
EasyChair Preprint

№ 1024

Dynamic Slicing for Android

Tanzirul Azim, Arash Alavi, Iulian Neamtiu and Rajiv Gupta

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 26, 2019

Dynamic Slicing for Android

Abstract—Dynamic program slicing is useful for a variety
of tasks, from testing to debugging to security. Prior slicing
approaches have targeted traditional desktop/server platforms,
rather than mobile platforms such as Android. Slicing mobile,
event-based systems is challenging due to their asynchronous
callback construction and the IPC (interprocess communication)-
heavy, sensor-driven, timing-sensitive nature of the platform. To
address these problems, we introduce AndroidSlicer, the first
slicing approach for Android. AndroidSlicer combines a novel
asynchronous slicing approach for modeling data and control
dependences in the presence of callbacks with lightweight and
precise instrumentation; this allows slicing for apps running on
actual phones, and without requiring the app’s source code. Our
slicer is capable of handling a wide array of inputs that Android
supports without adding any noticeable overhead. Experiments
on 60 apps from Google Play show that AndroidSlicer is effective
(reducing the number of instructions to be examined to 0.3%
of executed instructions) and efficient (app instrumentation and
post-processing combined takes 31 seconds); all while imposing
a runtime overhead of just 4%. We present three applications
of AndroidSlicer that are particularly relevant in the mobile
domain: (1) finding and tracking input parts responsible for an
error/crash, (2) fault localization, i.e., finding the instructions
responsible for an error/crash, and (3) reducing the regression
test suite. Experiments with these applications on an additional
set of 18 popular apps indicate that AndroidSlicer is effective for
Android testing and debugging.

Index Terms—Mobile apps, Android, Dynamic analysis

I. INTRODUCTION

While mobile platforms have been very successful – An-
droid alone runs on more than 2 billion devices [1] – they are
prone to development, testing, and reliability issues that affect
users, developers, and manufacturers [2], [3]. We propose
an approach for tackling such issues via dynamic slicing, a
technique that isolates relevant code and data dependences
in an execution. Slicing has proven useful in many contexts,
from security (e.g., taint analysis) to debugging (e.g., fault
localization) and testing, but prior slicing approaches have not
targeted mobile platforms [4]–[6].

The smartphone platform, compared to “traditional” desk-
top/server platforms, has unique challenges and constraints.
This renders traditional slicing approaches inapplicable and
has allowed us to design novel solutions. First, reconstructing
control flow is difficult – Android apps employ callbacks
which process events asynchronously. To cope with this, we
introduce the concept of asynchronous dependences to capture
control- and data-dependences between callbacks as supern-
odes in a supergraph. Second, Android apps are time-sensitive:
even slight delays in sensor input can change input semantics,
perturbing app execution. We use an on-demand static-after-
dynamic analysis to permit low-overhead yet precise slicing.
Third, Android has a wide range of inputs: multi-touch ges-

tures, sensors, mic, camera, etc. Capturing this input correctly
without losing precision is challenging, and introduces sig-
nificant overhead in other tools, e.g., Pin [7]. We solve this
challenge by combining lightweight tracking (AF wrappers)
with a layered abstraction (supergraph). Fourth, Android uses
IPC heavily for inter- and intra-app communication, which
requires tracking dependences from apps to system stores and
across address spaces corresponding to multiple apps.

Section III presents our model and dependence rules. Sec-
tion IV describes our approach to handling Android-specific
challenges, e.g., sensor input, low overhead, and IPC.

Our implementation, AndroidSlicer, is described in Section V;
AndroidSlicer works on Android apps running on actual phones
and does not require app source code.

Next, we show how AndroidSlicer serves as a building block
for constructing three applications that facilitate bug finding,
bug fixing, and testing. First, Failure-inducing Input Analysis,
i.e., finding the input parts that are relevant to an error or
a crash and tracking their propagation to the error/crash site
(Section VI-A). Second, Fault Localization, i.e., finding the
part of the code (a set of instructions) responsible for an
error or crash (Section VI-B). Third, we show how slicing
helps reduce the number of tests for Regression Testing (Sec-
tion VI-C). Our analyses are robust and scalable: we applied
them to isolate causes of real bugs in widely-popular apps
such as SoundCloud, Etsy, K9-Mail, and NPR News.

In Section VII we evaluate AndroidSlicer on 60 popular apps
from Google Play. Of these, we manually analyzed 10 apps
to check AndroidSlicer’s correctness. Experiments indicate that
AndroidSlicer is efficient: it typically instruments an app in just
19.1 seconds and slice computation during post-processing
typically takes just 11.9 seconds. At most, slice computation
took 293.5 seconds for the substantial Twitter app, whose
bytecode size is 50.6 MB. Moreover, AndroidSlicer has a low
runtime overhead, typically 4%. Finally, AndroidSlicer is effec-
tive: it manages to reduce large executions (on average, 14491
instructions) down to small slices (on average, 44 instructions)
that are much more manageable for developers. In summary,
this work makes four contributions:

1) A novel asynchronous slicing model.
2) A precise approach for slicing Android apps that ad-

dresses the specific challenges and constraints of this
platform and environment.

3) AndroidSlicer, a tool for slicing Android apps while they
run on actual phones.

4) A novel approach to reducing runtime overhead and
handling the large array of inputs supported by Android.

5) Three slicing applications that facilitate development,
debugging, and testing for Android apps.

II. BACKGROUND

We first present a brief overview of program dependence
graphs and program slicing; next, we discuss the Android
platform and its event-based model.

Program dependence graph (PDG). A PDG captures a
program’s data and control dependences. Each PDG edge
represents a data or control dependence between nodes that can
either represent an instruction or a basic block. A directed data
dependence edge nj ←d ni means any computation performed
in ni depends on the computed value at node nj . A control
dependence edge nj ←c ni indicates that the decision to
execute ni is made by nj , that is, nj contains a predicate
whose outcome controls the execution of ni. A static PDG
consists of all possible data and control dependence relations.
A dynamic PDG is a subgraph that contains only those nodes
and edges that are exercised during a particular run.

Program slicing. Dynamic program slicing, a class of
dynamic analysis, was introduced by Korel and Laski [4]. The
backward dynamic slice at instruction instance s with respect
to slicing criterion 〈t, s, value〉 (where t is a timestamp)
contains executed instructions that have a direct or indirect
effect on value; more precisely, it is the transitive closure over
dynamic data and control dependences in the PDG starting
from the slicing criterion. The slicing criterion represents an
analysis demand relevant to an application, e.g., for debugging,
the criterion means the instruction execution that causes a
crash.

Android platform. The Android software stack comprises
of: apps; a middleware component named Android Framework
(AF) which orchestrates control flow and mediates inter- and
intra-app communication, as well as communication between
apps and the lower layers; libraries and services; a run-time
environment;1 and the OS, an embedded version of Linux.

Android’s event-based model. Android apps do not have
a main() method but rather consist of components (e.g., an app
with a GUI consists of screens, named Activities2) and one
or more entry points. Unlike traditional programs, apps use
an event-driven model that dictates control flow. An event can
be a user action (e.g., touch), a lifecycle event (e.g., onPause()

when the app is paused), arrival of sensor data (e.g., GPS), and
inter- or intra-app messages. All these traits, from externally-
orchestrated control flow to time-sensitive sensor input, render
traditional slicing approaches inapplicable to Android.

