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A B-spline Surface Stitching Algorithm  

Based on Point Cloud Data 

Xuedong Jing1 and Yuwei Zhang2     

Abstract. An algorithm to achieve smooth stitching between curved patches is 

presented. The algorithm adopts the inverse of the B-spline to find the control 

vertices of the common boundary of two curved blocks or multiple blocks; and then, 

the control vertex column vector that satisfies the condition given, which is 

determined by application of the continuous condition of surface 𝐺1, is applied to 

substituting the original control vertex. In this algorithm, the smoothness of stitched 

surface is higher, and smooth stitching can be achieved by modifying one set of 

control vertices. The conditions for smooth stitching of two surfaces are verified, 

and the smooth stitching degree of the algorithm under different parameters is also 

tested. 

Keywords: B-spline， surface stitching， geometric continuity. 

1 Introduction 

The geometric continuity condition between free-form surfaces is applied to 

constructing smooth surfaces on arbitrary topological regions. The article about the 

geometric continuity of B-spline surface is rare. More often, Bezier surface is used 
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as the surface model. However, Bezier surface modeling has the disadvantages of 

poor fitting effect and more surface number. The B-spline surface can fit large 

surface patches with high precision and has its inherent smoothness. To achieve 

strict geometric continuous smooth B-spline surface modeling, we must first solve 

the problem of smooth splicing conditions between B-spline surfaces.  

In 1990, W.H.Du[1] proposed the condition of 𝐺1 splicing between two and several 

Bezier patches, but it did not involve the geometric continuous splicing condition 

of B-spline surface. In 2002, Xiquan Shi, Yan Zhao[2], two pairs of cubic B-splines 

The continuous condition of 𝐺1 between surfaces is studied, and the necessary and 

sufficient conditions for satisfying 𝐺1 continuity of two B-spline surfaces during 

splicing are given, but the B-spline surface is split into multiple Bezier surfaces and 

then found. The relationship between the vertices and the vertices is studied. 

Xiangyu Che and Xuezhang Liang[3] not only pointed out the essential difference 

between B-spline surface and Bezier surface in splicing, but also studied the 

continuous and sufficient conditions of 𝐺1  satisfying NURBS surface. The 

algorithm is to splicing the B-spline patches and does not need to split. Based on 

the known necessary and sufficient conditions, the correction of the control vertices 

makes the splicing of the patches satisfy the smoothing condition. 

2 B-spline Curve Surface Basis 

2.1 B-spline Curve Surface Recursion Formula 

The Bezier curve lacks flexibility in the application and is limited by the vertices. 

When the number of vertices of the feature polygon is determined, the order of the 

curve is determined, so the controllability is poor. When the number of vertices is 

large, the order of the curve will be higher. At this time, the control of the shape of 

the curve by the feature polygon will be significantly weakened. In addition, the 

Bezier curve defines that any point in the interval of (0<t<1) is affected by the 

vertices, which makes it impossible to locally modify the curve, which greatly 

limits the possibility of actual modeling. 



In order to better adapt to the needs of the actual modeling, the structural curve 

can be locally modified, closer to the feature polygon, lower order and easier to 

construct, and the B-spline curve comes into being. The mathematical expression 

of the B-spline curve is as follows:  

𝑃𝑖,𝑛(𝑡) = ∑𝑃𝑖+𝑘

𝑛

𝑘=0

∙ 𝑁𝑘,𝑛(𝑡)，(0 ≤ 𝑡 ≤ 1) 

Where 𝑃𝑖+𝑘 is the control vertex and 𝑁𝑘,𝑛(𝑡) is the B-spline basis function, which 

is determined by the node vector T：𝑡0 ≤ 𝑡1 ≤ ⋯ ≤ 𝑡𝑛+𝑘. It can be seen from (2.1) 

that the B-spline curve is segmentally defined by the control vertices. If m+n+1 

vertices are given, the parameter curve of m+1 segments n times can be defined. 

The expression of 𝑁𝑘,𝑛(𝑡) is as follows:  

{
 
 

 
 
𝑁𝑘,𝑛(𝑡) =

1

𝑛!
∑(−1)𝑗
𝑛−𝑘

𝑗=0

∙ 𝐶𝑛+𝑖
𝑗

∙ (𝑡 + 𝑛 − 𝑘 − 𝑗)𝑛

𝐶𝑛+𝑖
𝑗

=
(𝑛 + 𝑖)!

