ﬁ EasyChair Preprint

Ne 1732

Towards Efficient Algorithms for Constraint
Satisfaction Problems

Huu-Phuc Vo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2019

Towards Efficient Algorithms for Constraint
Optimisation Problems

Huu-Phuc Vo
Dept. of Information Technology
Uppsala University, Uppsala, Sweden
Email: huu-phuc.vo@it.uu.se

Abstract—Constraint programming is pervasive and widely
used to solve real-time problems which input data could be scaled
up to the huge sizes, and the results are required to be given
efficiently and dynamically. Many technologies such as constraint
programming (CP), hybrid technologies, mixed integer program-
ming (MIP), constraint-based local search (CBLS), boolean satis-
fiability (SAT) could have different solvers and backends to solve
the real-time problems. Streaming videos problem is the problem
that requires to decide which videos to put in which cache servers
in order to minimise the waiting time for all requests with a
description of cache servers, network endpoints and videos are
given. In this paper, we model the streaming videos problem in two
different ways. The first model is implemented using heuristics,
and the global constraints will be used in the second model. The
aim of the paper is to benchmark those technologies to evaluate
the execution time and final scores of the two models using large
instances of input data from Google Hash Code.

Index Terms—optimsation, constraint programming, modelling

I. INTRODUCTION

Nowadays, watching videos online is pervasive, especially
watching videos from Youtube. When streaming videos from
Youtube to a huge amount of people, who could be in
the same city or from different continents, minimising the
waiting time for all requests from clients are critical. In
the context of the Streaming videos problem, the video-
serving infrastructure includes remote data centers locating
in thousands of kilometers away, cache servers which store
copies of popular videos, and endpoints which each of them
represents a group of users connecting to the Internet in the
same geographical area. The expected solution is to decide
which videos to put in which cache servers. The specification
of the problem could be found in detailed at [1]], and the
data could be found at [2]. MiniZinc [3]] is a constraint-based
modelling language for satisfaction and optimisation problems
such as Streaming videos problem with independent solving
technologies which supports for diverse technologies’ solvers
for instances constraint programming (CP), CBLS [4], MIP,
and SAT. In this paper, the bin-packing approach, which is
modelled in modelling language MiniZinc, will be used to
solve the Streaming videos problem in two different ways:
use the built-in global constraint bin_packing_load, and
model the problem using a heuristic.

II. BACKGROUNDS

Given a description of cache servers, network endpoints, and
videos, along with predicted requests for individual videos, the
task is to decide which videos to put in which cache servers in
order to minimise the average waiting time for all requests. In
other words, the task is to maximise the average saving time
for all given requests. The infrastructure of the video serving
network includes the data center, cache servers, and endpoints
[1]. The data center stores all videos. The sizes of videos,
the maximum capacity of cache servers are in megabytes
(MB). Each video can be put in 0, 1, or more cache servers.
Each cache server has a maximum capacity. Every endpoint
is connected to the data center, however, it may be connected
to 0, 1 or more cache servers. Each endpoint is characterised
by the latency of its connection to the data center, and by
the latencies to each cache server that it is connected to. The
predicted requests provide data on how many times a particular
video is requested from a particular endpoint. The paper makes
the following contributions: microbenchmarks that compare
the CP, LCG, MIP, CBLS, and SAT’s bin_packing_load
global constraint versus manual model.

III. MODELS

a) Manual model: In the model, two 2D-matrix arrays
usedCache and vInDc are defined. The first 2D-matrix
array usedCache represents decision variables of which
videos will be put in which the corresponding cache. The
domain value of each element of usedCache is {0,1}.
In order to mark which videos are put in the data center
because their sizes exceed the capacity of caches connecting
to a corresponding endpoint, another 2D-matrix array vInDc
is defined. The final score is computed in the output phase
by dividing savingTime by total requests nReq, and then
multiplying by 1000. The first precomputation calculates the
total number of used caches in the 2D-matrix usedCache.
While the second precomputation iterates over all the requests
and gives the total number of all requests. Three functions are
defined in this model. The first function selectedvideo
checks whether the video already stored in any other caches.
The second function hungryCache checks the spare capa-
city of a cache before storing a new video into a cache to make
sure that the total capacity does not exceed the given maximum
capacity of the cache. The last function emptyCache checks
whether the given cache ca is empty or not. A constraint is

Table I: Results for our Streaming Videos model.