III. MODEL

In this section we present the model underlying our ap-
proach. Slicing precision depends on accurately identifying
control and data dependences – these dependences form the
PDG. Our callback-centric design incurs low-overhead event
capture without sacrificing precision (all input data is captured

1Dalvik VM for Android prior to 5.0; in Android version 5.0 and later,
Android uses ART, a runtime system and ahead-of-time compilation. Our
implementation (Section V) is on Android 5.1.1.

2The vast majority of Google Play apps consist of Activities. There are
other component types such as Services, Content Providers, and Broadcast
Receiver [8] but these are used much more sparsely.

natively from the framework). Instead of considering a single
instruction instance as a node, we collectively define callbacks
as a node containing other nodes (instructions) or a supern-
ode. Just like a regular node, callbacks or supernodes can
invoke other events/callback directly (a control dependence),
or by passing argument to the framework which in turn are
passed to another callback (a data dependence). Our model
captures both of these dependences for callbacks/supernodes,
and instructions/single nodes. We use a “hierarchical” PDG,
constructed as follows. High-level supernodes N represent
callbacks and their dynamic context; superedges represent
asynchronous control- or data-dependences between supern-
odes. Within supernodes, we use low-level instruction nodes
Sit, and edges which capture sequential dependences.

Supernodes N , the core of our model, are defined as:

N := 〈c, t, a, {[Sit ←c Sjt | Sit ←d Sjt]∗}〉

where callback variables c contain the address of a callback,
t is the timestamp for node creation, a is the activity context
(activity’s runtime state), while Sit (a regular node) represents
the instance of instruction Si at time t. Data and control de-
pendences are denoted ←d and ←c, respectively. Superedges
connect supernodes and regular edges connect regular nodes.
Note that supernodes might contain sub-graphs (consisting
of regular nodes Sit ←c Sjt or Sit ←d Sjt); hence the
hierarchical PDG notion. We now explain our dependence
rules, shown in Figure 1.

A. Asynchronous Dependences

Asynchronous data dependence. Intuitively, asynchronous
data dependences capture communication via message passing
(IPC, objects, etc.). We denote the set of registers defined in
callback c1 as Def(c1); and the reference stored in register
vx at time t as ref(vx, t). Then, callback instance c2 is data-
dependent on callback instance c1 (i.e., N1 ←d N2) if at time
t, c1 defines an inter- or intra-process messaging object (intent)
in a register v1, and c2 receives the same reference in register
v2 as a parameter. This also introduces a data dependence from
the first instruction S2t in c2 that uses v2, to the instruction
S1t in c1 that defines v1. Depending on the callback, data
dependence can be inter-app or intra-app; we track both.

Asynchronous control dependence. Effective asyn-
chronous slicing hinges on capturing dependences between
asynchronous events precisely, via superedges N ←c N2

whenever N determines (initiates) the execution of N2 via
activity context transitions. Being an event-based model, An-
droid’s runtime system switches between different UI states
(“Activity contexts”) when asynchronous callbacks are in-
voked. Assuming the current activity context is a2, the current
callback is c2 whose supernode is N2, the previous activity
context was a1 and its ‘exit’ (i.e., callback that triggered
the context transition) was c1 whose supernode is N1, we
use the shorthand initiator(N2) = N1 to indicate that N1

has triggered the transition to a2. We define two rules that
capture who has initiated N2. The first rule captures a simple
transition – no intent passed between the two events, i.e.,

Asynchronous data dependence Sequential data dependence

N1 = 〈c1, t1, a1, . . .〉, N2 = 〈c2, t2, a2, . . .〉
v2 ∈ param(c2), v1 ∈ Def(c1), ref(v1, t1) = ref(v2, t2)

N1 ←d N2 S1t ←d S2t

v1∈S1t, v2∈S2t, v1∈dins(S1t), v2∈uins(S2t)
ref(V1t)=ref(V2t)

S1t ←d S2t

Asynchronous control dependence Sequential control dependence

N1 = 〈c1, t1, a1, . . .〉, N2 = 〈c2, t2, a2, . . .〉, a1 6= a2, initiator(N2) = N1,¬(N1 ←d N2)

N1 ←c N2
isBool(S1t) = true

Sipdt = ipd(S1t), isPost(S2t, Sipdt) = true

S1t ←c S2t
N1 = 〈c1, t1, a1, . . .〉, N2 = 〈c2, t2, a2, . . .〉, a1 6= a2, initiator(N2) = N1, N1 ←d N2, N0 ←c N1

N0 ←c N2

Fig. 1: Dependence rules.

¬(N1 ←d N2).3 The second rule applies when N2 is data
dependent on N1; in that case, the initiator is that super node
N0 that N1 is control-dependent on. We then apply the same
rule recursively on N0. Put otherwise, these two rules help
capture event causality by finding which event N caused event
N2; this is recorded as superedge N ←c N2.

B. Sequential Dependences

Sequential data dependence is captured by tracking the
propagation of values through instructions sequentially, that
is, control flow does not leave the current callback or its
callees. Note that Android is a register-based machine, hence
registers are used to hold values, pass values in and out of
methods, perform computation, etc. We denote the set of
registers defined in instruction s as dins(s), and the set of
registers used in instruction s as uins(s). Then, instruction
S2t is data-dependent on instruction S1t if at least one of
the registers v2 used in S2t is defined in S1t in a particular
execution at time t. In other words, this register appears in both
the set of definitions dins(S1t) and the set of uses uins(S2t);
a condition also known as V2t being “live” in S2t.

Sequential control dependence. For instructions that are
executed sequentially, certain predicates govern control flow,
i.e., determine which instructions to execute next. Let ipd(si)
be the immediate post dominator of instruction si – always a
unique instruction sj . The check isPost(si, sj) returns true
iff sj is a post dominator of si. We define S2t as being
control-dependent on S1t if S1t is a conditional (e.g., if) and
S2t belongs to the set of instructions between S1t and its
immediate post-dominator Sipdt.

IV. ANDROID SLICING CHALLENGES

We now show how the Android programming model/plat-
form introduce challenges for constructing a dynamic slicer,
and discuss how we have overcome these challenges.

A. Low Overhead

Dynamic slicing (as with any dynamic analysis) on mobile
platforms must not interfere with the execution of the app
that is being analyzed. Mobile apps do not tolerate delays
gracefully: we illustrate this with three examples. First, even
just attaching the standard dynamic analyzer Pin [7] to an

3Without loss of generality we ignore other callbacks c that precede c2
in the current context a2; c and c2 are both available to dispatching hence
cannot be control-dependent upon each other.

TABLE I: AndroidSlicer and Pin comparison.

App Original AndroidSlicer Pin AndroidSlicer
run run run overhead

(s) (s) (s) (%)
Indeed Job Search 15.8 17.1 Crashed at 14.7 8
Geek 29.4 32.2 Crashed at 17.4 9
Scanner Radio 29.5 30.9 Crashed at 15.1 5
Daily Bible 23.9 24.2 Crashed at 23.6 1
CheapOair 21.7 22.8 Crashed at 12.2 5
Kmart 24.5 25.2 Crashed at 14.6 3

Android app – a trivial operation on desktop/server – can have
unacceptable overhead, or outright crash the app. To do the
comparison with Pin, we instrumented 6 well-known apps us-
ing AndroidSlicer and Pin (for Pin we used a simple instrumenter
that prints the number of dynamically executed instructions,
basic blocks and threads in the app). Table I presents the
results. We used Monkey with default settings to send the apps
5,000 UI events. Note that Pin instrumentation crashes all of
the apps while AndroidSlicer instrumentation has a low overhead
of 5%. Second, introducing delays in GUI event processing can
alter the semantics of the event: an uninstrumented app running
at full speed will interpret a sequence of GUI events as one
long swipe, whereas its instrumented version running slower
might interpret the sequence as two shorter swipes [9]. Third,
harmful interference due to delays in GPS timing, or in event
delivery and scheduling can easily derail an execution [10].

