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ABSTRACT
Second-order arithmetic has two kinds of computational interpre-

tations: via Spector’s bar recursion of via Girard’s polymorphic

lambda-calculus. Bar recursion interprets the negative translation

of the axiom of choice which, combined with an interpretation

of the negative translation of the excluded middle, gives a com-

putational interpretation of the negative translation of the axiom

scheme of comprehension. It is then possible to instantiate univer-

sally quantified sets with arbitrary formulas (second-order elimina-

tion). On the other hand, polymorphic lambda-calculus interprets

directly second-order elimination by means of polymorphic types.

The present work aims at bridging the gap between these two

interpretations by interpreting directly second-order elimination

through update recursion, which is a variant of bar recursion.
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1 INTRODUCTION
In this introduction we recall the existing interpretations of second-

order arithmetic, we present the outline of our contribution, and

we mention some related work.

1.1 Bar recursive interpretations
The usual route, summarized in figure 1, for interpreting second-

order arithmetic via bar recursion consists of a derivation of the

axiom scheme of comprehension through a combination of the

excluded middle with the axiom of countable choice, followed by

a negative translation into first-order intuitionistic arithmetic ex-

tended with the negative translation of the axiom of choice. Finally,

this system is interpreted with the help of bar recursion that gives

computational content to the negative translation of the axiom of

countable choice (or to the double-negation shift which, together

with the axiom of countable choice, implies intuitionistically the

negative translation of the axiom of countable choice).

We review in this section the various existing bar recursive

interpretations of second-order arithmetic.

Spector’s original bar recursion. Gödel’s dialectica interpreta-

tion [9] provides a computational interpretation of arithmetic into

System T — simply-typed lambda-calculus with natural numbers

and a recursor. Spector extends this interpretation to an interpreta-

tion of second-order arithmetic [14] by extending Gödel’s System
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T with a bar recursion operator. Spector uses this bar recursion

operator to interpret what he calls the F axiom scheme, but which

is nowadays known as double-negation shift (DNS). Composing his

interpretation with a negative translation from classical arithmetic

with countable choice into intuitionistic arithmetic with countable

choice and DNS, he obtains an interpretation of classical arithmetic

with countable choice and therefore of second-order arithmetic.

Berardi-Bezem-Coquand’s demand-driven operator. Berardi, Be-
zem and Coquand define an operator [3] (usually called BBC) in-

spired by Spector’s bar recursion but that has a more direct and

intuitive behavior. Also, contrary to Spector’s interpretation that

extends Gödel’s Dialectica, their interpretation extends Kreisel’s

modified realizability [10]. The BBC operator is demand-driven

in the sense that it computes step by step finite approximations

of an ideal infinite object, the order of these steps being dictated

by the environment in which the operator executes. They use this

operator to provide a computational interpretation of (a principle

equivalent to) the negative translation of the axiom of countable

choice. Their interpretation is therefore slightly more direct than

Spector’s in the sense that it interprets the negative translation of

the axiom of countable choice rather than DNS.

Berger-Oliva’s modified bar recursion. Berger and Oliva define

an operator [6] that more closely resembles Spector’s bar recur-

sion, but their interpretation extends Kreisel’s modified realizability,

as Berardi-Bezem-Coquand’s. Moreover, they follow more closely

the lead of Spector by interpreting DNS, from which the negative

translation of the axiom of countable choice can be derived.

Streicher and Krivine’s bar recursion in classical realizability. Stre-
icher gives a presentation of Krivine’s classical realizability in the

setting of categorical realizability, as a subtopos K of the relative

realizability topos E induced by the model of coherence spaces

and stable maps and a well-chosen set of proof-like elements [15].

Using bar induction and the interpretation of bar recursion as a

stable map between appropriate coherence spaces, he shows that

E validates the double-negation shift principle, and because E also

validates countable choice, he obtains that the classical realizability

topos K validates countable choice.

Krivine uses the BBC operator to realize the negative translation

of the axiom of countable choice [11].

1.2 Interpretation of second-order arithmetic
via system F

The second kind of interpretation of second-order arithmetic is via

Girard’s representation theorem [8] that relies on a translation of

second-order arithmetic into Girard-Reynolds polymorphic lambda-

calculus [7, 13] (system F). This interpretation uses a version of

second-order arithmetic that is obtained from first-order arithmetic

by adding a quantifier on predicates, rather than the axiom schema

https://doi.org/10.1145/3531130.3532458
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HA

Heyting arithmetic (intuitionistic)

EM 𝐴 ∨ ¬𝐴
excluded middle

COMP ∃𝑋∀𝑥 (𝑥 ∈ 𝑋 ⇔ 𝐴 (𝑥))
axiom schema of comprehension

AC ∀𝑥∃𝑦 𝐴 (𝑥,𝑦) ⇒ ∃𝑓 ∀𝑥 𝐴 (𝑥, 𝑓 (𝑥))
axiom of countable choice

AC
¬ ∀𝑥¬¬∃𝑦 𝐴¬ (𝑥,𝑦) ⇒ ¬¬∃𝑓 ∀𝑥 𝐴¬ (𝑥, 𝑓 (𝑥))
negative translation of the axiom of countable choice

DNS ∀𝑥¬¬𝐴 (𝑥) ⇒ ¬¬∀𝑥 𝐴 (𝑥, )
double-negation shift

HA + EM + COMP

HA + EM + AC

AC + EM ⊢ COMP

HA + AC
¬

negative translation

HA + AC + DNS

AC + DNS ⊢ AC¬©­­«
ª®®¬

T + bar recursion/BBC

modified realizability

/ Dialectica

Figure 1: Bar recursive interpretations of second-order arithmetic

of comprehension. This means that set variables can be instantiated

with arbitrary predicates written in the language of the logic: this

is the second-order elimination rule: ∀𝑋 𝐴 ⇒ 𝐴 [𝑥 .𝐵/𝑋 ], where 𝐵
is any formula and 𝐴 [𝑥 .𝐵/𝑋 ] is 𝐴 where every atomic subformula

𝑋 (𝑡) is replaced with 𝐵 [𝑡/𝑥]. The interpretation of this rule in

polymorphic lambda-calculus carries no computational content: it

is interpreted with the instantiation of a polymorphic program of

type ∀𝑋 𝑇 with𝑋 := 𝑈 to obtain a program of type𝑇 [𝑈 /𝑋 ], where
𝑇 and 𝑈 are derived from 𝐴 and 𝐵. This apparent simplicity of the

interpretation is however counterbalanced at the meta-level by an

impredicative normalization proof.

1.3 Contributions
As explained above, the bar recursive interpretations of second-

order arithmetic involve several logical transformations prior to the

concrete interpretation by programs. Conversely, the polymorphic

interpretation exploits a strong correspondence between quantifi-

cation on predicates and polymorphic types. In the present paper

we make a crucial step towards the unravelling of a similar strong

correspondence in the case of bar recursion. Indeed, we interpret di-

rectly the same system of second-order arithmetic as the one used in

Girard’s representation theorem, via a bar recursive interpretation

of the elimination of quantification on predicates.

We define a very generic notion of realizability value and prove

a general result about the behavior of the variant of bar recursion

we use. This general result proves to be flexible enough so that

it can be used for proving both termination of the programming

language and correctness of the realizability interpretation.

1.4 Related work
Berger defines a variant of the bar recursion operator that he calls

"update recursion" [5]. This variant is closely related to the BBC

operator, in the sense that it builds finite approximations of an

ideal infinite object step-by-step and on demand. Berger proves

that this operator realizes a principle called "update induction"

and shows that the BBC operator can indeed be implemented via

update recursion. Berger’s operator is the variant of bar recursion

that most closely fits our needs, so we use (a slight variant of) it in

the present work. However, we show directly that our version of

update recursion realizes second-order elimination, without going

through update induction.

Aschieri, Berardi and Birolo extend lambda-calculus with a vari-

ant of delimited exceptions and use interactive realizability to inter-

pret intuitionistic first-order arithmetic extended with a restricted

form of excluded middle EM1 on Σ0
1
formulas [2]. Powell uses a sim-

ilar idea in the context of Gödel’s Dialectica interpretation to define

the concept of learning algorithms [12], that build approximations

to witnesses of decidable formulas. He then transforms a count-

able sequence of learning algorithms into a single algorithm and

proves that it can be used to interpret arithmetical comprehension

on Σ0
1
formulas. Our work can be seen as an extension of these

works, where we relax the decidability requirement and provide

computational content to the full comprehension axiom instead of

its restriction to Σ0
1
formulas.

1.5 Outline of the paper
In the first section, we present the system of second-order arith-

metic used in Girard’s representation theorem, where the usual

comprehension axiom is replaced with the equivalent notion of

quantification over predicates.

In the next sectionwe define our programming language together

with its operational and denotational semantics.

In the final section, we define our general notion of realizabil-

ity value and prove a very generic result about update recursion,

then we prove normalization of our programming language using

"propositional" realizability values a.k.a. reducibility candidates.

Then we prove adequacy of our interpretation via realizability val-

ues that depend on natural numbers and sets of natural numbers.

Finally, we validate this interpretation by proving an extraction

result from proofs of Π0

2
formulas of second-order arithmetic.
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2 SECOND-ORDER ARITHMETIC
We define in this section the theory of second-order arithmetic for

which we provide a computational interpretation in the following

sections.