(*): MiniZinc 2.1.7, (*): MiniZinc 2.2.1

Technology CP LCG MIP CBLS SAT

Solver Gecode Chuffed Gurobi OscaR.cbls Lingeling

Backend Gecode Chuffed Gurobi fzn-oscar-cbls Picat-sat
instance score time score time score time score time score time
warm_up? 562.5 0.457 562.5 0.424 562.5 0.892 562.5 t/o 562.5 1.154
warm_up* 562.5 0.286 562.5 0.183 562.5 0.615 562.5 t/o 562.5 0.260
me_at_the_zoo? - t/o - t/o 607.33 56.217 - t/o - t/o
trending_today* ¥ - t/o - t/o - t/o - t/o t/o
video_worth_spreading* ¥ - t/o - t/o - t/o - t/o - t/o
kittens* ¥ - t/o - t/o - t/o - t/o - t/o

used to guarantee that the total sizes of all stored videos in a
cache do not exceed its maximum given capacity. In addition,
another constraint computes the total number saving the time
of all caches and requests. With all the empty cache, the
unrequested videos will be stored in the cache. In the model,
we add another constraint to iterate over the endpoint, cache,
and video to allocate unrequested videos that are stored in the
cache under the following conditions: (1) there is connection
between endpoint and cache, (2) the considered video could
be possible to store in the cache, (3) the considered cache is
empty, and (4) the cache does not exceed its limit when storing
the video. To avoid the duplication of stored videos, another
constraint is defined. To all caches connecting to the endpoint,
the at_most constraint restricts that each requested video
could be stored only in one of those connected caches. The 2D-
matrix usedCache, which represents the final result in the
streaming videos problem, does not introduce the symmetries.
Since each cache has different latency, swapping the cache
rows in the usedCache might produce a non-optimal result.
Similarly, swapping any number of columns which is cor-
responding to the stored videos in the usedCache solution
might lead to a non-optimal result also.

b) Global constraint model: The bin_packing_load
constraint could be used as an alternative model. The
bin_packing_load constraint requires that each item with
its weight be put into a bin such that the sum of the weights of
items in each bin is equal to a load of that bin. In this problem,
with the viewpoint of video serving network, capacity must
be no greater than the given capacity of each cache server.
The weights of each item correspond to sizes of videos. Each
cache server is corresponding to one bin, so cache servers
corresponds to the number of bins. While the videos that are
not requested or exceed the capacity of cache servers will be
stored in the data center.

The bin_packing_load model includes constraints that con-
sider the caches as bins, with maximum capacity and loading
capacity. The videos that are stored in the data center are
implicitly captured by parameter reqvid.

IV. EXPERIMENTS

The two models could be found at El We have chosen
the backends for Gecode, Chuffed, Gurobi, OscaR.cbls, and

Thttps://github.com/Phuc VH888/streaming Videos

Lingeling. Table |I] gives the results for various instances on
the Streaming Videos model. The time-out was 600000 milli-
seconds. The experiment is done using two different versions
of MiniZinc, 2.1.7 and 2.2.1 as it is recently released. In the
first experiment, all the instances are conducted using Mini-
Zinc 2.1.7. The test results produced by MiniZinc 2.1.7, and
MiniZinc 2.2.1 are marked by (*) and), respectively. In order
to run the test in all backends, the final score computation is
done at the output phase to avoid the division computations
such as / and div which are not executable in Chuffed and
Gecode. The models are tested using all five instances, with
both MiniZinc 2.1.7 and MiniZinc 2.2.1. All the test results
are shown in |Il To the instance me_at_the_zoo, the backend
Gurobi is the best one among the others since it could give
the final score after 56.217 seconds while other backends
timed-out. When testing with much bigger instances such
as trending_today, and video_worth_spreading, all backends
couldn’t produce the final results after 600000 milliseconds.
The instance kittens is the biggest and toughest instance that
defeats all the backends.

V. CONCLUSION AND FUTURE WORK

In this project, the disadvantage of those backends is the
division computation such as / and div, which can be avoided
by putting the division computation in the output phase.
The real question here is how can the MiniZinc model be
improved to instantiate and give the result for the biggest
data instance, kittens, whose size is up to 54 MB in text
format. The Streaming video problem could be modelled by
other modelling language and benchmarked with the same data
instances to compare the performance and the efficiency with
MiniZinc model.

REFERENCES

[1] Google. Streaming videos, 2017. Available from https://hashcode.
withgoogle.com/2017/tasks/hashcode2017_qualification_task.pdf.

[2] Google. Streaming videos data, 2017. Available from https://hashcode.
withgoogle.com/2017/tasks/qualification_round_2017.in.zip.

[3] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand,
Gregory J. Duck, and Guido Tack. Minizinc: Towards a standard
cp modelling language. In Christian Bessicre, editor, Principles and
Practice of Constraint Programming — CP 2007, pages 529-543, Berlin,
Heidelberg, 2007. Springer Berlin Heidelberg.

[4] Pascal Van Hentenryck and Laurent Michel.
Search. The MIT Press, 2005.

Constraint-Based Local

https://hashcode.withgoogle.com/2017/tasks/hashcode2017_qualification_task.pdf
https://hashcode.withgoogle.com/2017/tasks/hashcode2017_qualification_task.pdf
https://hashcode.withgoogle.com/2017/tasks/qualification_round_2017.in.zip
https://hashcode.withgoogle.com/2017/tasks/qualification_round_2017.in.zip

	Introduction
	Backgrounds
	Models
	Experiments
	Conclusion and Future Work
	References