𝑗! (𝑛 + 𝑖 − 𝑗)!

 

In formula, 0 ≤ 𝑡 ≤ 1，k=0,1,2,……,n 

When we read the i-th vertex, the polygonal polyline segment obtained by 

connecting the vertices with the line segments in turn is the characteristic polygon 

of the B-spline curve, and the vertices applied to the surface represent the control 

vertex mesh. 

 

 

Figure 1 Cubic B-spline curve 

Due to the nature of the segmentation representation, the cubic B-spline curve is 

defined by four adjacent control vertices whose expression is:  

𝑃(𝑡) = 𝑁0,3(𝑡) ∙ 𝑃0 + 𝑁1,3(𝑡) ∙ 𝑃1 + 𝑁2,3(𝑡) ∙ 𝑃2 + 𝑁3,3(𝑡) ∙ 𝑃3 

It can be seen from equation (2.3) that a cubic B-spline curve defined 

by n vertices is connected by segmentation curves of n-3 segments, and the 

second-order continuous condition is satisfied at the joint. 

（2.1） 

（2.2） 

（2.3） 



The B-spline surface is a point column 𝑃𝑖,𝑗(𝑖 = 0,1,2, … , 𝑛), (𝑗 = 0,1,2, … ,𝑚) in 

space given (n+1)×(m+1) points; Connect the adjacent two points in the point 

sequence 𝑃𝑖,𝑗 to construct a feature mesh, constructing a B-spline curve in the u 

and v directions to form a parametric polynomial surface in the form of tensor 

product, and set the node vector U={𝑢𝑖}𝑖=−∞
+∞ ,V={𝑣𝑗}𝑗=−∞

+∞
 are the divisions of the 

u-axis and the v-axis of the parameter uv plane, respectively. 

The B-spline surface definition is:  

𝑃(𝑢, 𝑣) =∑∑𝑃𝑖,𝑗

𝑚

𝑗=0

𝑛

𝑖=0

𝑁𝑖,𝑘(𝑢)𝑁𝑗,ℎ(𝑣) 

 

 

Figure 2 B-spline control grid surface 

2.2 B-spline Curve Back Calculation 

Given n+1 data points 𝑝𝑖(𝑖 = 0,1, … , 𝑛), the general algorithm [4] is to use the 

first and last data points 𝑝0 and 𝑝𝑛 as the two endpoints of the B-spline 

interpolation curve, respectively. The remaining data points 𝑝1，𝑝2…，𝑝𝑛−1 are 

sequentially used as the segment connection points of the B-spline interpolation 

curve. The node of the control point p𝑖 is u𝑖+𝑘(𝑖 = 0,1, … ,𝑚), the node vector 

U=[𝑢0,𝑢1,… , 𝑢𝑛+𝑘+1]. m+1 linear equations with n+1 control vertices as unknown 

vectors can be given by interpolation condition:  

𝑃(𝑢𝑖) =∑𝑑𝑗 ∙ 𝑁𝑗,𝑘(𝑢𝑖)

𝑛

𝑖=0

= ∑ 𝑑𝑗

𝑖

𝑗=𝑖−𝑘

∙ 𝑁𝑗,𝑘(𝑢𝑖) = 𝑞𝑖−𝑘 , 𝑢 ∈ [𝑢𝑖 , 𝑢𝑖+1] 

（2.4） 

（2.5） 



The node values in the curve definition domain  𝑢 ∈ [𝑢𝑖 , 𝑢𝑖+1] are sequentially 

substituted into the equation to satisfy the interpolation condition, namely:  

{
 
 

 
 
𝑃(𝑢𝑖) = ∑ 𝑑𝑗

𝑖

𝑗=𝑖−3

∙ 𝑁𝑗,3(𝑢𝑖) = 𝑞𝑖−3, 𝑖 = 3,4,… , 𝑛

𝑃(𝑢𝑛+1) = ∑ 𝑑𝑗

𝑛

𝑗=𝑛−3

∙ 𝑁𝑗,3(𝑢𝑛+3) = 𝑞𝑚

 