This theory is the one used in Girard’s representation theorem

with quantifications over predicates, as witnessed by the ∀2𝑒 rule,
where 𝐴 [𝑥 .𝐵/𝑋 ] is the formula 𝐴 where every instance of an atom

of the form 𝑋 (𝑡) for some term 𝑡 is replaced with the formula

𝐵 [𝑡/𝑥].
Second-order logic has two kinds of variables: 𝑥,𝑦, . . . denote

first-order (number) variables and 𝑋,𝑌, . . . denote second-order

(set) variables. The terms of second-order arithmetic are built from

number variables, 0, successor, addition and multiplication:

𝑡,𝑢 ::= 𝑥 | 0 | 𝑆 𝑡 | 𝑡 + 𝑢 | 𝑡 × 𝑢

Formulas are built from atomic formulas (set variables applied

to some term), implication and first- and second-order universal

quantification:

𝐴, 𝐵 ::= 𝑋 (𝑡) |𝐴 ⇒ 𝐵 | ∀𝑥 𝐴 | ∀𝑋 𝐴

The formal system of second-order arithmetic (rules and axioms) is

defined in figure 2. Our proof trees are annotated with proof terms

for convenience, but we do not consider any kind of reduction on

these proof terms.

As usual, other logical connectors such as equality, conjunction,

disjunction and first- and second-order quantification can be en-

coded in second-order logic. In the present paper we only use the

following encodings:

𝑋 ≡ 𝑋 (0) 𝑡 = 𝑢 ≡ ∀𝑋 (𝑋 (𝑡) ⇒ 𝑋 (𝑢))
⊥ ≡ ∀𝑋 𝑋 ¬𝐴 ≡ 𝐴 ⇒ ⊥ 𝑡 ≠ 𝑢 ≡ ¬ (𝑡 = 𝑢)

In particular, while formally all our predicate variables are unary,

we encode the nullary ones via an arbitrary instantiation at 0. This

technical choice allows for a more uniform treatment in the re-

alizability interpretation. Note also that since we have terms for

addition and multiplication, we could also encode predicate vari-

ables of arbitrary arity, but we do not need them in the present

work.

3 THE PROGRAMMING LANGUAGE
In this section we describe the programming language in which we

interpret proofs made in second-order arithmetic. We first define its

syntax, typing rules and operational semantics, and then we define

its denotational semantics in complete partial orders.

3.1 Syntax, typing and operational semantics
This programming language is an extension of simply-typed lambda-

calculus with primitive natural numbers, sum types, a unit type

and an update recursion operator ur.
The types are as follows, where 𝜄 denotes the type of natural

numbers:

𝜎, 𝜏 ::= 𝜄 | 1 | 𝜎 → 𝜏 | 𝜎 + 𝜏
The typing rules and operational semantics are given in figure 3,

where the notation 𝜆_.𝑀 is a shorthand for 𝜆𝑥 .𝑀 when 𝑥 is not free

in 𝑀 , and the construct _ ⟨_ ↦→⟩ in the reduction rule for update

recursion is syntactic sugar for the update of a notion of partial

function that we define now. These partial functions on natural

numbers, that the update recursion operator relies on, are encoded

as functions from natural numbers to a sum type 𝜎 + 1, that we

use as an option type. We consider that such a partial function

𝑀 : 𝜄 → 𝜎 + 1 is defined at 𝑛 ∈ N if𝑀 𝑛⇝∗ {𝑁 | } for some 𝑁 : 𝜎 ,

and is undefined at 𝑛 ∈ N if 𝑀 𝑛 ⇝∗ { |★}. Consequently, the
function with empty domain is defined as:

𝜖 ≡ 𝜆_. { |★}

and if 𝑀 is some partial function, then 𝑀 ⟨𝑁1 ↦→ 𝑁2⟩ denotes its
update with value 𝑁2 at 𝑁1, which is defined as:

𝑀 ⟨𝑁1 ↦→ 𝑁2⟩ ≡ 𝜆𝑥.if𝑥 = 𝑁1 then {𝑁2 | } else (𝑀 𝑥)

where:

if𝑀 = 𝑁 then 𝑃1 else 𝑃2 ≡
(𝑀 ?𝜄 (𝜆𝑢.𝑢 ?𝜄 𝑃1 (𝜆𝑦_.𝑃2)) (𝜆𝑥𝑧𝑢.𝑢 ?𝜄 𝑃2 (𝜆𝑦_.𝑧 𝑦))) 𝑁

is an operation deciding equality on natural numbers.

We now comment on the update recursion operator. By looking

at the type of the recursor, one can understand update recursion as

an operator turning a program of type:

(𝜄 → 𝜎 + (𝜎 → 𝜄)) → 𝜄

into a program of type:

(𝜄 → 𝜎 + 1) → 𝜄

That is, if some 𝑀 takes as input a sequence of elements which

are either of type 𝜎 or of type 𝜎 → 𝜄, then ur𝑀 takes simply as

input a partial function to 𝜎 . The reduction rule of ur shows how
this happens: if𝑀 needs the value of its argument at some point 𝑛,

then:

• either the partial function given as argument to ur𝑀 is

defined at 𝑛, in which case ur𝑀 provides that value to 𝑀 ,

as a value of type 𝜎 ,

• or the argument to ur𝑀 is undefined at𝑛, in which case ur𝑀
provides indirectly to 𝑀 a value of type 𝜎 → 𝜄 by reading

the input 𝑁 of type 𝜎 from𝑀 , and triggering a recursive call

with an updated partial function having value 𝑁 at 𝑛.

Our version of update recursion is a bit different fromBerger’s [5].

The first difference is that we use sum types, while Berger encodes

them with booleans and products. The second difference is that

while the first argument in our version is of type:

(𝜄 → 𝜎 + (𝜎 → 𝜄)) → 𝜄

the first argument in Berger’s version is (with our notations) of

type:

(𝜄 → 𝜎 + 1) → (𝜄 → 𝜎 → 𝜄) → 𝜄

Finaly, Berger’s update recursion satisfies (with our notations) the

following equation:

𝜓 𝑀 𝑁 = 𝑀 𝑁 (𝜆𝑥𝑦.𝑁 𝑥 ?+ (𝜆_.0) (𝜆_.𝜓 𝑀 (𝑁 ⟨𝑥 ↦→ 𝑦⟩)))

Berger’s version and ours are however interdefinable:

ur𝑀 = 𝜓 (𝜆𝑢𝑣.𝑀 (𝜆𝑥 .𝑢 𝑥 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { | 𝑣 𝑥})))
𝜓 𝑀 = ur(𝜆𝑢.𝑀 (𝜆𝑥 .𝑢 𝑥 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { |★}))

(𝜆𝑥 .𝑢 𝑥 ?+ (𝜆__.0) (𝜆𝑣.𝑣)))
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Γ ⊢ sn0 : ∀𝑥 (𝑆 𝑥 ≠ 0) Γ ⊢ add0 : ∀𝑥 (𝑥 + 0 = 𝑥) Γ ⊢ mul0 : ∀𝑥 (𝑥 × 0 = 0)

Γ ⊢ sinj : ∀𝑥∀𝑦 (𝑆 𝑥 = 𝑆 𝑦 ⇒ 𝑥 = 𝑦) Γ ⊢ addS : ∀𝑥∀𝑦 (𝑥 + 𝑆 𝑦 = 𝑆 (𝑥 + 𝑦)) Γ ⊢ mulS : ∀𝑥∀𝑦 (𝑥 × 𝑆 𝑦 = 𝑥 + 𝑥 × 𝑦)

Γ ⊢ ind : ∀𝑋 (𝑋 (0) ⇒ ∀𝑥 (𝑋 (𝑥) ⇒ 𝑋 (𝑆 𝑥)) ⇒ ∀𝑥 𝑋 (𝑥))

axioms of second-order arithmetic

𝐴𝑥 (𝑝 :𝐴) ∈Γ
Γ ⊢ 𝑝 : 𝐴

𝐷𝑛𝑒
Γ ⊢ dne𝐴 : ¬¬𝐴 ⇒ 𝐴

Γ, 𝑝 : 𝐴 ⊢ 𝜋 : 𝐵
⇒𝑖

Γ ⊢ 𝜆𝑝.𝜋 : 𝐴 ⇒ 𝐵

Γ ⊢ 𝜋1 : 𝐴 ⇒ 𝐵 Γ ⊢ 𝜋2 : 𝐴⇒𝑒
Γ ⊢ 𝜋1 𝜋2 : 𝐵

Γ ⊢ 𝜋 : 𝐴∀𝑖 𝑥∉𝐹𝑉 (Γ)
Γ ⊢ 𝜆𝑥.𝜋 : ∀𝑥 𝐴

Γ ⊢ 𝜋 : ∀𝑥 𝐴∀𝑒
Γ ⊢ 𝜋 𝑡 : 𝐴 [𝑡/𝑥]

Γ ⊢ 𝜋 : 𝐴∀2𝑖 𝑋∉𝐹𝑉 (Γ)
Γ ⊢ 𝜆𝑋 .𝜋 : ∀𝑋 𝐴

Γ ⊢ 𝜋 : ∀𝑋 𝐴∀2𝑒
Γ ⊢ 𝜋 (𝑥 .𝐵) : 𝐴 [𝑥 .𝐵/𝑋 ]

rules of second-order logic

Figure 2: Second-order arithmetic

(𝑥 :𝜎 ) ∈Γ
Γ ⊢ 𝑥 : 𝜎

Γ, 𝑥 : 𝜎 ⊢ 𝑀 : 𝜏

Γ ⊢ 𝜆𝑥.𝑀 : 𝜎 → 𝜏

Γ ⊢ 𝑀 : 𝜎 → 𝜏 Γ ⊢ 𝑁 : 𝜎

Γ ⊢ 𝑀 𝑁 : 𝜏

𝑛∈N
Γ ⊢ 𝑛 : 𝜄

Γ ⊢ 𝑀 : 𝜄

Γ ⊢ S𝑀 : 𝜄

Γ ⊢ 𝑀 : 𝜄

Γ ⊢ 𝑀 ?𝜄 : 𝜎 → (𝜄 → 𝜎 → 𝜎) → 𝜎

Γ ⊢ 𝑀 : 𝜎

Γ ⊢ {𝑀 | } : 𝜎 + 𝜏
Γ ⊢ 𝑀 : 𝜏

Γ ⊢ { |𝑀} : 𝜎 + 𝜏
Γ ⊢ 𝑀 : 𝜎 + 𝜏

Γ ⊢ 𝑀 ?+ : (𝜎 → 𝜈) → (𝜏 → 𝜈) → 𝜈

Γ ⊢ ★ : 1 Γ ⊢ ur : ((𝜄 → 𝜎 + (𝜎 → 𝜄)) → 𝜄) → (𝜄 → 𝜎 + 1) → 𝜄

typing derivations

(𝜆𝑥.𝑀) 𝑁 ⇝ 𝑀 [𝑁 /𝑥] ur𝑀 𝑁 ⇝ 𝑀 (𝜆𝑥 .𝑁 𝑥 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { | 𝜆𝑦.ur𝑀 (𝑁 ⟨𝑥 ↦→ 𝑦⟩))})