Our approach. We address this challenge by optimizing
register tracking at the AF/library boundary. First, in the
runtime tracing phase, for a call into the AF/library we
only track live registers, and only up to the boundary; upon
exiting the AF/library we resume tracking registers. Second,
in the static analysis phase we compute taint (source → sink)
information to identify those methods that take values upward
to the AF (sources) as well as those methods which return
values downward to the app code (sinks). Finally, in the trace
processing phase we instantiate the static taint information
with the registers tracked into and out of the framework: this
ensures sound yet efficient tracking.

B. High-throughput Wide-ranging Input

Android apps are touch- and sensor-oriented, receiving high-
throughput, time-sensitive input from a wide range of sources.
Typical per-second event rates are 70 for GPS, 54 for the
camera, 386 for audio, and 250 for network [10]. A simple
swipe gesture is 301 events per second [9]. Thus, we require
low-overhead tracking of high-throughput multi-sourced input.

Our approach. Android employs AF-level event handlers
for capturing external events. We achieve both scalability and
precision by intercepting the registers at event processing
boundary, as illustrated next. Swipes are series of touches,
with the event handler onFling(MotionEvent e1, MotionEvent e2, float

velocityX, float velocityY). We intercept the event by tracking
the registers that hold the event handler parameters, i.e., e1,
e2, velocityX, velocityY , and tagging them as external inputs.
This approach has two advantages. First, register tracking
is efficient, ensuring scalability. Second, being able to trace
program behavior, e.g., an app crash, to a particular external
input via a backward slice allows developers to “find the
needle in the haystack” and allows us to perform efficient
and effective fault localization (Sections VI-A and VI-B).
Although our implementation targets Android, it is agnostic
of the low-level OS layer.

C. Inter- and Intra-app Communication

Android relies heavily on IPC. The fundamental IPC mech-
anism is called Intent: using an intent, an activity can start
another activity, or ask another app for a service. For example,
the Facebook app can send an intent to the Camera app asking
it to take a picture; the picture is returned via an intent as
well. There are two types of intents: implicit and explicit.
An implicit intent starts any component that can handle
the intended action, potentially in another app; therefore, an
implicit intent does not name a specific destination component.
An explicit intent specifies the destination component (an
Activity instance) by name. Explicit intents are used intra-app
to start a component that handles an action.

Implicit intents and consequently, inter-app communica-
tions, complicate slicing. We illustrate this in Figure 2.4 The
example shows the GetContacts activity that allows the user
to pick a contact. An intent can launch an activity via the
startActivity or startActivity ForResult methods. Upon completion,
Android calls the onActivityResult method with the request code
that we have passed to the startActivity ForResult method (line 5
in the example). Without understanding the impact of inter-
app intents, we would not be able to find complete slices.
Assume we want to compute the slice with respect to variable
name starting at statement 14. The resulting slice should contain
statements {14, 9, 10, 12, 13, 8, 11, 5, 4}. However, traditional
slicing would not find the complete slice because it only adds
statements {14, 13, 12, 11, 10, 9} to the slice – it will miss
statements 4 and 5 for two main reasons. First, traditional
slicing fails to pair startActivityForResult with onActivityResult –
which are similar to a caller-callee – and thus it fails to
reconstruct control flow to account for IPC. Second, note how
we cross memory spaces into the Contacts app, hence we need
to account for Android’s sandboxing to be able to trace the
initial (request) and result intents.

Explicit intents also complicate slicing, as shown in Fig-
ure 3. The example shows ActivityOne starting ActivityTwo; the

4The purpose of the PDGs in Figures 2 and 3 is to compare with traditional
slicing, hence we only show the “regular” PDGs without supernodes. Figures 5
and 6 show supernodes and superedges.

message “Some Value” is passed via IPC, the Bundle in this case.
Consider computing the slice with respect to variable value

starting at statement 8. The dynamic slice should contain
statements {8, 7, 4, 3, 2}. However, traditional slicing cannot
find the precise slice because it does not account for intra-app
communication. Specifically, the example uses Bundle’s putExtra

and getExtra to pass data between the two activities; the Bundle is
a system component, so in this case the dataflow is mediated
by the system, and would elude a traditional slicer. Hence
traditional slicing would not traverse statements {4, 3, 2} due
to the missing dependences between the two activities and
would yield slice {8, 7} which would be incorrect.

Our approach. To address challenges due to inter- and
intra-app communication, we analyze app inputs and track
callbacks and AF APIs to construct asynchronous data de-
pendence edges accordingly (Section III-A). For example, if
an activity calls another activity by sending an intent via
startActivity or sendBroadcast, we trace the receiver callback and
the parameter referencing the intent. For example we introduce
data dependences n ←d m, where n is the node associated
with the instruction that sends the broadcast with the intent
as parameter reference in a register vn, while m is the node
associated with the instruction that receives the intent, by
reference, in register vm.

Analyzing intra-app communication is complicated by sev-
eral factors. Android allows developers to only receive in-
tents within the app’s context for certain internal activities.
Intercepting these intents to construct data-flow facts requires
further analysis of app bytecode. The task can be challenging,
e.g., for intents that receive custom Parcelable objects (Android’s
form of serialization). To address this challenge, we add
instrumentation routines to track the registers containing intent
references. These intents are passed as parameters in different
AF or API calls.

To summarize, by recording callbacks and intents,
AndroidSlicer captures inter-app and intra-app communication
precisely, with no under- or over-approximation.

V. IMPLEMENTATION

In this section, we describe AndroidSlicer’s implementation.
An overview is shown in Figure 4. In the first stage, the
app is instrumented to allow instruction tracing. Next, as the
app executes, runtime traces are collected. We perform an on-
demand static analysis to optimize trace processing, and then
compute the PDG. Finally, we calculate slices for a given
slicing criterion. We now discuss each phase.

A. Instrumentation

The purpose of this stage is three-fold: identify app entry
points; construct method summaries; and add instruction/meta-
data tracing capabilities to the app.

Constructing method summaries. Method summaries
(which include in/out registers and method type) capture
method information for the online trace collection phase (Sec-
tion V-B). To compute summaries, we first build a callgraph
for each app class from the analyzed app entry points. For

1 public class GetContacts extends Activity {
2 @Override
3 public void onCreate(Bundle savedInstanceState) {
4 S Intent i = new Intent(Intent .ACTION PICK, Uri.parse(”content://contacts”));
5 S startActivityForResult (i , PICK CONTACT REQUEST);
6 }
7 @Override
8 S public void onActivityResult (int requestCode, int resultCode, Intent data) {
9 S if (requestCode == PICK CONTACT REQUEST) {

10 S if (resultCode == RESULT OK) {
11 S Uri contactData = data.getData();
12 S Cursor c = getContentResolver().querty(contactData,null,null , null , null) ;
13 S if (c.moveToFirst()) {
14 S String name =c.getString(c.getColumnIdx(ContactsContract.Ctcs.DISP NAME));
15 }}}}}

Program

5M

4M

11

13

8

12

14

10

9c

c

i

i

PDG

Fig. 2: Program and its associated PDG. In the program: lines marked with an S denote the slice with respect to variable name

on line 14. In the PDG: solid edges denote data dependences; dashed edges denote control dependences; graph nodes marked
with an M denote nodes that would be missed by traditional slicing techniques. Labels on solid edges denote the variables
which cause the data dependence.