2.3 Geometric Continuity Analysis of Curved Surfaces 

For the curve, 𝐺0 continuous means that the two curve segments have a common 

connection point, and 𝐺1 continuous means that the two curve segments have the 

same unit tangent at the connection point, ie, the tangent vector, except that the 𝐺0 

continuity is satisfied[2]. The direction is the same or the tangential direction is 

continuous. 𝐺2  continuous means that the two curved segments have the same 

curvature direction at the joint except that 𝐺1 is continuous. Specific to the cubic 

B-spline curve, there is the following expression: two B-spline curves are provided 

𝐵(𝑢) =∑𝑏𝑖

𝑛

𝑖=0

∙ 𝑁𝑖,3(𝑢), 𝐶(𝑣) =∑𝑐𝑗

𝑚

𝑗=0

∙ 𝑁𝑗,3(𝑣) 

𝐺0 continuous means that the two curved surfaces have a common boundary line; 

𝐺1  means that the two curved surfaces have continuous tangent planes on the 

common boundary line on the basis of 𝐺0 continuous; 𝐺2 is continuous in 𝐺1 

on the basis of the two surfaces, there is a continuous principal curvature on the 

common boundary line. 

Set two cubic B-spline surfaces:  

{
 
 

 
 𝐵(𝑢, 𝑣) =∑∑𝑏𝑖𝑗

𝑛

𝑗=0

∙ 𝑁𝑖,3(𝑢)𝑁𝑗,3(𝑣)

𝑚

𝑖=0

𝐶(𝑠, 𝑣) =∑∑𝑐𝑖𝑗

𝑛

𝑗=0

∙ 𝑁𝑖,3(𝑠)𝑁𝑗,3(𝑣)

𝑔

𝑖=0

 

The node vectors of the basis functions 𝑁𝑖,3(𝑢),𝑁𝑖,3(𝑠),𝑁𝑗,3(𝑣) are defined as:  

（3.1） 

（3.2） 

（3.3） 

（2.6） 



{

  𝑈 =  [0, 0, 0, 0, 𝑢3, … , 𝑢𝑚, 1,1,1,1]

𝑆 =  [0, 0, 0, 0, 𝑠3, … , 𝑠𝑔, 1,1,1,1]

 𝑉 =  [0, 0, 0, 0, 𝑣3, … , 𝑣𝑔, 1,1,1,1]
 

The conditions for continuity of the two surfaces are as follows:  

{
𝐵(0, 𝑣) =  𝐶(0, 𝑣)

(
𝜕𝐵

𝜕𝑢
,
𝜕𝐶

𝜕𝑠
,
𝜕𝐵

𝜕𝑣
)|𝐵(0,𝑣)=0

 

3 Research on Bicubic B-spline Surface Stitching Algorithm 

3.1 Two Pieces of Bicubic B-spline Surface 𝑮𝟏 Continuous Splicing 

Although the predecessors have already demonstrated the smoothing conditions of 

the B-spline surface splicing in detail, there may be errors in the actual measurement 

of the point cloud data, so that the surface splicing of the originally smooth 

measured object does not necessarily satisfy the smoothing condition when 

generating the three-dimensional surface. Therefore, the algorithm is to achieve the 

correction of the local surface, which not only solves the problem that the complete 

data can be fitted in the three-dimensional scanning work, but also can correct the 

feature area, and is more suitable for the accurate measurement technology. The 

core of the algorithm is to use the back-calculation of B-spline to find the vertices 

of the relevant control points of the two surfaces, and on this basis, the two surfaces 

can be smoothly spliced. 