S𝑛⇝ 𝑛 + 1 0 ?𝜄 𝑁1 𝑁2 ⇝ 𝑁1 𝑛 + 1 ?𝜄 𝑁1 𝑁2 ⇝ 𝑁2 𝑛 (𝑛 ?𝜄 𝑁1 𝑁2)

{𝑀 | }?+ 𝑁1 𝑁2 ⇝ 𝑁1𝑀 { |𝑀}?+ 𝑁1 𝑁2 ⇝ 𝑁2𝑀

𝐸 [𝑀] ⇝ 𝐸 [𝑁 ] if𝑀 ⇝ 𝑁 where 𝐸 [_] ::= 𝐸 [_]𝑀 | S𝐸 [_] | 𝐸 [_] ?𝜄 | 𝐸 [_] ?+

operational semantics

Figure 3: The programming language

3.2 Denotational semantics: complete partial
orders

The termination of the update recursion operator depends crucially

on the continuity of programs: if a program turns an infinite se-

quence into a value of type 𝜄, then it can only depend on a finite

part of its input sequence. The intuition is that such a program

converges in a finite number of steps to a final value, and therefore

during this computation it can only evaluate its input at a finite

number of positions. The denotational model of complete partial

orders does provide a general framework to talk about continuity

of programs in this sense.

Moreover, it will be convenient, for proving correctness of update

recursion, to talk about ideal sequences which are limits of finite

sequences, but may not be expressible as programs. Such ideal

sequences may even be non-computable. If (𝑎𝑛)𝑛∈N is a sequence

of elements of some complete partial order𝐷 , then the function that

turns 𝑛 ∈ N into 𝑎𝑛 is itself an element of the complete partial order

of functions from natural numbers to 𝐷 , so the model of complete

partial orders is very suited for handling such ideal sequences.

We now turn to the basic definitions about complete partial

orders:
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Definition 3.1. A partially ordered set 𝐷 is directed if it is non-

empty and:

∀𝑥,𝑦 ∈ 𝐷, ∃𝑧 ∈ 𝐷, 𝑥 ≤ 𝑧 and 𝑦 ≤ 𝑧

A complete partial order (cpo) is a partial order 𝐷 :

• which has a least element ⊥,
• such that every directed subset 𝑋 ⊆ 𝐷 has a least upper

bound

∨
𝑋 ∈ 𝐷 .

A continuous function between cpos is a function that preserves

directed sets and their suprema:

Definition 3.2. If 𝐷 and 𝐸 are cpos, a map 𝑓 : 𝐷 → 𝐸 is continu-

ous if for all directed 𝑋 ⊆ 𝐷 , 𝑓 (𝑋 ) ⊆ 𝐸 is directed and:

𝑓

(∨
𝑋

)
=

∨
𝑓 (𝑋 )

The following proposition is a fundamental result about cpos that

permits the interpretation of functional programming languages in

the model of cpos. Its proof can be found, e.g. in [1].

Proposition 3.3. The set of pointwise ordered continuous maps
from cpo 𝐷 to cpo 𝐸 is a cpo that we denote with 𝐷 → 𝐸.

Moreover, the componentwise ordering on products of cpos turns

the model of cpos into a cartesian closed category, and therefore

into a model of 𝜆-calculus (see [1] for details).

After these general definitions about the model of cpos, we move

to its use for our programming language.

We start with the operation of lifting of a cpo, which adds a least

element to an existing cpo: if 𝐴 is a partially ordered set we let 𝐴⊥
be the set 𝐴 ∪ {⊥} equipped with the order on 𝐴 extended with

⊥ ≤ 𝑎 for all 𝑎 ∈ 𝐴⊥. If 𝐴 is a set then it is implicitly equipped with

the discrete ordering. Liftings of such sets are used to interpret base

types.

We associate to each type 𝜎 a cpo [𝜎] as follows:
[𝜄] = N⊥ [𝜎 → 𝜏] = [𝜎] → [𝜏]
[1] = {★}⊥ [𝜎 + 𝜏] = ( [𝜎] ⊎ [𝜏])⊥

where we choose the same symbol ★ to denote the program on the

unit type and its interpretation. If 𝑎 ∈ 𝐴 and 𝑏 ∈ 𝐵 we write {𝑎 | } ∈
𝐴⊎𝐵 and { | 𝑏} ∈ 𝐴⊎𝐵. Similarly we write {𝐴 | } = {{𝑎 | } | 𝑎 ∈ 𝐴}
and { | 𝐵} = {{ | 𝑏} | 𝑏 ∈ 𝐵}.
Each program 𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 ⊢ 𝑀 : 𝜎 is interpreted as a

continuous function [𝑀] from [𝜎1] × . . . [𝜎𝑛] (equipped with the

componentwise ordering) to [𝜎] as described in figure 4.

We now prove that the operation deciding equality between

natural numbers, the empty function and the update of a partial

function do have the intended semantics.

Proposition 3.4. We have:[
if𝑀 = 𝑁 then 𝑃1

else 𝑃2

]
=


⊥ if [𝑀] = ⊥ or [𝑁 ] = ⊥
[𝑃1] if [𝑀] = [𝑁 ] ≠ ⊥
[𝑃2] if ⊥ ≠ [𝑀] ≠ [𝑁 ] ≠ ⊥

[𝜖] (𝑎) = { |★}

[𝑀 ⟨𝑁1 ↦→ 𝑁2⟩] (𝑎) =


⊥ if 𝑎 = ⊥
[{𝑁2 | }] if 𝑎 = [𝑁1]
[𝑀] (𝑎) if 𝑎 ≠ [𝑁1] and 𝑎 ≠ ⊥

Proof. For the first item: if [𝑀] = ⊥ then:

[if𝑀 = 𝑁 then 𝑃1 else 𝑃2] = ⊥
otherwise define:

𝑑0 = [𝜆𝑢.𝑢 ?𝜄 𝑃1 (𝜆𝑦_.𝑃2)]
𝑑𝑛+1 = [𝜆𝑥𝑧𝑢.𝑢 ?𝜄 𝑃2 (𝜆𝑦_.𝑧 𝑦)] (𝑛) (𝑑𝑛)

so that:

[if𝑀 = 𝑁 then 𝑃1 else 𝑃2] = 𝑑 [𝑀 ] ( [𝑁 ])
We then prove by induction on𝑛 ∈ N that𝑑𝑛 (⊥) = ⊥,𝑑𝑛 (𝑛) = [𝑃1]
and 𝑑𝑛 (𝑚) = [𝑃2] if 𝑚 ≠ 𝑛, from which the result follows. The

second item is immediate and the third follows easily from the first

by case analysis. □

We now prove that the interpretation of update recursion satis-

fies the recursive equation implied by its reduction rule:

Lemma 3.5. For all ®𝑎, 𝑏:
𝔉 ( [ur] ( ®𝑎) (𝑏)) = [ur] ( ®𝑎) (𝑏)

Proof. Indeed,𝔉 is continuous so:

𝔉 ( [ur] ( ®𝑎) (𝑏)) = 𝔉

(∨
𝑛∈N

𝔉𝑛 (⊥)
)
=

∨
𝑛∈N

𝔉
(
𝔉𝑛 (⊥)

)
=

∨
𝑛∈N

𝔉𝑛+1 (⊥) = ⊥ ∨
∨
𝑛∈N

𝔉𝑛+1 (⊥)

=
∨
𝑛∈N

𝔉𝑛 (⊥) = [ur] ( ®𝑎) (𝑏) □

The following proposition asserts that the denotational seman-

tics of our programming language is correct with respect to its

operational semantics.

Proposition 3.6. If𝑀 ⇝ 𝑁 then [𝑀] = [𝑁 ].

Proof. By case on the reduction 𝑀 ⇝ 𝑁 , using the previous

lemma for the case of update recursion. □

The following result, computational adequacy, allows to "go

back" from the denotational model to the syntactic language on base

types. It asserts that if some program on a base type is interpreted

as a value, then it must reduce to that value. It will be particularly

useful for proving that extracted programs do compute the intended

values. The result is standard, usually proved via logical relations,

the interested reader can refer to [1].

Proposition 3.7. If𝑀 : 𝜄 and 𝑁 : 1 are closed programs such that
[𝑀] = 𝑛 for some 𝑛 ∈ N and [𝑁 ] = ★, then𝑀 ⇝∗ 𝑛 and 𝑁 ⇝∗ ★.

In the following we will often drop the interpretation brackets

and use programs with parameters, that is, we will write𝑀 [®𝑎/®𝑥]
instead of [𝑀] ( ®𝑎).

4 REALIZABILITY
In this section we define a general notion of realizability value. We

first use it to prove normalization of our programming language.