1 public class ActivityOne extends Activity {...
2 S Intent i = new Intent(this , ActivityTwo.class) ;
3 S i .putExtra(”Value”, ”Some Value”);
4 S startActivity (i) ;
5 ...}
6 public class ActivityTwo extends Activity {...
7 S Bundle extras = getIntent () .getExtras() ;
8 S String value = extras.getString(”Value”);
9 ...}

Program 4M

3M

2M

7

8

extras

i

i

i

PDG

Fig. 3: Program and its associated PDG. Lines marked with S denote the slice with respect to variable value on line 8.

App	

Program	slices	

Slicing	criterion	

Program	Dependence	Graph	(PDG)	

Instrumenta9on	

On-demand	
sta9c	analysis	

Trace	processing	

Fig. 4: AndroidSlicer overview.

each node in the callgraph (i.e., method) we add instrumenta-
tion tags that summarize that method. This instrumentation
is an extended version of the method signature present in
the Dexcode (Android bytecode); we save information for
parameter registers and return value registers. We also detect
callbacks at this time and add necessary information about
input parameters. We identify intents referenced through reg-
isters used as callback parameters and construct metadata such
as caller information (i.e., name of the callback-generating and
broadcasting the intent), as well as string properties associated
with the intent’s action filter. This information helps reveal
callers and their callees during offline trace analysis.

Adding tracing instructions. We add tracing capabilities
via Soot [11]. AndroidSlicer’s instrumenter takes the app binary
as input; the output is the instrumented app, which we run
on the phone. To support tracing, we inject a new Dexcode
instruction for every app instruction or callback routine we
encounter. The trace format is described next.

B. Runtime Trace Collection

We collect the traces while the instrumented app is running
on the phone. Traces have the format:

trace entry := <t, memory offset, instruction, [summary]>
summary := <type, invoked method, parameter registers,
return registers , callback parameter registers,
intent source, intent action filters >

Trace entries have the following semantics: t is the actual
time the instruction was executed (t in the model); memory offset

is the instruction’s address; instruction is the opcode (op in the
model); therefore we have the Sit from the model. Summary

information is only used for method invocations; it contains
the method’s type, e.g., an IPC or a non-IPC call, in/out register
values, caller information (i.e., current callback), and, where
applicable, the action string (filter) associated with the intent.

C. On-demand Static Analysis

To build the PDG efficiently, we conduct a post-run on-
demand static analysis that uses the collected runtime infor-
mation to narrow down the scope of the static analysis to
only those app parts that have been exercised during the run.
The advantage of this on-demand approach is that, instead of
statically analyzing the whole program (which for Android
apps raises scalability and precision issues) we only analyze

those methods encountered during execution. The on-demand
analysis phase performs several tasks.

D. Trace Processing and PDG Construction

With the static analysis information at hand, we analyze the
application traces to generate the PDG of that particular exe-
cution. The PDG is built gradually via backward exploration
of dependences, adding nodes and edges as explained shortly.
Our prior static analysis produces two sets: (1) StaticDatasi
– the set of static data dependence nodes for an instruction si,
and (2) StaticControlsi – the set of static control dependence
nodes for an instruction si. As mentioned in Section III, suffix
t distinguishes between different occurrences of an instruction;
the implementation uses a global counter for this purpose.
Sequential data dependence edges. For every occurrence
of an instruction si, add a data dependence edge to the last
executed occurrence of every instruction in its StaticDatasi.
Sequential control dependence edges. For every occur-
rence of an instruction si, add a control dependence edge
to the last executed occurrence of every instruction in its
StaticControlsi.
Asynchronous data dependence superedges. For every oc-
currence of a callback callee node, add a data dependence to
the last occurrence of its caller. This information is revealed
via static callback analysis. We also identify the instruction
sipct that contains the actual IPC method call in the caller that
passed the intent reference at time t. The callee receives the
intent through one of its parameter registers vintent. We then
identify the last occurrence of the first instruction in callee at
time t that uses vintent. Let us name this Sint. We then add
a data dependence Sipct ←d Sint.
Asynchronous control dependence superedges. Based on
our two asynchronous control dependence rules (Figure 1),
if there is no data dependence between the corresponding
supernodes from two consecutive activity contexts, i.e., call-
back callee and its caller (N1 and N2), we add a control
dependence superedge N1 ←c N2. Otherwise, we add a
control dependence superedge N0 ←c N2, where N0 is the
supernode N1 is control-dependent on.

E. Generating Program Slices from the PDG

We now discuss our approach for generating slices given the
PDG and a slicing criterion. Algorithm 1 provides the high-
level description. The slicing criterion 〈t, st, vs〉 represents the
register vs in instruction s at a particular timestamp t. Since
an instruction is a regular node in the PDG we will use both
terms interchangeably, i.e., st refers to both the instruction and
the PDG node. We maintain a workset Ts that holds the nodes
yet-to-be-explored (akin to the working queue in Breadth-first
search). The output OUTst is the set of distinct nodes in the
PDG we encounter while backward traversing from st to any
of the app entry points affecting the value held in register vs.
We first traverse the edges in the PDG starting from st and
create a dynamic data dependence table Defn and a control
dependence table Ctrln for each node n on paths to entry
points. For each regular node n′ in the set Pn = Defn∪Ctrln

Algorithm 1 Dynamic program slicing
Input: PDG, slicing criterion SliceCriterion = (t, st, vs)
Output: set of nodes OUTst

1: procedure SLICE(SliceCriterion)
2: Ts ← {st} // initialize workset Ts

3: OUTst ← {st}
4: for all nodes n that are in Ts do
5: calculate set Pn = Defn ∪ Ctrln
6: for all nodes n′ in Pn do
7: if n′ is a supernode then
8: Expand & extract the last regular node nr

9: Add nr to Defn
10: else if n′ ≡ n & Pn′ ≡ Pn then
11: Merge (n′, n); remove n′ from Pn′

12: else if previous occurrence of n is in Pn′ &
Pn′ ⊂ Pn then

13: Merge (n′, n); remove n′ from Pn′

14: else
15: add n′

i to OUTst; add n′ to Ts; remove n
from Ts

16: end if
17: end for
18: end for
19: end procedure

we add n′ to OUTst. If n′ is a supernode and n′ ∈ Defn
we expand n′. The expansion adds the last occurrence of the
regular node nr inside n′ that broadcasts an intent to Defn
and recalculates Pn. Note that nr passes the IPC reference
(intents) in a register to the next supernode, and hence it
should be included in the slice. Since the same instruction
can appear multiple times because of different occurrences at
different timestamps, this procedure adds nodes with the same
instructions to the slice for each occurrence. This increases the
size of the slice. To reduce the number of nodes in OUTst we
make two optimizations.

1. Node merging. Given different occurrences (i.e., at times
t and t′) of a regular node (i.e., n ≡ st, n

′ ≡ st′) if Pn = Pn′

we merge n and n′ into nmerged. For two different occurrences
N and N ′ of the same supernode, we also apply merging: if
N and N ′ have incoming or outgoing data dependence edges
we expand the nodes and merge the individual instructions,
i.e., regular nodes inside them; if N and N ′ are connected by
control dependence edges only, we merge them.