There are two bicubic B-spline surfaces 𝐵(𝑢, 𝑣) and 𝐶(𝑠, 𝑣). Can the two bicubic 

B-spline patches known to be 𝐺1  continuous splicing, which only has two 

common boundaries? A column of control vertices on the side is easy to implement 

and has good interactivity when applied to engineering problems. Assuming that 

they have a common boundary 𝜑(v), the surfaces 𝐵(𝑢, 𝑣) and C(𝑠, 𝑣) need to 

satisfy the condition of reaching 𝐺1 continuously，Deduced by equation (2.6) as 

follows:  

𝐵(0, 𝑣) = 𝑐0(𝑣) ∙ 𝐶(0, 𝑣) （3.6） 

（3.5） 

（3.4） 



𝛼(𝑣)
𝜕𝐵

𝜕𝑢
|𝑢=0 + 𝑐0(𝑣) ∙ 𝛽(𝑣)

𝜕𝐶

𝜕𝑠
|𝑠=0 + 𝑐0(𝑣) ∙ 𝛾(𝑣)

𝜕𝐶

𝜕𝑣
|𝑠=0 = 0 

Where c0(v)、α(v)、β(v)、 γ(v)  are functions of the common boundary 

parameters, and the geometric meaning is that there are common tangent planes at 

the common boundary of the two patches. In the calculation process, the parameters 

are polynomials. We can simplify 𝛼(𝑣) = 𝛼, 𝛽(𝑣) = 𝛽 as constant 

coefficients, and let 𝛾(𝑣)  be a piecewise linear function 𝛾(𝑣) =

𝛾0(1 − 𝑣) + 𝛾1(𝑣), let the control vertex of the common boundary be 

𝐻𝑗. Formula (3.7) into:  

α∑(𝑏1𝑗

𝑛

𝑗=0

− b0𝑗) ∙ 𝑁𝑗,3(𝑣) + β∑(𝑐1𝑗 − 𝑐0𝑗)

𝑛

𝑗=0

∙ 𝑁𝑗,3(𝑣) + γ(v)φ′(v) = 0 

In fact 𝐻𝑗 = {𝑏0𝑗 , 𝑐0𝑗}, what we have to do is to adjust 𝛼、𝛽、γ(v) and 𝑏1𝑗、𝑐1𝑗 

to make the above formula. In equation (3.3), 𝛾(𝑣)𝜑′(𝑣)  is the overall cubic 

polynomial curve. Due to the basis function  𝑁𝑗,3(𝑣),γ(v)φ′(v) can be expressed 

in the following form:  

𝛾(𝑣)𝜑′(𝑣) =∑𝑃𝑗

𝑛

𝑗=0

∙ 𝑁𝑗,3(𝑣) 

Among them.𝑃0 = 𝛾(0)𝜑
′(0) = 𝛾(0)

3

(𝑣4−𝑣3)
(𝐻1 − 𝐻0) 

The interpolation properties of the B-spline curve are known:  

3

(𝑣4−𝑣3)
(𝑃1 − 𝑃0) = [𝛾(1) − 𝛾(0)]

3

(𝑣4−𝑣3)
(𝐻1 −𝐻0)  

 +𝛾(0)
6

(𝑣4−𝑣3)
2
(𝐻2 − 2𝐻1 + 𝐻0) 

Rephrase (3.8) to read:  

∑[𝛼(𝑏1𝑗

𝑛

𝑗=0

− 𝑏0𝑗) + 𝛽(𝑐1𝑗 − 𝑐0𝑗) + 𝑃𝑗] ∙ 𝑁𝑗,3(𝑣) = 0 

If the base function is not equal to 0, then ∑ 𝛼(𝑏1𝑗
𝑛
𝑗=0 − 𝑏0𝑗) + 𝛽(𝑐1𝑗 − 𝑐0𝑗) + 𝑃𝑗 =

0, the solution is 𝑏1𝑗 = 𝑏0𝑗 −
1

𝛼
[𝛽(𝑐1𝑗 − 𝑐0𝑗) + 𝑃𝑗]. Replace the actual b1𝑗 in the 

original 𝐵(𝑢, 𝑣) surface patch with the solved b1𝑗, so that the two curved slices 

𝐵(𝑢, 𝑣) and 𝐶(𝑠, 𝑣) can achieve 𝐺1 continuous stitching. 