We then define the interpretation of proofs in our programming

language and we prove the correctness of this interpretation with

respect to realizability values associated to formulas. Finally, we

prove an extraction theorem from proofs of Π0

2
theorems.
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[𝑥𝑖 ] ( ®𝑎) = 𝑎𝑖 [𝜆𝑥.𝑀] ( ®𝑎) (𝑏) = [𝑀] ( ®𝑎, 𝑏) [𝑀 𝑁 ] ( ®𝑎) = [𝑀] ( ®𝑎) ( [𝑁 ] ( ®𝑎)) [★] ( ®𝑎) = ★

[𝑛] ( ®𝑎) = 𝑛 [S𝑀] ( ®𝑎) = [𝑀] ( ®𝑎) + 1 [𝑀 ?𝜄 ] ( ®𝑎) (𝑏) (𝑐) = 𝑑 [𝑀 ] ( ®𝑎) where


𝑑⊥ = ⊥
𝑑0 = 𝑏

𝑑𝑛+1 = 𝑐 (𝑛) (𝑑𝑛)

[{𝑀 | }] ( ®𝑎) = {[𝑀] ( ®𝑎) | } [{ |𝑀}] ( ®𝑎) = { | [𝑀] ( ®𝑎)} [𝑀 ?+] ( ®𝑎) (𝑏) (𝑐) =


⊥ if [𝑀] ( ®𝑎) = ⊥
𝑏 (𝑑) if [𝑀] ( ®𝑎) is some {𝑑 | }
𝑐 (𝑑) if [𝑀] ( ®𝑎) is some { | 𝑑}

[ur] ( ®𝑎) (𝑏) = ∨
𝑛∈N𝔉

𝑛 (⊥) where 𝔉 = [𝜆𝑧𝑟 𝑓 .𝑧 (𝜆𝑥 .𝑓 𝑥 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { | 𝜆𝑦.𝑟 (𝑓 ⟨𝑥 ↦→ 𝑦⟩))})] ( ®𝑎) (𝑏)

Figure 4: Denotational semantics in complete partial orders

4.1 Realizability values
In this section we define a general notion of realizability value that

is just a subset of the cpo interpretation of a type. We then prove

some properties on these realizability values and we prove a general

result on the behavior of update recursion with respect to arbitrary

realizability values.

Definition 4.1. A realizability value A on a type 𝜎 is a subset of

its interpretation [𝜎]. We define for each realizability values A on

𝜎 and B on 𝜏 the following realizability values on 𝜎 → 𝜏 and 𝜎 + 𝜏 :

A → B = {𝑓 ∈ [𝜎 → 𝜏] | ∀𝑎 ∈ A, 𝑓 (𝑎) ∈ B}
A + B = {A | } ∪ { | B}

As for subtyping,→ is contravariant on the left and covariant on

the right with respect to inclusion. We also have some commutation

rules with respect to unions and intersections.

Lemma 4.2. For every realizability values A1, A2 on 𝜎 and B1,
B2 on 𝜏 , if A2 ⊆ A1 and B1 ⊆ B2 then:

A1 → B1 ⊆ A2 → B2

Il (A𝑒 )𝑒∈𝐸 is a family of realizability values and B is a realizability
value, then:⋂
𝑒∈𝐸

(A𝑒 → B) =
⋃
𝑒∈𝐸

A𝑒 → B
⋂
𝑒∈𝐸

(B → A𝑒 ) = B𝑒 →
⋂
𝑒∈𝐸

A𝑒⋃
𝑒∈𝐸

(A𝑒 → B) ⊆
⋂
𝑒∈𝐸

A𝑒 → B
⋃
𝑒∈𝐸

(B → A𝑒 ) ⊆ B →
⋃
𝑒∈𝐸

A𝑒

Proof. For the first item, let 𝑓 ∈ A1 → B1 and let 𝑎 ∈ A2.

Then 𝑎 ∈ A1 so 𝑓 (𝑎) ∈ B1 ⊆ B2. The second item follows from

the basic rules of quantifiers. □

The following proposition describes very precisely the behavior

of update recursion on arbitrary realizability values. We will use

it both for proving normalization of our programming language,

and for proving correctness of our interpretation of the ∀2𝑒 rule of
second-order arithmetic. Our proof is largely inspired by [4].

Proposition 4.3. Let (A𝑛)𝑛∈N be a family of realizability values
on 𝜎 and let B ⊆ N. Then:

ur ∈
(⋂
𝑛∈N

({𝑛} → A𝑛 + (A𝑛 → B)) → B
)

→
⋂
𝑛∈N

({𝑛} → A𝑛 + {★}) → B

Proof. Remark that

⋂
𝑛∈N ({𝑛} → A𝑛 + {★}) is a realizability

value on the type 𝜄 → 𝜎 + 1 of partial functions on 𝜎 that we

presented earlier. We define a preorder ≼ on this realizability value,

which corresponds to the usual order between partial functions, as

follows:

𝑓 ≼ 𝑔 iff ∀𝑛 ∈ N, 𝑓 (𝑛) ∈ {A𝑛 | } ⇒ 𝑔 (𝑛) = 𝑓 (𝑛)

Be careful that this preorder ≼ is not the cpo order ≤. It is a different
preorder that we only use in the proof of the current proposition.

Let 𝑎 ∈ ⋂
𝑛∈N ({𝑛} → A𝑛 + (A𝑛 → B)) → B and let:

𝐸 =

{
𝑓 ∈

⋂
𝑛∈N

({𝑛} → A𝑛 + {★})
����� ur𝑎 𝑓 ∉ B

}
We prove that every non-empty chain of (𝐸, ≼) has an upper bound

but (𝐸, ≼) has no maximal element. Therefore by Zorn’s lemma 𝐸

must be empty, which proves the result.

Every non-empty chain of (𝐸, ≼) has an upper bound. Let
𝐹 ⊆ 𝐸 be a non-empty chain. Define ⋎𝐹 by ⋎𝐹 (⊥) = ⊥ and:

if ∀𝑓 ∈ 𝐹, 𝑓 (𝑛) = { |★} then ⋎𝐹 (𝑛) = { |★}
if ∃𝑓 ∈ 𝐹, 𝑓 (𝑛) ∈ {A𝑛 | } then ⋎𝐹 (𝑛) = 𝑓 (𝑛)

Note that since 𝐹 is a chain, the value in the second case is unique

so ⋎𝐹 is well defined. By construction, ⋎𝐹 is an upper bound of 𝐹 in⋂
𝑛∈N ({𝑛} → A𝑛 + {★}), so we are left to prove ⋎𝐹 ∈ 𝐸. Suppose

for the sake of contradiction that ⋎𝐹 ∉ 𝐸, that is, ur𝑎 ⋎𝐹 ∈ B.

Define 𝑓𝐼 for finite 𝐼 ⊆ N by:

𝑓𝐼 (⊥) = ⊥ 𝑓𝐼 (𝑛) =
{
⋎𝐹 (𝑛) if 𝑛 ∈ 𝐼

⊥ otherwise

Then for the cpo order ≤ on [𝜄 → 𝜎 + 1]:
• {𝑓𝐼 | 𝐼 ⊆ N finite} is directed
• ⋎𝑓 =

∨ {𝑓𝐼 | 𝐼 ⊆ N finite}
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By monotonicity of ur𝑎 we have for all 𝐼 :

ur𝑎 𝑓𝐼 ≤ ur𝑎 ⋎𝐹 so ur𝑎 𝑓𝐼 ∈ {⊥, ur𝑎 ⋎𝐹 }

and then by continuity of ur𝑎 there must exist 𝐼0 such that:

ur𝑎 𝑓𝐼0 = ur𝑎 ⋎𝐹

By definition of ⋎𝐹 and non-emptiness of 𝐹 , for each 𝑖 ∈ 𝐼0 there

exists 𝑓𝑖 ∈ 𝐹 such that:

𝑓𝑖 (𝑖) = ⋎𝐹 (𝑖) = 𝑓𝐼0 (𝑖)

Then since 𝐹 is a chain and 𝐼0 is finite, there exists 𝑓 ∈ 𝐹 such that

𝑓𝑖 ≼ 𝑓 for every 𝑖 ∈ 𝐼0. Finally, for each 𝑛 ∈ N:
• if 𝑛 ∉ 𝐼0 then 𝑓𝐼0 (𝑛) = ⊥ ≤ 𝑓 (𝑛)
• if 𝑛 ∈ 𝐼0 then 𝑓𝑛 (𝑛) = ⋎𝐹 (𝑛) = 𝑓𝐼0 (𝑛) and:
– if 𝑓𝑛 (𝑛) ∈ {A𝑛 | } then 𝑓 (𝑛) = 𝑓𝑛 (𝑛) since 𝑓𝑛 ≼ 𝑓 , and

therefore 𝑓𝐼0 (𝑛) = 𝑓 (𝑛)
– if ⋎𝐹 (𝑛) = { |★} then 𝑓 (𝑛) = { |★} by definition of ⋎𝐹
since 𝑓 ∈ 𝐹 , and therefore 𝑓𝐼0 (𝑛) = 𝑓 (𝑛)

therefore 𝑓𝐼0 ≤ 𝑓 and ur𝑎 ⋎𝐹 = ur𝑎 𝑓𝐼0 ≤ ur𝑎 𝑓 by monotonic-

ity of ur𝑎. But ur𝑎 ⋎𝐹 ∈ B so ur𝑎 ⋎𝐹 ≠ ⊥, which means that

ur𝑎 𝑓 = ur𝑎 ⋎𝐹 ∈ B, contradicting 𝐹 ⊆ 𝐸.