2. Loop folding. In loops, for every new occurrence of a
loop body instruction s, we will add a new node in the slice.
But these nodes may point to the same set of data and control
dependence in the PDG – they are different occurrences of
s. To reduce these duplications, we merge two distinct nodes
n and n′ in the loop if the following conditions are met: (a)
current occurrence of n′ depends on the previous execution
of n; (b) current occurrence of n depends on the current
occurrence of n′; and (c) Pn′ ⊂ Pn.

Let us call the new node created after the merge nmerged.

Each time we find a different occurrence of the merged node
we compute the set Pnmerged

. Then we apply reduction rule 1
to further reduce it to a single node.

F. Limitation

Since AndroidSlicer’s instrumenter is based on Soot, it inherits
Soot’s static analysis size limitations, e.g., we could not handle
extremely large apps such as Facebook. Note that this is not a
slicing limitation per se, but rather a static analysis one, and
could be overcome with next-generation static analyzers.

VI. APPLICATIONS

We describe three applications that leverage AndroidSlicer to
facilitate debugging and testing Android apps.

A. Failure-inducing Input Analysis

This analysis finds the input parts responsible for a crash
or error. Note that unlike traditional programs where input
propagation and control flow largely depend on program logic,
in event-driven systems propagation depends on the particular
ordering of the callbacks associated with asynchronous events.
Leveraging our PDG, we can reconstruct the input→ . . .→
failure propagation path.

Problem statement. Let I be the set of app inputs I1, I2, ...
(e.g., coming from GUI, network, or sensors) through registers
v1, v2, Let the faulty register be verr, i.e., its value deviates
from the expected value (including an incorrect numeric value,
crash, or exception). Hence the analysis’ input will be the
tuple 〈I, verr, PDG〉 while the output will be a sequence of
registers v1, v2, ..., vn along with the callbacks c1, c2, ..., cm
the registers are used in.

Tracking input propagation. In the PDG, for every asyn-
chronous callback, we can create an input propagation path by
tracking the data dependence for the value of any register vi.
We determine whether the values propagated through registers
are influenced by any of the app inputs I . This is particularly
useful for identifying faults due to corrupted files or large
sensor inputs (e.g., a video stream).

Example. We illustrate our analysis on an actual bug, due
to a malformed SQL query, in Olam, a translator app.5 The
app takes an input word from a text box and translates it.
In Figure 5 (top) we show the relevant part of the code: the
instruction number (left), the actual instruction (center) and
the value propagation through registers v1, v2, ..., vn along
the PDG edges (right). In the method getSimilarItems, the app
attempts to query the SQLite database, which generates an
exception, resulting in a crash. The exception trace from
the Android event log indicates that the query is ill-formed.
The PDG (bottom left) points out the callback in which the
exception was thrown: the onClick event associated with the
search button in the MainSearch activity. We analyze the event
inputs by following the data dependence edges backwards and
see that the registers’ values are pointing towards the input text
from the textbox editText. We compute the slice using the faulty
register reference as slicing criterion.

5https://play.google.com/store/apps/details?id=com.olam

The execution slice is shown in Figure 5: we see that the ill-
formatted string was stored in register v1. Our approach back-
propagates the value of v1 through the slices to determine
whether it was impacted by any part of the input. Back-
propagation starts from the error location, i.e., instruction
number 29754. The value propagates to register v5 which
references the return value from getText invoked on an
instance of v4 that is pointing to the GUI control element
EditTextBox. Our analysis ends by returning the register v5 with
the corresponding callback information. The second part of
the figure shows the associated supernodes which reveal that
the executed slices belong to the MainSearch:onClick callback. The
failure-inducing input was thus essentially identified analyzing
a much smaller set of instructions, and more importantly, in
the presence of non-deterministic callback orders.

B. Fault Localization

This analysis helps detect and identify the location of a fault
in an app. For sequential programs, fault localization is less
challenging in the sense that it does not need to deal with the
non-determinism imposed by asynchronous events. Android
apps are not only event-driven but also can accept inputs at
any point of the execution through sensors, files, and various
forms of user interactions. For this reason, fault localization
on Android can be particularly challenging for developers.

Problem statement. The input to the analysis will be the
application trace, and the register verr holding the faulty value
in a specific occurrence of an instruction. The output this time
will be the sequence of instructions s1, s2, ..., sn that define
and propagate the value referenced in verr.

Tracking fault propagation. Our slicing approach aids
fault localization as follows. Given a fault during an execution,
we determine the faulty value reference inside a register
verr by mapping the Android event log to our execution
trace. Then we compute the execution slice for verr by back
propagating through the execution slice. While we traverse
the PDG backwards, we consider asynchronous callbacks and
their input parameters if they have a direct data or control
dependence to the final value of verr. This way, we can both
handle the non-determinism of the events and also support the
random inputs from internal and external sources.

Example. We illustrate our approach on a real bug in
the comic book viewing app ACV.6 Figure 6 shows the
generated sequential and asynchronous dependences for the
faulty execution. The bug causes a crash when the user opens
the file explorer to choose a comic book. If the user long-taps
on an inaccessible directory, the app crashes with a null pointer
exception. From Figure 6 we can see that the object reference
stored in register v6 at instruction 7153 was the primary cause
of the error. The corresponding callback is revealed to be
onItemLongClick in activity SDBrowserActivity. Our analysis tracks
back the object reference in v6 through the slices, reaching
instruction 6803. Here we can see a file system API invocation
(java. io . File .getName()) that attempts to return a filename, but fails

6https://play.google.com/store/apps/details?id=net.androidcomics.acv

	
29754:	getSimilarStems:com.olam.DatabaseHelper:$v5	=	virtualinvoke	$v3.<android.database.sqlite.SQLiteDatabase:	android.database.Cursor	
rawQuery(java.lang.String,java.lang.String[])>($v1,	null)		SQLite	Excep/on,	Program	crash	
29753:getSimilarStems:com.olam.DatabaseHelper:$v1	=	virtualinvoke	$v4.<java.lang.StringBuilder:	java.lang.String	toString()>()	
29749:getSimilarStems:com.olam.DatabaseHelper:$v4	=	virtualinvoke	$v4.<java.lang.StringBuilder:	java.lang.StringBuilder	append(java.lang.String)>($v1)	
29742:doInBackground:com.olam.MainSearch$doSearch:$v9	=	virtualinvoke	$v8.<com.olam.DatabaseHelper:	java.uUl.Map	
getSimilarStems(java.lang.String)>($v7)	
28451:doInBackground:com.olam.MainSearch$doSearch:$v7	=	$v0.<com.olam.MainSearch$doSearch:	java.lang.String	searchString>	
28440:doInBackground:com.olam.MainSearch$doSearch:$v0.<com.olam.MainSearch$doSearch:	java.lang.String	searchString>	=	$v7	
28439:doInBackground:com.olam.MainSearch$doSearch:$v7	=	virtualinvoke	$v6.<java.lang.Object:	java.lang.String	toString()>()	
28438:doInBackground:com.olam.MainSearch$doSearch:$v6	=	virtualinvoke	$v5.<android.widget.EditText:	android.text.Editable	getText()>()	
28437:doInBackground:com.olam.MainSearch$doSearch:$v5	=	(android.widget.EditText)	$v4	
28413:onClick:com.olam.MainSearch$1:virtualinvoke	$v8.<com.olam.MainSearch$doSearch:	android.os.AsyncTaskexecute(java.lang.Object[])>($v9)	
	

{v1}	
{v4}	
{v1}	

{v7}	
{v0}	
{v7}	
{v6}	
{v5}	

Input	PropagaUon	

v6:	input	from	textbox	 v4:query	string		 v1:formaGed_query_string	

doInBackground	 getSimilarStems	 getSimilarStems	

onClick	
(SearchBox)	

onCreate	
(MainSearch)	

Supernodes	

Program	Dependence	Graph	

SequenUal													data														dependences	

InstrucUon	number:	InstrucUon		 Value	propagaUon	

Fig. 5: Failure-inducing input analysis.