The specific algorithm is as follows: 

（3.9） 

（3.10） 

（3.11） 

（3.12） 

（3.7） 

（3.8） 



1、 The common boundary curve 𝜑(v) is converted into an overall cubic B-

spline curve. However, we still use 𝜑 (v) to represent the adjusted 

common boundary curve. Then we use the B-spline curve reverse method 

to calculate 𝜑(v) as a cubic B-spline curve, which is recorded as: 

𝜑(𝑣) =∑𝐻𝑗

𝑛

𝑗=0

∙ 𝑁𝑗,3(𝑣) 

2、 Select the appropriate parameters,𝛼、𝛽、𝛾(𝑣) 

3、 Using the inverse of the B-spline method, find the cubic B-spline control 

vertex 𝑃𝑗 of  𝛾(𝑣)𝜑′(𝑣). 

4、 Find b1𝑗 from the equation (3.12) and replace the actual control vertex 

b1𝑗 in the original 𝐵(𝑢, 𝑣) surface patch. 

 

 
Figure 3 Splicing verification experiment 

3.2 Three Pieces of Bicubic B-spline Surface 𝑮𝟏 Continuous Splicing 

With three tensor plot B-spline surface:  

{
 
 
 
 

 
 
 
 
𝐵(𝑢, 𝑣) =∑∑𝑏𝑖𝑗

𝑛2

𝑗=0

∙ 𝑁𝑖,3(𝑢)𝑁𝑗,3(𝑣)

𝑛1

𝑖=0

, 0 ≤ 𝑢, 𝑣 ≤ 1

𝐶(𝑣, 𝑤) =∑∑𝑐𝑖𝑗

𝑛3

𝑗=0

∙ 𝑁𝑖,3(𝑣)𝑁𝑗,3(𝑤),

𝑛2

𝑖=0

0 ≤ 𝑣,𝑤 ≤ 1

𝐷(𝑤, 𝑢) =∑∑𝑐𝑖𝑗

𝑛1

𝑗=0

∙ 𝑁𝑖,3(𝑤)𝑁𝑗,3(𝑢),

𝑛3

𝑖=0

0 ≤ 𝑢,𝑤 ≤ 1

 

（3.13） 

（3.14） 

（3.15） 



When we solved the algorithm of continuous splicing of two bicubic B-spline 

surfaces 𝐺1, we continued to solve the splicing of multiple surfaces. In this problem, 

the problem of three-slice splicing is solved first. Obviously, the three surfaces only 

need to be stitched together in two or two. However, due to the contradiction 

between the three surfaces, the second control point (E) on the boundary curve and 

the closest point (G) to the off-angle point will affect whether the splicing of the 

surface satisfies the smoothing condition. 

 

 

 Figure 4 Stitching diagram 

Let the three boundary curves be δ1(𝑢) 𝛿2(𝑣) 𝛿3(𝑤), and the algorithm based on 

the two surfaces is to find the corresponding 𝛼𝑖  、𝛽𝑖、𝛾𝑖 so that 

𝛿1(𝑢) 𝛿2(𝑣) 𝛿3(𝑤) is established. Let 𝛿1(𝑢) 𝛿2(𝑣) 𝛿3(𝑤) control vertices, 𝑃𝑖、

𝑄𝑖、𝑅𝑖 be  𝛾1(𝑣)
𝜕𝐵

𝜕𝑢
|𝑣=0 𝛾2(𝑣)

𝜕𝐶

𝜕𝑢
|𝑤=0 𝛾3(𝑣)

𝜕𝐷

𝜕𝑤
|𝑢=0 control vertices. The 

purpose of our algorithm is not to construct three smooth-joined surfaces out of 

thin air, but to study how to modify the control vertices of the original surface so 

that they reach a smooth connection, with three surfaces already. Therefore, in our 

splicing process, we should try to keep the original control vertices smaller.  

{
  
 

  
  𝛼1(𝐸3 − 𝑂) + 𝛽1(𝐸2 −𝑂) +

3𝛾1
𝑢4 − 𝑢3

(𝐸1 − 𝑂) = 0

𝛼2(𝐸1 − 𝑂) + 𝛽2(𝐸3 − 𝑂) +
3𝛾2

𝑣4 − 𝑣3
(𝐸2 − 𝑂) = 0

𝛼3(𝐸2 − 𝑂) + 𝛽3(𝐸1 − 𝑂) +
3𝛾3

𝑤4 − 𝑤3
(𝐸3 −𝑂) = 0

     

The geometric meaning is that (𝐸1 − 𝑂) ,  (𝐸2 − 𝑂) , and (𝐸3 − 𝑂)  satisfy the 

coplanar condition, and the relevant parameters 𝛼𝑖  、𝛽𝑖、𝛾𝑖  are calculated. 