(𝐸, ≼) has no maximal element. Suppose for the sake of contra-
diction that 𝑓 is a maximal element of 𝐸. Then ur𝑎 𝑓 ∉ B, so by

lemma 3.5:

𝑎(𝜆𝑥 .𝑓 𝑥 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { | 𝜆𝑦.ur𝑎 (𝑓 ⟨𝑥 ↦→ 𝑦⟩))}) = ur𝑎 𝑓 ∉ B

but then by hypothesis on 𝑎 we have:

𝜆𝑥.𝑓 𝑥 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { | 𝜆𝑦.ur𝑎 (𝑓 ⟨𝑥 ↦→ 𝑦⟩))}

∉
⋂
𝑛∈N

({𝑛} → A𝑛 + (A𝑛 → B))

so there exists 𝑛 ∈ N such that:

𝑓 𝑛 ?+ (𝜆𝑦. {𝑦 | }) (𝜆_. { | 𝜆𝑦.ur𝑎 (𝑓 ⟨𝑛 ↦→ 𝑦⟩))} ∉ A𝑛 + (A𝑛 → B)

Since 𝑓 𝑛 ∈ A𝑛 + {★}, either there exists 𝑏 ∈ A𝑛 such that 𝑓 𝑛 =

{𝑏 | }, or 𝑓 𝑛 = { |★}. In the first case, we obtain {𝑏 | } ∉ A𝑛 +
(A𝑛 → B), which is a contradiction. Therefore 𝑓 𝑛 = { |★} and we
have:

{ | 𝜆𝑦.ur𝑎 (𝑓 ⟨𝑛 ↦→ 𝑦⟩)} ∉ A𝑛 + (A𝑛 → B)
so there exists 𝑏 ∈ A𝑛 such that ur𝑎 (𝑓 ⟨𝑛 ↦→ 𝑏⟩) ∉ B and then

𝑓 ⟨𝑛 ↦→ 𝑏⟩ ∈ 𝐸. But 𝑓 ≼ 𝑓 ⟨𝑛 ↦→ 𝑏⟩ and 𝑓 ⟨𝑛 ↦→ 𝑏⟩ 𝑛 = {𝑏 | } by 3.4,

so since 𝑓 𝑛 = { |★} we also have 𝑓 ⟨𝑛 ↦→ 𝑏⟩ $ 𝑓 , contradicting the

maximality of 𝑓 in 𝐸. □

4.2 Normalization
We now use the general notion of realizability value to prove the

normalization of our programming language. For that, we define

for each type 𝜎 the realizability value |𝜎 | on 𝜎 as follows:

|𝜄 | = N |𝜎 → 𝜏 | = |𝜎 | → |𝜏 |
|1| = {★} |𝜎 + 𝜏 | = |𝜎 | + |𝜏 |

These realizability values are the semantic counterparts of the usual

reducibility candidates, so they satisfy the following property:

Lemma 4.4. For every type 𝜎 , there exists𝑀 such that [𝑀] ∈ |𝜎 |
and every such𝑀 reduces to a normal form.

Proof. We prove the results by induction on 𝜎 . We have [0] ∈ |𝜄 |
and [★] ∈ |1|. If we have [𝑀] ∈ |𝜏 | then [𝜆_.𝑀] ∈ |𝜎 → 𝜏 | and
[{ |𝑀}] ∈ |𝜎 + 𝜏 |.

Normalization on |𝜄 | and |1| is a consequence of computational

adequacy (proposition 3.7).

If we have [𝑀] ∈ |𝜎 → 𝜏 | but𝑀 diverges, then for 𝑁 such that

[𝑁 ] ∈ |𝜎 | ≠ ∅, 𝑀 𝑁 diverges as well, contradicting the induction

hypothesis on 𝜏 .

If we have [𝑀] ∈ |𝜎 + 𝜏 | but𝑀 diverges, then𝑀 ?+ (𝜆_.★) (𝜆_.★)
diverges as well, but since |𝜎 + 𝜏 | = {|𝜎 | | } ∪ { | |𝜏 |}, we have

[𝑀 ?+ (𝜆_.★) (𝜆_.★)] = ★ ∈ |1|, contradicting computational ade-

quacy. □

We are now ready to prove that each program belongs to the

realizability value associated to its type:

Theorem 4.5. For each typing derivation:

𝑥1 : 𝜎1, . . . , 𝑥𝑛 : 𝜎𝑛 ⊢ 𝑀 : 𝜏

if:

(𝑎1, . . . , 𝑎𝑛) ∈ |𝜎1 | × . . . × |𝜎𝑛 |
then:

𝑀 [𝑎1, . . . , 𝑎𝑛/𝑥1, . . . , 𝑥𝑛] ∈ |𝜏 |

Proof. The proof proceeds by induction on the structure of𝑀 .

The cases 𝑥 , 𝜆𝑥.𝑀 , 𝑀 𝑁 , 𝑛, S𝑀 , {𝑀 | }, { |𝑀}, and ★ are straight-

forward.

For recursion, let𝑀 : 𝜄 be such that [𝑀] ∈ |𝜄 | = N, and let 𝑎 ∈ |𝜎 |
and 𝑏 ∈ |𝜄 → 𝜎 → 𝜎 |. We define 𝑑0 = 𝑎 and 𝑑𝑛+1 = 𝑏 (𝑛) (𝑑𝑛) and
prove by induction on 𝑛 ∈ N that 𝑑𝑛 ∈ |𝜎 |. Indeed, 𝑑0 = 𝑎 ∈ |𝜎 |
and 𝑑𝑛+1 = 𝑏 (𝑛) (𝑑𝑛) ∈ |𝜎 | since 𝑛 ∈ |𝜄 | and 𝑑𝑛 ∈ |𝜎 | by induction

hypothesis.

For case analysis, let 𝑀 : 𝜎 + 𝜏 be such that [𝑀] ∈ |𝜎 + 𝜏 | =
|𝜎 | + |𝜏 | and let 𝑏1 ∈ |𝜎 → 𝜈 | and 𝑏2 ∈ |𝜏 → 𝜈 |. If [𝑀] ∈ {|𝜎 | | }
then there exists 𝑐 ∈ |𝜎 | such that [𝑀] = {𝑐 | } and therefore

we get [𝑀 ?+] (𝑏1) (𝑏2) = 𝑏1 (𝑐) ∈ |𝜈 |, and if [𝑀] ∈ { | |𝜏 |} then
there exists 𝑐 ∈ |𝜏 | such that [𝑀] = { | 𝑐} and therefore we get

[𝑀 ?+] (𝑏1) (𝑏2) = 𝑏2 (𝑐) ∈ |𝜈 |.
Finally, for update recursion, this is a consequence of 4.3 with

A𝑛 = |𝜎 | and B = |𝜄 | = N, since by lemma 4.2:⋂
𝑛∈N

({𝑛} → |𝜎 | + (|𝜎 | → |𝜄 |)) =
⋃
𝑛∈N

{𝑛} → |𝜎 | + (|𝜎 | → |𝜄 |)

= |𝜄 | → |𝜎 | + (|𝜎 | → |𝜄 |)⋂
𝑛∈N

({𝑛} → |𝜎 | + {★}) =
⋃
𝑛∈N

{𝑛} → |𝜎 | + |1|

= |𝜄 | → |𝜎 | + |1| □

From this theorem and the previous lemma we get normalization

of our programming language:

Corollary 4.6. If𝑀 is a closed program, then𝑀 is normalizing.

4.3 Realizability interpretation
We now define the interpretation of second-order arithmetic proofs

as programs of our programming language. Our interpretation

follows the line of modified realizability and associates to each
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proof of a formula 𝐴 in second-order arithmetic a program which

type 𝐴†
is derived from the formula. The mapping is defined as

follows:

𝑋 (𝑡)† ≡ 𝜄 (𝐴 ⇒ 𝐵)† ≡ 𝐴† → 𝐵†

(∀𝑥 𝐴)† ≡ 𝜄 → 𝐴† (∀𝑋 𝐴)† ≡ 𝐴†

We interpret 𝑋 (𝑡) with type 𝜄 in order to be able to extract natural

numbers from proofs in theorem 4.14. In case we aren’t interested

in extraction then we can interpret 𝑋 (𝑡) with an arbitrary discrete

non-empty type.

Before interpreting proofs as programs, we have to interpret

terms 𝑡 of the logic as programs 𝑡† of type 𝜄. The free variables

of 𝑡† are the first-order variables of 𝑡 and they are of type 𝜄. This

interpretation is straightforward, since addition and multiplication

are easily implemented with the following programs:

𝑀 + 𝑁 ≡ 𝑁 ?𝑀 (𝜆𝑥𝑧.S 𝑧) 𝑀 × 𝑁 ≡ 𝑁 ? 0 (𝜆𝑥𝑧.𝑀 + 𝑧)
Finally, the proof of a sequent:

𝑝1 : 𝐴1, . . . , 𝑝𝑛 : 𝐴𝑛 ⊢ 𝜋 : 𝐴

is interpreted as a program 𝜋† which typing derivation’s conclusion
is of the form:

®𝑥 : 𝜄, 𝑝1 : 𝐴
†
1
, . . . , 𝑝𝑛 : 𝐴

†
𝑛 ⊢ 𝜋† : 𝐴†

where ®𝑥 are the free first-order variables of 𝐴1, . . . , 𝐴𝑛, 𝐴. The in-

terpretation of logical rules and arithmetical axioms is given in

figure 5. Most of these interpretations are standard and the novelty

here lies in the interpretation of the ∀2𝑒 rule. The interpretation of

this rule consists in an instance of update recursion applied to a pro-

gram inductively defined over the formula under the second-order

quantification.

4.4 Realizability semantics
We now have to prove that this interpretation is correct with re-

spect to the logic. In order to define what we mean by correct, we

associate to each formula a realizability value that represents (the

interpretations of) the programs which are correct with respect to

the formula.

