundation for future research and devel-
opment in drones for search and rescue operations, ultimately leading to faster,
more accurate and e cient practices in the eld.
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