7153:onItemLongClick:net.robotmedia.acv.ui.SDBrowserAc@vity$2:$i0	=	lengthof	$v6;	Null	pointer	Excep2on,	Program	crash	
7152:onItemLongClick:net.robotmedia.acv.ui.SDBrowserAc@vity$2:$v6	=	virtualinvoke	$v4.<java.io.File:	java.lang.String[]	
list(java.io.FilenameFilter)>($v5)	
7144:onItemLongClick:net.robotmedia.acv.ui.SDBrowserAc@vity$2:$v4	=	(java.io.File)	$v3	
7143:getItem:net.robotmedia.acv.ui.SDBrowserAc@vity$ListAdapter:$v3	=	(java.io.File)	$v2	
7142:getItem:net.robotmedia.acv.ui.SDBrowserAc@vity$ListAdapter:$v2	=	virtualinvoke	$v1.<java.u@l.ArrayList:	java.lang.Object	
get(int)>($i0)	
…	
6803:getView:net.robotmedia.acv.ui.SDBrowserAc@vity$ListAdapter:$v1	=	virtualinvoke	$v3.<java.io.File:	java.lang.String.getName()>()	
	
	
	
	
	
	

File:null(directory	inaccessible)	

Instruc@on	number:	Instruc@on		

ExtendedAc@vity	

onStart	

ComicViewerAc@vity	

onResume	
onClick	

onPrepareOp@onsMenu	
onOp@onsItemSelected	

onPanelClosed	
SDBrowserAc@vity	

onCreate	

ComicViewerAc@vity	

onSaveInstanceState	
onStop	

ComicViewerAc@vity	

onStop	

ExtendedAc@vity	

onStop	

SDBrowserAc@vity	

onItemLongClick	

Program		
Dependence	Graph	

Fault	propaga@on	

{$v1}	

{$v4}	

{$v3}	
{$v2}	

{$v6}	

{$v3}	

Fig. 6: Fault localization.

because the file’s directory is inaccessible. Our value propaga-
tion ends here, revealing the source of the error. We return the
set of instructions {6803, ..., 7142, 7143, 7144, 7152, 7153},
and the traversed PDG nodes. For simplicity, we only show
the data dependence edges and relevant parts of the slices. Our
approach then back-propagates through the PDG according
to the execution slice to localize the fault (for presentation
simplicity we have combined consecutive supernodes in the
same activity into a single node).
C. Regression Test Suite Reduction

Regression testing validates that changes introduced in a
new app version do not “break” features that worked in the
previous version. However, re-running the previous version’s
entire test suite on the new version is time-consuming and
inefficient. Prior work [12], [13] has shown that slicing reduces
the number of test cases that have to be rerun during regression
testing (though for traditional apps).

Problem statement. Given two app versions (V1 and V2),
and a test suite T1 (set of test cases) that has been run on V1,
find T2, the minimal subset of T1, that needs to be rerun on
V2 to ensure that V2 preserves V1’s functionality.

Test case selection. Agrawal et al. [12] used dynamic slic-
ing to find T2 as follows: given a program, its test cases, and
slices for test cases, after the program is modified, rerun only

those test cases whose slices contain a modified statement.
This reduces the test suite because only a subset of program
statements (the statements in the slice) have an effect on the
slicing start point (program output, in their approach [12]).
However, this technique can be unsound, because it only
considers whether a statement has been modified, not how
it has been modified. When the changed instructions affect
predicates leading to an asynchronous control dependence
(see Section III-A), missed control dependences will lead to
potentially missing some test cases. Our approach considers
such dependences to maintain soundness.

VII. EVALUATION

We first evaluate AndroidSlicer’s core slicing approach on
60 apps from Google Play; next, we evaluate it on the three
applications from Section VI.

Environment. An LG Nexus 5 phone (Android version
5.1.1, Linux kernel version 3.4.0, 2.3 GHz Qualcomm Snap-
dragon 800 quad-core chip) for online and an Intel Core
i7-4770 CPU (3.4 GHz, 24 GB RAM, 64-bit Ubuntu 14.04
kernel version 4.4.0) for offline processing.

A. Core Slicing
App dataset. We ran AndroidSlicer on 60 apps selected

from Google Play. The apps were selected from a range of

TABLE II: AndroidSlicer evaluation: core slicing results.

App Dex Installs Instructions CD+DD Callback Time (seconds) Over-
code Executed In slice events Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) Instrumentation run Instrumented run Slicing (%)
Twitter 50688 500,000-1,000,000 107847 559 790 557 293.5 233.4 245.2 40.3 5
Evernote 7219 100,000-500,000 191304 22 34 17 81.3 221.7 228.6 45.9 3
Du Recorder 62338 50,000-100,000 36672 316 409 31 41.0 245.1 254.8 53.7 4
Indeed Job Search 2458 50,000-100,000 21752 246 356 235 24.0 222.2 230.3 12.1 4
Twitch 30106 50,000-100,000 2025505 5969 9429 5965 144.2 260.3 281.9 103.0 8
Across min 47 10-50 17 2 3 1 2.3 205.4 212.8 2.0 0
all 60 median 1,485 500–1000 14491 44 63 23 19.1 229.85 239.7 11.9 4
apps max 78684 500,000-1,000,000 2025505 5969 9429 5965 293.5 260.7 281.9 103.0 14

categories (from shopping to entertainment to communication)
and with various bytecode sizes to ensure diversity in tested
apps. In Table II we present detailed results for the top-5 apps
sorted by number of installs. For brevity, we summarize the
findings (min/median/max) in the last three rows. The second
column shows the app’s bytecode size. Note that the apps
were substantial, with a median size of 1,485 KB (second-to-
last row). The third column shows app popularity (number
of installs, in thousands, per Google Play as of August
2018). While the median popularity is between 500,000 and
1,000,000 installs, 28 apps had more than one million installs.

Generating inputs and slicing criteria. To drive app
execution, we used Monkey [14] to send the app 1,000
UI events and then collected traces for offline analysis. To
measure AndroidSlicer’s runtime overhead, same event sequence
was used in instrumented and uninstrumented runs. As slicing
criteria, variables were selected to cover all types of regis-
ters (local variables, parameters, fields) from a variety of
instructions (static invokes, virtual invokes, conditions, method
returns). This allows us to draw meaningful conclusions about
slicing effectiveness and efficiency.

Correctness. We manually analyzed 10 out of the 60 apps to
evaluate AndroidSlicer’s correctness. The manual analysis effort
in some apps can be too high, because of the large number
of instructions and dependences (e.g., in the Twitch app, there
are 5,969 instructions in the slice and 9,429 dependences).
Therefore, we picked 10 apps whose traces were smaller so we
could verify them manually with a reasonable amount of effort.
We decompiled each app to get the Java bytecode, and manu-
ally created the corresponding PDG from the slicing criterion.
Then we manually computed the slices based on the execution
trace. The manually-computed slices were then compared with
AndroidSlicer’s; we confirmed that slice computation is correct,
with no instruction being incorrectly added or omitted.