A valuation for a term 𝑡 (resp. a formula 𝐴) is a mapping of first-

order variables of 𝑡 (resp. 𝐴) to elements of N and second-order

variables of𝐴 to elements of P (N). As we did for programs, instead

of pairs (𝑡, 𝑣) (resp. (𝐴, 𝑣)) of a term (resp. formula) and a valuation

for it, we rather use terms (resp. formulas) with parameters, that

is, terms (resp. formulas) where free variables are replaced with

their assignment through 𝑣 . The value |𝑡 | in N of a closed term with

parameters 𝑡 is defined using the standard interpretations of 𝑆 , +
and × in N.

Lemma 4.7. If 𝑡 is a closed term with parameters, then
[
𝑡†

]
= |𝑡 |.

Proof. The proof is by induction on 𝑡 , using that

[
0
†] = 0,[

𝑆 𝑡†
]
=

[
𝑡†

]
+ 1 and the following facts:[

𝑡† + 𝑢†
]
=

[
𝑡†

]
+

[
𝑢†

] [
𝑡† × 𝑢†

]
=

[
𝑡†

]
×

[
𝑢†

]
□

We are now ready to define the realizability value associated to

each formula with parameters. The whole realizability semantics

is parameterized by a set ⊥⊥ ⊆ N that will be the set of realizers of

the formula ⊥. Allowing for a non-empty set of realizers of ⊥ is

a well-known technique for keeping computational content from

classical proofs. Indeed, if ⊥ has no realizers then for any formula

𝐴, either 𝐴 has realizers, in which case ¬𝐴 has no realizer, or 𝐴 has

no realizer, in which case everything is a realizer of ¬𝐴. Therefore
¬¬𝐴 has no computational content and we cannot hope to get

anything interesting when eliminating double negation on it.

For each closed formula with parameters 𝐴 we define the realiz-

ability value |𝐴| ⊆
��𝐴†��

of 𝐴 on 𝐴†
as follows:

|𝑋 (𝑡) | =
{
N if |𝑡 | ∈ 𝑋

⊥⊥ if |𝑡 | ∉ 𝑋
|𝐴 ⇒ 𝐵 | = |𝐴| → |𝐵 |

|∀𝑥 𝐴| =
⋂
𝑥∈N

({𝑥} → |𝐴|) |∀𝑋 𝐴| =
⋂
𝑋 ⊆N

|𝐴|

4.5 Adequacy
We now prove the main result of our realizability interpretation.

The adequacy theorem asserts that the program interpreting a given

proof belongs to the realizability value of the formula proven.

Theorem 4.8. For each proof in second-order arithmetic:

𝑝1 : 𝐴1, . . . , 𝑝𝑛 : 𝐴𝑛 ⊢ 𝜋 : 𝐴

such that 𝐹𝑉 (𝐴1, . . . , 𝐴𝑛, 𝐴) ⊆ {𝑥1, . . . , 𝑥𝑚, 𝑋1, . . . , 𝑋𝑘 }, if:
(𝑥1, . . . , 𝑥𝑚) ∈ N𝑚

(𝑋1, . . . , 𝑋𝑘 ) ∈ (P (N))𝑘

(𝑎1, . . . , 𝑎𝑛) ∈ |𝐴1 | × . . . × |𝐴𝑛 |
then:

𝜋† [𝑎1, . . . , 𝑎𝑛/𝑝1, . . . , 𝑝𝑛] ∈ |𝐴|

The proof of this theorem proceeds by induction on 𝜋 . We split

it into three parts: adequacy for the axioms, adequacy for the first-

order intuitionistic part, and adequacy for the 𝐷𝑛𝑒 and ∀2𝑒 rules.

Adequacy for the axioms. In the case of axioms, the correctness

of our interpretation is mostly straightforward. As usual, we use

recursion on natural numbers to interpret induction.

Lemma 4.9. If 𝜋 : 𝐴 is an axiom of second-order arithmetic then:

𝜋† ∈ |𝐴|

Proof. By cases. For axioms add0, addS, mul0 and mulS, this is

a consequence of the fact that if 𝑡 and 𝑢 are terms with parameters

such that |𝑡 | = |𝑢 |, then 𝜆𝑝.𝑝 ∈ |𝑡 = 𝑢 |. Indeed, if |𝑡 | = |𝑢 | then for

all 𝑋 ⊆ N, |𝑋 (𝑡) | = |𝑋 (𝑢) |, so |𝑡 = 𝑢 | = |∀𝑋 (𝑋 ⇒ 𝑋 ) | = ⊥⊥ → ⊥⊥.
For sinj, let 𝑥,𝑦 ∈ N. If 𝑥 = 𝑦 then |𝑆 𝑥 = 𝑆 𝑦 | = ⊥⊥ → ⊥⊥ =

|𝑥 = 𝑦 |, so 𝜆𝑝.𝑝 ∈ |𝑆 𝑥 = 𝑆 𝑦 ⇒ 𝑥 = 𝑦 |. If 𝑥 ≠ 𝑦 then there exists

𝑋 ⊆ N such that 𝑥 ∈ 𝑋 but 𝑦 ∉ 𝑋 , so |𝑥 = 𝑦 | = N→ ⊥⊥. Similarly,

|𝑆 𝑥 = 𝑆 𝑦 | = N→ ⊥⊥, and therefore 𝜆𝑝.𝑝 ∈ |𝑆 𝑥 = 𝑆 𝑦 ⇒ 𝑥 = 𝑦 |.
For sn0, let 𝑥 ∈ N. Since |𝑆 𝑥 | = 𝑥 + 1 ≠ 0, we have as before

|𝑆 𝑥 = 0| = N → ⊥⊥ and so |𝑆 𝑥 ≠ 0| = (N→ ⊥⊥) → ⊥⊥. We then

obtain 𝜆𝑝.𝑝 0 ∈ |𝑆 𝑥 ≠ 0|.
For ind, let 𝑋 ⊆ N, 𝑎 ∈ |𝑋 (0) | and 𝑏 ∈ |∀𝑥 (𝑋 (𝑥) ⇒ 𝑋 (𝑆 𝑥)) |.

We prove by induction that for all 𝑥 ∈ N, 𝑥 ?𝜄 𝑎 𝑏 ∈ |𝑋 (𝑥) |. Indeed,
0 ?𝜄 𝑎 𝑏 = 𝑎 ∈ |𝑋 (0) | and if 𝑥 ?𝜄 𝑎 𝑏 ∈ |𝑋 (𝑥) | then 𝑥 + 1 ?𝜄 𝑎 𝑏 =

𝑏 𝑥 (𝑥 ?𝜄 𝑎 𝑏) ∈ |𝑋 (𝑥 + 1) | since 𝑥 ?𝜄 𝑎 𝑏 ∈ |𝑋 (𝑥) | by induction hy-

pothesis. □



A direct computational interpretation of second-order arithmetic via update recursion LICS ’22, August 2–5, 2022, Haifa, Israel

𝑝† ≡ 𝑝 (𝜆𝑝.𝜋)† ≡ 𝜆𝑝.𝜋† (𝜋1 𝜋2)† ≡ 𝜋
†
1
𝜋
†
2

(𝜆𝑥.𝜋)† ≡ 𝜆𝑥.𝜋† (𝜋 𝑡)† ≡ 𝜋† 𝑡† (𝜆𝑋 .𝜋)† ≡ 𝜋†

(dne𝐴)† ≡ dne𝐴† where ⊢ dne𝜎 : ((𝜎 → 𝜄) → 𝜄) → 𝜎 is defined by:

dne𝜄 ≡ 𝜆𝑝.𝑝 (𝜆𝑞.𝑞)
dne𝜎→𝜏 ≡ 𝜆𝑝𝑞.dne𝜏 (𝜆𝑟 .𝑝 (𝜆𝑠.𝑟 (𝑠 𝑞)))

(𝜋 (𝑥 .𝐵))† ≡ dne(𝐴[𝑥.𝐵/𝑋 ] )†
(
𝜆𝑝.ur

(
𝜆𝑟 .𝑝

(
𝜑1
𝐴,𝐵,𝑋

𝜋†
))

𝜖

)
where for ®𝑥 = 𝐹𝑉 (𝐴),

®𝑥 : ®𝜄, 𝑟 : 𝜄 → 𝐵† +
(
𝐵† → 𝜄

)
⊢ 𝜑1𝐴,𝑥.𝐵,𝑋 : 𝐴† → (𝐴 [𝑥 .𝐵/𝑋 ])†

®𝑥 : ®𝜄, 𝑟 : 𝜄 → 𝐵† +
(
𝐵† → 𝜄

)
⊢ 𝜑2𝐴,𝑥.𝐵,𝑋 : (𝐴 [𝑥 .𝐵/𝑋 ])† → 𝐴†

are defined by:

𝜑1
𝑋 (𝑡 ),𝑥 .𝐵,𝑋 ≡ 𝑟 𝑡† ?+ (𝜆𝑞𝑝.𝑞)

(
𝜆𝑞.exf𝐵†

)
𝜑2
𝑋 (𝑡 ),𝑥 .𝐵,𝑋 ≡ 𝑟 𝑡† ?+ (𝜆𝑞𝑝.0) (𝜆𝑞.𝑞)

𝜑1
𝑌 (𝑡 ),𝑥 .𝐵,𝑋 ≡ 𝜆𝑝.𝑝

𝜑2
𝑌 (𝑡 ),𝑥 .𝐵,𝑋 ≡ 𝜆𝑝.𝑝

if 𝑌 ≠ 𝑋

𝜑1∀𝑦𝐴,𝑥 .𝐵,𝑋 ≡ 𝜆𝑝𝑦.𝜑1𝐴,𝐵,𝑋 (𝑝 𝑦)