Effectiveness. Table II demonstrates that AndroidSlicer is
effective. The “Instructions Executed” column shows the total
number of instructions executed during the entire run. The
median number of instructions is 14,491. If the programmer
has to analyze these, the analysis task will be challenging.
AndroidSlicer reduces the number of instructions to be analyzed
to 44, i.e., 0.3% (column “Instructions In slice”). The median
number of dependences to be analyzed, data and control, is
not much larger, 63, (column “CD+DD”). The next column
shows the number of callback events fired during the run: the
median was 23 across all apps.

Efficiency. The remaining columns (“Time” and “Over-
head”) show that AndroidSlicer is efficient. Stage 1 (instrumen-
tation), typically takes just 19.1 seconds, and at most 293.5
seconds for the 50.6 MB Twitter app. The “Original run”
column shows the time it took to run the original app, without
our instrumentation – typically 229.85 seconds, and at most
260.7 seconds. Column “Stage 2 Instrumented run” shows
the time it took to run the instrumented app, while collecting
traces. The typical run time increases to 239.7 seconds. The
“Overhead” column shows the percentage overhead between
the instrumented and uninstrumented runs; the typical figure
is 4% which is very low not only for dependence tracking,
but for any dynamic analysis in general. Furthermore, our
instrumentation strategy does not require monitoring the app
or attaching the app to a third-party module – this allows the
app to run at its native speed. We emphasize that AndroidSlicer’s
low overhead is key to its usability, because Android apps are
timing-sensitive (Section IV-A). Finally, the “Stage 3 Slicing”
column shows post-processing time, i.e., computing slices
from traces, including on-demand static analysis; this time is
low, typically just 11.9 seconds, and at most 103 seconds.

B. Failure-inducing Input Analysis
We evaluated this application on real bugs in 6 sizable apps

(Table III) by reproducing the bug traces. Our failure-inducing
input analysis is very effective at isolating instructions and
dependences of interest – the number of executed instructions
varies from 320 to 182527, while slices contain just 16–57
instructions. The CD and DD numbers are also low: 18–73.

C. Fault Localization
We evaluated our approach on 7 apps, including Notepad

and SoundCloud that have in excess of 10 million and 100
million installs, respectively. Table IV shows the results. Note
how fault localization is effective at reducing the number of
instructions to be examined from thousands down to several
dozen. SoundCloud and NPR News have large slices due
to intense network activity and background services (audio
playback), which increase the callback count substantially.

D. Regression Test Suite Reduction

We evaluated our reduction technique on 5 apps. For each
app, we considered two versions V1 and V2 and ran a test
suite T1 that consisted of 200 test cases; on average, the suite
achieved 62% method coverage. Next, we used AndroidSlicer to
compute the reduced test suite as described in Section VI-C.

TABLE III: AndroidSlicer evaluation: Failure-inducing input analysis.

App Dex Installs Instructions CD+ Call- Time (seconds) Over-
code Executed In slice DD back Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) events Instrumentation run Instrumented run Slicing (%)
Etsy 5400 10,000–50,000 182527 19 24 9 94 8.7 10.4 129.2 19
K-9 Mail 1700 5,000–10,000 13042 30 34 16 89.1 107.4 125.3 58.8 16
AnyPlayer Music Player 780 100–500 26936 16 18 11 21.9 7.6 7.8 17.2 2
Olam Malay. Dictionary 651 100–500 31599 57 73 22 17.3 46.7 50.1 19.4 3
VuDroid 475.5 100–500 320 21 27 20 8.7 6.2 6.7 6.4 8
Slideshow 3700 10–50 68013 43 52 22 52.6 7.2 8.1 28.9 12

TABLE IV: AndroidSlicer evaluation: Fault localization.

App Dex Installs Instructions CD+ Call- Time (seconds) Over-
code Executed In slice DD back Stage 1 Original Stage 2 Stage 3 head

size (KB) (thousands) events Instrumentation run Instrumented run Slicing (%)
SoundCloud 516.3 100,000–500,000 9590 128 173 62 41.7 63.5 71.6 32.7 9
Notepad 44.2 10,000–50,000 2366 15 17 6 4.5 36.5 41 9.1 12
A Comic Viewer 569.1 1,000–5,000 12679 18 24 13 26.7 52.6 61.3 18.7 16
AnkiDroid Flashcards 804.6 1,000–5,000 27164 32 38 27 87.6 17.3 19.5 28.7 12
APV PDF Viewer 52.9 1,000–5,000 24672 67 79 45 11 10.3 11.2 27.2 8
NPR News 285.1 1,000–5,000 45298 239 327 107 28.7 49.3 52.7 42.5 6
Document Viewer 3900 500–1000 5451 8 11 2 11.2 34 36.1 9 6

TABLE V: AndroidSlicer evaluation: Regression testing.

App Dex code Installs Test Covered Instructions Reduced
size V1–V2 suite methods test

(KB) size (%) V1 V2 suite
Mileage 443.8-471.3 500-1,000 200 66 28252 36531 22
Book Catalogue 444.9-445.4 100-500 200 69 28352 28450 7
Diary 125.5-129.8 100-500 200 53 4591 4842 47
Root Verifier 462.9-1700 100-500 200 58 23482 83170 5
Traccar Client 49.4-51.6 50-100 200 66 1833 1937 8

Table V shows the results: the bytecode sizes for V1 and
V2, the number of installs, the coverage attained by T1 on
V1, and the instructions executed when testing V1 and V2,
respectively. The last column shows the size of T2. Notice
how our approach is very effective at reducing the test suite
size from 200 test cases down to 5–47 test cases.

VIII. RELATED WORK

Slicing event-based programs has been investigated for
Web applications [6], [15], [16] written in HTML, PHP, and
JavaScript. These approaches record execution traces through
a browser plugin [6] and construct the UI model to generate
the event nodes. While both Web and Android apps are
event-based, their slicing approaches differ significantly. First,
Android apps have a sophisticated life-cycle with multiple
entry points that cause apps to run in different scopes (i.e.,
activity, app, system), and handle different sets of requests
(launch another activity, respond to an action, or just pass
data). In contrast, Web apps have different build phases, such
as UI building phase (HTML nodes) and event-handling phase
(JavaScript nodes). Second, Android app slicing demands low
overhead due to time sensitivity of events, whereas a Web app
slicing tool (e.g., as a browser plugin) does not require low-
overhead. Third, Android’s inter- and intra-app communication
requires IPC tracking; that is not the case for Web apps.

Traditional program slicing of Java bytecode has only
targeted single-entry sequential Java programs [17]–[20]. Zhou
et al. [21] and Zeng et al. [22] have used bytecode slicing for

Android apps, but to achieve entirely different goals: mining
sensitive credentials inside the app and generating low-level
equivalent C code. They create slices at bytecode level and
consider only data dependences making them imprecise: there
is no tracking of code dependences or accounting for many
Android features (e.g., callbacks, IPC, input from sensors).

Compared to Agrawal and Horgan’s slicing for traditional
programs [23], we add support for Android’s intricacies, node
merging for control dependence edges, dealing with slicing
in the presence of restarts as well as asynchronous callback
invocation. We support loop folding for regular nodes inside
the supernodes. Slicing multithreaded programs is tangentially
related work, where slicing was used to debug multithreaded
C programs [24]–[28] — this setup differs greatly from ours.

Dynamic race detectors (e.g., CAFA [29], ASYNC-
CLOCK [30], Droidracer [31]) have focused on discovering
and maintaining strict event order for Android apps. We think
it would be possible to write a race detector on top of
AndroidSlicer because we capture dependences that are involved
in races. However, checking the correct order of asynchronous
events (done by race detectors) is orthogonal to our work.

Hoffmann et. al. developed SAAF [32], a static slicing
framework for Android apps. A static slicing framework such
as SAAF would not be sufficient to achieve our goals as it
does not consider myriad aspects, from late binding to the
highly dynamic event order in real-world Android apps.

IX. CONCLUSIONS

We presented AndroidSlicer, a novel slicing approach and
tool for Android that addresses challenges of event-based
model and unique traits of the platform. Our asynchronous
slicing approach that is precise yet low-overhead, overcomes
the challenges. Experiments on real Android apps show that
AndroidSlicer is effective and efficient. We evaluated three
slicing applications that: reveal crashing program inputs, help
locate faults, and reduce the regression test suite.

REFERENCES

[1] B. Popper, “Google announces over 2 billion monthly active
devices on android,” https://www.theverge.com/2017/5/17/15654454/
android-reaches-2-billion-monthly-active-users, accessed: August 23,
2018.

[2] B. Zhou, I. Neamtiu, and R. Gupta, “Experience report: How do bug
characteristics differ across severity classes: A multi-platform study,” in
Software Reliability Engineering (ISSRE), 2015 IEEE 26th International
Symposium on, Nov 2015, pp. 507–517.

[3] ——, “A cross-platform analysis of bugs and bug-fixing in open source
projects: Desktop vs. android vs. ios,” in 19th International Conference
on Evaluation and Assessment in Software Engineering, EASE 2015,
April 2015, p. 10.

[4] B. Korel and J. Laski, “Dynamic program slicing,” Information Process-
ing Letters, vol. 29, pp. 155–163, 1988.

[5] N. Sasirekha, A. E. Robert, and M. Hemalatha, “Program slicing
techniques and its applications,” CoRR, vol. abs/1108.1352, 2011.
[Online]. Available: http://arxiv.org/abs/1108.1352

[6] J. Maras, J. Carlson, and I. Crnkovic, “Client-side web application
slicing,” in ASE’11.

[7] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney,
S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin: Building
customized program analysis tools with dynamic instrumentation,” in
Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’05. New York,
NY, USA: ACM, 2005, pp. 190–200. [Online]. Available: http:
//doi.acm.org/10.1145/1065010.1065034

[8] Android Developers, “App Components,” 2017, https://developer.
android.com/guide/components/index.html.

[9] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein, “Reran: Timing- and
touch-sensitive record and replay for android,” in ICSE ’13, 2013.

[10] Y. Hu, T. Azim, and I. Neamtiu, “Versatile yet lightweight record-and-
replay for android,” in Proc. of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, ser. OOPSLA 2015. ACM, 2015, pp. 349–366.

[11] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, pp. 13–. [Online].
Available: http://dl.acm.org/citation.cfm?id=781995.782008

[12] H. Agrawal, J. R. Horgan, E. W. Krauser, and S. London,
“Incremental regression testing,” in Proceedings of the Conference
on Software Maintenance, ser. ICSM ’93. Washington, DC, USA:
IEEE Computer Society, 1993, pp. 348–357. [Online]. Available:
http://dl.acm.org/citation.cfm?id=645542.658149

[13] R. Gupta, M. J. Harrold, and M. L. Soffa, “An approach to regression
testing using slicing,” in Proceedings Conference on Software Mainte-
nance 1992, Nov 1992, pp. 299–308.

[14] Android Developers, “UI/Application Exerciser Monkey,” November
2017, http://developer.android.com/tools/help/monkey.html.

[22] J. Zeng, Y. Fu, K. A. Miller, Z. Lin, X. Zhang, and D. Xu, “Obfuscation
resilient binary code reuse through trace-oriented programming,” in
Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, ser. CCS ’13, 2013, pp. 487–498.

[15] P. Tonella and F. Ricca, “Web application slicing in presence of dynamic
code generation,” Automated Software Engg., pp. 259–288.

[16] F. Ricca and P. Tonella, “Construction of the system dependence
graph for web application slicing,” in Proceedings of the Second IEEE
International Workshop on Source Code Analysis and Manipulation, ser.
SCAM ’02, 2002, pp. 123–.

[17] Wang, T. and Roychoudhury, A., “Using compressed bytecode traces
for slicing java programs,” 2004.

[18] T. Wang and A. Roychoudhury, “Dynamic slicing on java bytecode
traces,” ACM Trans. Program. Lang. Syst., pp. 10:1–10:49, 2008.

[19] “jslice,” November 2017, http://jslice.sourceforge.net/.
[20] A. Szegedi and T. Gyimothy, “Dynamic slicing of java bytecode pro-

grams,” 2013 IEEE 13th International Working Conference on Source
Code Analysis and Manipulation (SCAM), pp. 35–44, 2005.

[21] Y. Zhou, L. Wu, Z. Wang, and X. Jiang, “Harvesting developer creden-
tials in android apps,” in Proceedings of the 8th ACM Conference on
Security & Privacy in Wireless and Mobile Networks, ser. WiSec ’15,
2015, pp. 23:1–23:12.

[23] H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in Proceed-
ings of the ACM SIGPLAN 1990 Conference on Programming Language
Design and Implementation, ser. PLDI ’90, 1990, pp. 246–256.

[24] X. Zhang, S. Tallam, and R. Gupta, “Dynamic slicing long running
programs through execution fast forwarding,” ser. SIGSOFT ’06/FSE-
14, 2006, pp. 81–91.

[25] S. Tallam, C. Tian, R. Gupta, and X. Zhang, “Enabling tracing of long-
running multithreaded programs via dynamic execution reduction,” ser.
ISSTA ’07, 2007, pp. 207–218.

[26] S. Tallam, C. Tian, and R. Gupta, “Dynamic slicing of multithreaded
programs for race detection,” in ICSM’08, 2008, pp. 97–106.

[27] D. Weeratunge, X. Zhang, W. N. Sumner, and S. Jagannathan, “Ana-
lyzing concurrency bugs using dual slicing,” ser. ISSTA’10, 2010, pp.
253–264.

[28] Y. Wang, H. Patil, C. Pereira, G. Lueck, R. Gupta, and I. Neamtiu,
“Drdebug: Deterministic replay based cyclic debugging with dynamic
slicing,” in Proceedings of Annual IEEE/ACM International Symposium
on Code Generation and Optimization, ser. CGO ’14. New York,
NY, USA: ACM, 2014, pp. 98:98–98:108. [Online]. Available:
http://doi.acm.org/10.1145/2544137.2544152

[29] C.-H. Hsiao, J. Yu, S. Narayanasamy, Z. Kong, C. L. Pereira, G. A.
Pokam, P. M. Chen, and J. Flinn, “Race detection for event-driven
mobile applications,” SIGPLAN Not., pp. 326–336, 2014.

[30] C.-H. Hsiao, S. Narayanasamy, E. M. I. Khan, C. L. Pereira, and
G. A. Pokam, “Asyncclock: Scalable inference of asynchronous event
causality,” SIGARCH Comput. Archit. News, pp. 193–205, Apr. 2017.

[31] P. Maiya, A. Kanade, and R. Majumdar, “Race detection for
android applications,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’14, Edinburgh, United
Kingdom - June 09 - 11, 2014, 2014, pp. 316–325. [Online]. Available:
http://doi.acm.org/10.1145/2594291.2594311

[32] J. Hoffmann, M. Ussath, T. Holz, and M. Spreitzenbarth, “Slicing droids:
Program slicing for smali code,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, ser. SAC ’13, New York, NY, USA,
2013, pp. 1844–1851.