𝜑2∀𝑦𝐴,𝑥 .𝐵,𝑋 ≡ 𝜆𝑝𝑦.𝜑2𝐴,𝐵,𝑋 (𝑝 𝑦)

𝜑1∀𝑌 𝐴,𝑥 .𝐵,𝑋
≡ 𝜑1𝐴,𝐵,𝑋

𝜑2∀𝑌 𝐴,𝑥 .𝐵,𝑋
≡ 𝜑2𝐴,𝐵,𝑋

𝜑1𝐴1⇒𝐴2,𝑥 .𝐵,𝑋
≡ 𝜆𝑝𝑞.𝜑1𝐴2,𝑥 .𝐵,𝑋

(
𝑝

(
𝜑2𝐴2,𝑥 .𝐵,𝑋

𝑞

))
𝜑2𝐴1⇒𝐴2,𝑥 .𝐵,𝑋

≡ 𝜆𝑝𝑞.𝜑2𝐴2,𝑥 .𝐵,𝑋

(
𝑝

(
𝜑1𝐴2,𝑥 .𝐵,𝑋

𝑞

)) ⊢ exf𝜎 : 𝜄 → 𝜎

exf𝜎 ≡ 𝜆𝑝.dne𝜎 (𝜆_.𝑝)

add0
† ≡ 𝜆𝑥𝑝.𝑝 addS

† ≡ 𝜆𝑥𝑦𝑝.𝑝 mul0
† ≡ 𝜆𝑥𝑝.𝑝 mulS

† ≡ 𝜆𝑥𝑦𝑝.𝑝

sn0
† ≡ 𝜆𝑥𝑝.𝑝 0 sinj

† ≡ 𝜆𝑥𝑦𝑝.𝑝 ind
† ≡ 𝜆𝑝𝑞𝑥 .𝑥 ?𝜄 𝑝 𝑞

Figure 5: Realizability interpretation of second-order arithmetic

Adequacy for the first-order intuitionistic part. We now prove

adequacy for the system without the 𝐷𝑛𝑒 and ∀2𝑒 rules. As for the
axioms, this result is straightforward.

Lemma 4.10. For each proof in second-order arithmetic without
the 𝐷𝑛𝑒 and ∀2𝑒 rules:

𝑝1 : 𝐴1, . . . , 𝑝𝑛 : 𝐴𝑛 ⊢ 𝜋 : 𝐴

such that 𝐹𝑉 (𝐴1, . . . , 𝐴𝑛, 𝐴) ⊆ {𝑥1, . . . , 𝑥𝑚, 𝑋1, . . . , 𝑋𝑘 }, if:

(𝑥1, . . . , 𝑥𝑚) ∈ N𝑚

(𝑋1, . . . , 𝑋𝑘 ) ∈ (P (N))𝑘

(𝑎1, . . . , 𝑎𝑛) ∈ |𝐴1 | × . . . × |𝐴𝑛 |

then:
𝜋† [𝑎1, . . . , 𝑎𝑛/𝑝1, . . . , 𝑝𝑛] ∈ |𝐴|

Proof. The proof is by induction on 𝜋 . Most of the cases are

straightforward. For the ∀𝑒 rule we use lemma 4.7. □

Adequacy for the 𝐷𝑛𝑒 and ∀2𝑒 rules. This section contains the

main result: correctness of our interpretation of second-order elim-

ination. First, we prove adequacy for double-negation elimination:

Lemma 4.11. For each formula 𝐴 with parameters:

dne𝐴† ∈ |¬¬𝐴 ⇒ 𝐴|
exf𝐴† ∈ |⊥ ⇒ 𝐴|

Proof. We proceed by induction on the structure of𝐴 for dne𝐴† .

For 𝑋 (𝑡), let 𝑎 ∈ |¬¬𝑋 (𝑡) |. If |𝑡 | ∈ 𝑋 then |𝑋 (𝑡) | = N, so we

have dne
𝑋 (𝑡 )† (𝑎) ∈ |𝑋 (𝑡) |. If |𝑡 | ∉ 𝑋 , then |𝑋 (𝑡) | = ⊥⊥ so we have

𝑎 ∈ (⊥⊥ → ⊥⊥) → ⊥⊥ and therefore:

dne
𝑋 (𝑡 )† (𝑎) = 𝑎 (𝜆𝑝.𝑝) ∈ ⊥⊥ = |𝑋 (𝑡) |

𝐴 ⇒ 𝐵 and ∀𝑥 𝐴 are consequences of lemma 4.10.

For ∀𝑋 𝐴, let 𝑎 ∈ |¬¬∀𝑋 𝐴| and let 𝑋 ⊆ N. Then we have that

|∀𝑋 𝐴| = ⋂
𝑋 ⊆N |𝐴| ⊆ |𝐴|, so by property of → with respect to

inclusion, |¬¬∀𝑋 𝐴| ⊆ |¬¬𝐴|, so 𝑎 ∈ |¬¬𝐴| and therefore:

dne(∀𝑋 𝐴)† 𝑎 = dne𝐴† 𝑎 ∈ |𝐴|

For exf𝐴† , if 𝑎 ∈ |⊥| then 𝜆_.𝑎 ∈ |¬¬𝐴| by lemma 4.10 and

therefore exf𝐴† (𝑎) = dne𝐴† (𝜆_.𝑎) ∈ |𝐴|. □

Before proving adequacy for the ∀2𝑒 rule, we prove the following
lemma about our inductively defined 𝜑1 and 𝜑2:

Lemma 4.12. If:

𝑎 ∈
⋂
𝑥∈N

({𝑥} → |𝐵 | + |¬𝐵 |)

𝑋 = {𝑥 ∈ N | 𝑎 𝑥 ∈ {|𝐵 | | }}

then:

𝜑1𝐴,𝐵,𝑋 [𝑎/𝑟 ] ∈ |𝐴 ⇒ 𝐴 [𝑥 .𝐵/𝑋 ] |

𝜑2𝐴,𝐵,𝑋 [𝑎/𝑟 ] ∈ |𝐴 [𝑥 .𝐵/𝑋 ] ⇒ 𝐴|
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Proof. We proceed by induction on𝐴. In the𝑋 (𝑡) case we need
to prove:

𝑎 𝑡† ?+ (𝜆𝑞𝑝.𝑞)
(
𝜆𝑞.exf𝐵†

)
∈ |𝑋 (𝑡) ⇒ 𝐵 [𝑡/𝑥] |

𝑎 𝑡† ?+ (𝜆𝑞𝑝.0) (𝜆𝑞.𝑞) ∈ |𝐵 [𝑡/𝑥] ⇒ 𝑋 (𝑡) |

If 𝑎 𝑡† = {𝑏 | } for some 𝑏 ∈ |𝐵 [𝑡/𝑥] | then |𝑋 (𝑡) | = N by definition

of 𝑋 and lemma 4.7, so:

𝜆𝑝.𝑏 ∈ N→ |𝐵 [𝑡/𝑥] | = |𝑋 (𝑡) ⇒ 𝐵 [𝑡/𝑥] |
𝜆𝑝.0 ∈ |𝐵 [𝑡/𝑥] | → N = |𝐵 [𝑡/𝑥] ⇒ 𝑋 (𝑡) |

If 𝑎 𝑡† = { | 𝑏} for some 𝑏 ∈ |¬𝐵 [𝑡/𝑥] | then |𝑋 (𝑡) | = ⊥⊥ by defini-

tion of 𝑋 and lemma 4.7, so:

exf𝐵† ∈ ⊥⊥ → |𝐵 [𝑡/𝑥] | = |𝑋 (𝑡) ⇒ 𝐵 [𝑡/𝑥] |
𝑏 ∈ |𝐵 [𝑡/𝑥] | → ⊥⊥ = |𝐵 [𝑡/𝑥] ⇒ 𝑋 (𝑡) |

The cases 𝑌 (𝑡) for 𝑌 ≠ 𝑋 , 𝐴1 ⇒ 𝐵2 and ∀𝑦 𝐴 are consequences

of 4.10, and the case ∀𝑌 𝐴 is a consequence of:

|∀𝑌 (𝐶 ⇒ 𝐷) | ⊆ |∀𝑌 𝐶 ⇒ ∀𝑌 𝐷 | □

Finally, we prove adequacy for the ∀2𝑒 rule:

Proposition 4.13. For each proof in second-order arithmetic with-
out the ∀2𝑒 rule:

𝑝1 : 𝐴1, . . . , 𝑝𝑛 : 𝐴𝑛 ⊢ 𝜋 : ∀𝑋 𝐴

such that 𝐹𝑉 (𝐴1, . . . , 𝐴𝑛,∀𝑋 𝐴) ⊆ {𝑥1, . . . , 𝑥𝑚, 𝑋1, . . . , 𝑋𝑘 }, if:
(𝑥1, . . . , 𝑥𝑚) ∈ N𝑚

(𝑋1, . . . , 𝑋𝑘 ) ∈ (P (N))𝑘

(𝑎1, . . . , 𝑎𝑛) ∈ |𝐴1 | × . . . × |𝐴𝑛 |
then:

(𝜋 (𝑥 .𝐵))† [𝑎1, . . . , 𝑎𝑛/𝑝1, . . . , 𝑝𝑛] ∈ |𝐴 [𝑥 .𝐵/𝑋 ] |

Proof. Let𝑀 = 𝜋† [𝑎1, . . . , 𝑎𝑛/𝑝1, . . . , 𝑝𝑛] ∈ |∀𝑋 𝐴| and let 𝑎 ∈
|¬𝐴 [𝑥 .𝐵/𝑋 ] |. We have to prove:

ur
(
𝜆𝑟 .𝑎

(
𝜑1𝐴,𝐵,𝑋 𝑀

))
𝜖 ∈ |⊥|

We apply proposition 4.3 with A𝑛 = |𝐵 [𝑛/𝑥] | and B = |⊥| so we
have to prove:

𝜆𝑟 .𝑎

(
𝜑1𝐴,𝐵,𝑋 𝑀

)
∈

⋂
𝑥∈N

({𝑥} → |𝐵 | + |¬𝐵 |) → |⊥|

𝜖 ∈
⋂
𝑥∈N

({𝑥} → |𝐵 | + {★})

This second property is immediate since for all 𝑛 ∈ N, 𝜖 𝑛 = { |★}
by proposition 3.4. For the first property, let:

𝑏 ∈
⋂
𝑥∈N

({𝑥} → |𝐵 | + |¬𝐵 |)

so we are left to prove 𝑎

(
𝜑1
𝐴,𝐵,𝑋

[𝑏/𝑟 ] 𝑀
)
∈ |⊥|, and since we have

𝑎 ∈ |¬𝐴 [𝑥 .𝐵/𝑋 ] | it suffices to prove:

𝜑1𝐴,𝐵,𝑋 [𝑏/𝑟 ] 𝑀 ∈ |𝐴 [𝑥 .𝐵/𝑋 ] |
which is a consequence of lemma 4.12 since:

𝑏 ∈
⋂
𝑥∈N

({𝑥} → |𝐵 | + |¬𝐵 |)

and𝑀 ∈ |∀𝑋 𝐴| ⊆ |𝐴 [{𝑥 ∈ N | 𝑏 𝑥 ∈ {𝐵 | }} /𝑋 ] |. □

We now give an intuition about the computational behavior of

our interpretation of the ∀2𝑒 rule.
The first argument that we give to update recursion for realizing

the ∀2𝑒 rule is some:

𝑎 ∈
⋂
𝑥∈N

({𝑥} → |𝐵 | + |¬𝐵 |) → |⊥|

This realizer is built from the inductively defined 𝜑1
𝐴,𝑥.𝐵,𝑋

and

𝜑2
𝐴,𝑥.𝐵,𝑋

and goes down in the structure of𝐴 to find every occurence

of 𝑋 (𝑡) for some term 𝑡 . For each such occurence, 𝑎 replaces 𝑋 (𝑡)
with 𝐵 [𝑡/𝑥] depending on its input at point 𝑡†, and on whether

𝑋 (𝑡) occurs positively (𝜑1) or negatively (𝜑2) in 𝐴:

• if the input of 𝑎 at point 𝑡† is some {𝑏 | } then:
– if 𝑋 (𝑡) occurs positively then 𝑎 uses 𝜆_.𝑏 as a realizer of

⊤ ⇒ 𝐵 [𝑡/𝑥]
– if 𝑋 (𝑡) occurs negatively then 𝑎 uses a trivial realizer of

𝐵 [𝑡/𝑥] ⇒ ⊤
• if the input of 𝑎 at point 𝑡† is some { | 𝑏} then:
– if 𝑋 (𝑡) occurs positively then 𝑎 uses exf𝐵† as a realizer

of ⊥ ⇒ 𝐵 [𝑡/𝑥]
– if 𝑋 (𝑡) occurs negatively then 𝑎 uses 𝑏 as a realizer of

𝐵 [𝑡/𝑥] ⇒ ⊥
We now explain the meaning of the second argument of update

recursion, on which recursion happens. Each partial function:

𝑓 ∈
⋂
𝑥∈N

({𝑥} → |𝐵 | + {★})

can be understood as a “current knowledge” about the 𝑛s at which

we have a realizer of 𝐵 (𝑛). For a given 𝑓 , if 𝑓 𝑛 is some {𝑏 | } then
the “current knowledge” is that 𝑏 is a realizer for 𝐵 (𝑛). Otherwise if
𝑓 𝑛 is { |★} then we know nothing about 𝐵 (𝑛) yet. At the beginning
of the computation we have no information at all so the second

argument is the "empty knowledge" 𝜖 .

Update recursion then has to provide 𝑎 with some realizer of⋂
𝑥∈N ({𝑥} → |𝐵 | + |¬𝐵 |), that is, a "perfect knowledge" that pro-

vides for each 𝑛 either a realizer of 𝐵 (𝑛), or a realizer of ¬𝐵 (𝑛).
The way it approximates such a perfect knowledge is as follows:

if 𝑛 is such that 𝑓 𝑛 = {𝑏 | } for some 𝑏 ∈ |𝐵 (𝑛) |, then the "cur-

rent knowledge" already contains a realizer for 𝐵 (𝑛), so update

recursion can simply return it. Otherwise, update recursion has to

provide either a realizer of 𝐵 (𝑛), or a realizer of ¬𝐵 (𝑛). At that
point update recursion chooses to build a realizer of ¬𝐵 (𝑛) by read-
ing from 𝑎 a realizer 𝑏 of 𝐵 (𝑛) and making a recursive call with an

extended knowledge that contains 𝑏 as a realizer of 𝐵 (𝑛). Inside
the recursive call, if 𝑎 reads again its input at point 𝑛 then update

recursion will use the new current knowledge and answer with this

same 𝑏 that 𝑎 provided before the recursive call.

This recursive process will eventually stop at some point because

𝑎 being continuous, it can only look at the “current knowledge” at

a finite number of points.

4.6 Extraction
The adequacy theorem gives us the possibility of extracting pro-

grams from proofs in second-order arithmetic, as witnessed by the

following extraction theorem:
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Theorem 4.14. Each proof in second-order arithmetic of a closed
formula of the form∀𝑥∀𝑋 (∀𝑦 (𝑡 = 0 ⇒ 𝑋 ) ⇒ 𝑋 ) (which is the usual
second-order encoding of ∀𝑥∃𝑦 𝑡 = 0) can be extracted to a program
𝑀 : 𝜄 → 𝜄 such that for all 𝑥 ∈ N there exists 𝑦 ∈ N such that
𝑀 𝑥 ⇝∗ 𝑦 with |𝑡 | = 0.

Proof. Let 𝜋 be a proof of ∀𝑥∃𝑦 𝑡 = 0. The adequacy lemma

gives us for each 𝑥 ∈ N, 𝜋† 𝑥 ∈ |∀𝑦 (𝑡 = 0 ⇒ ∅) ⇒ ∅|. Fix now:
⊥⊥ = {𝑦 ∈ N | |𝑡 | = 0}

We now prove that 𝜆𝑦𝑝.𝑝 𝑦 ∈ |∀𝑦 (𝑡 = 0 ⇒ ∅)|. Let 𝑦 ∈ N and let

𝑎 ∈ |𝑡 = 0| = |∀𝑌 (𝑌 (𝑡) ⇒ 𝑌 (0)) |. In particular for 𝑌 = N\ {0},
𝑎 ∈ |𝑌 (𝑡) | → ⊥⊥. There are two cases:

• If |𝑡 | = 0, then 𝑦 ∈ ⊥⊥ = |𝑌 (𝑡) | by definition of ⊥⊥,
• if |𝑡 | ≠ 0 then |𝑌 (𝑡) | = N so 𝑦 ∈ |𝑌 (𝑡) |.

In both cases 𝑎𝑦 ∈ ⊥⊥. Therefore we get:
𝜆𝑦𝑝.𝑝 𝑦 ∈ |∀𝑦 (𝑡 = 0 ⇒ ∅)|

so:

𝜋† 𝑥 (𝜆𝑦𝑝.𝑝 𝑦) ∈ ⊥⊥ = {𝑦 ∈ N | |𝑡 | = 0}
We can therefore define:

𝑀 = 𝜆𝑥.𝜋† 𝑥 (𝜆𝑦𝑝.𝑝 𝑦)
and we have by proposition 3.7 that for all 𝑥 ∈ N there exists 𝑦 ∈ N
such that𝑀 𝑥 ⇝∗ 𝑦 and |𝑡 | = 0. □

5 CONCLUSION AND FUTUREWORKS
We have defined a bar recursive interpretation of second-order

arithmetic presented as arithmetic with quantification on predi-

cates rather than the equivalent axiom scheme of comprehension.

This presentation of second-order arithmetic is the one that most

closely reflects the typing rules of polymorphic 𝜆-calculus, and as

such we made a step towards a comparison of the two families of

interpretations of second-order arithmetic: bar recursion and sys-

tem F. As a future work we would like to deepen the understanding

of the connection between these two principles by comparing the

computational behavior of programs extracted from a single proof

via the two techniques.

Another aspect that we would like to study is wether it is pos-

sible to use control operators in the interpretation of the ∀2𝑒 rule.
Indeed, there is a strong connection between the negative transla-

tion of proofs and the continuation-passing style (cps) translation

of programs, the latter being the Curry-Howard equivalent of the

former. Calculi with control features have been designed to inter-

pret classical proofs directly. Most of these calculi contain a notion

of duality that corresponds on the logical side to the duality be-

tween a formula and its negation, and on the computational side

to a call-by-name or a call-by-value evaluation strategy. During

the computation of an approximation to the "perfect knowledge"

mentioned in the previous section, update recursion has an asym-

metric behavior that consists in building a realizer of ¬𝐵 by reading

a realizer of 𝐵 and making a recursive call with a new knowledge

extended with this new realizer. This behavior corresponds to the

call-by-name interpretation of the excluded middle under a cps

translation. We would therefore like to have a version of update

recursion that uses control operators and can be translated either

to the current version through a call-by-name cps translation, or to

a dual version through a call-by-value cps translation. Moreover,

control operators can capture context and restore it at a later point.

We would like to explore the possibility of using this property to

define more intuitive versions of our 𝜑1 and 𝜑2 that could act on

all instances of 𝑋 (𝑡) in a formula through context capture.
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