Actually, there is only one degree of freedom in α𝑖 、β𝑖、𝛾𝑖.  

（3.17） 

（3.16） 



{

𝛼1(𝐺3 − 𝐸1) + 𝛽1(𝐺1 − 𝐸1) + 𝑃1 = 0

𝛼2(𝐺1 − 𝐸2) + 𝛽2(𝐺2 − 𝐸2) + 𝑃2 = 0

𝛼3(𝐺2 − 𝐸3) + 𝛽3(𝐺3 − 𝐸3) + 𝑃3 = 0

 

To solve this problem, turn it into:  

[

𝛽1 0 𝛼1
𝛼2 𝛽2 0
0 𝛼3 𝛽3

] [

𝐺1
𝐺2
𝐺3

]= [

𝑊1
𝑊2

𝑊3

] 

Among them 

{

𝑊1 = (𝛼1 + 𝛽1)𝐸1 − 𝑃1
𝑊2 = (𝛼2 + 𝛽2)𝐸2 − 𝑄1
𝑊3 = (𝛼3 + 𝛽3)𝐸1 − 𝑅1

 

Where 𝛼𝑖、𝛽𝑖 can be calculated [5], the determinant of the coefficient matrix is 

not equal to 0, so the equation group has a unique solution, and the solution is 

𝐺1、𝐺2、𝐺3, replacing the original 𝐺1、𝐺2、𝐺3. 

The stitching algorithm for three B-spline surfaces is: 

5、 The common boundaries of the surfaces B, C, and D are obtained by the 

inverse of the B-spline curve to obtain the control vertices 𝐻𝑖 , 𝐼𝑖 and 𝐽𝑖. 

The condition that needs to be satisfied is 𝐻0 = 𝐼0 = 𝐽0, and 𝐻1 − 𝐻0、

𝐼1 − 𝐼0、𝐽1 − 𝐽0 are coplanar. 

6、 Given the parameter 𝛾𝑖, α𝑖  and β𝑖 are solved by 𝛾𝑖  . 

7、 Using the inverse B-spline curve method, the control vertices 

𝑃𝑖 , 𝑄𝑖  and R𝑖  of 𝛾1(𝑣)
𝜕𝐵

𝜕𝑢
|𝑣=0 𝛾2(𝑣)

𝜕𝐶

𝜕𝑢
|𝑤=0 𝛾3(𝑣)

𝜕𝐷

𝜕𝑤
|𝑢=0 are solved.  

8、 Solved by the equations, the solution is 𝐺1、𝐺2、𝐺3 , replacing the 

original 𝐺1、𝐺2、𝐺3. 

9、 Two-piece splicing of three curved surfaces by using a splicing algorithm 

of two B-spline surfaces. 

4 Algorithm, Experiment and Analysis 

We test the feasibility of the algorithm by taking two and three surfaces as 

examples. 

Firstly, the unit sphere is evenly divided into 24 pieces according to the longitude 

（3.18） 

（3.19） 



and latitude, and the reverse processing of the B-spline surface is performed 

separately for each piece. The node vector is taken as: 

[0,0,0,0,0.25,0.5,0.75,1,1,1,1]. The lattice point is 5x5 dot matrix, and the obtained 

control points are 7x7 dot matrix. The two curved surfaces are judged by verifying 

the values of the three tangential determinants at the boundary of the two curved 

surfaces. 

For the two surfaces, before the splicing, calculate the three-way tangential 

determinant at each point on the common boundary with a step of 0.001. The 

maximum value is 0.01596772, and the average value is 0.0095462.  

Table 1. Algorithm 1 verifies test data. 

Parameter value maximum value average value 

𝛼 = 1.25, 𝛽 = 1.25 0.009653846 0.001362941 

γ(0) = 0.25,γ(1) = 1 

 
  

𝛼 = 1, 𝛽 = 1 

γ(0) = 1,γ(1) = 1 
 

0.094856112 0.018356527 

It can be seen from the experiment that different parameter selection has a great 

influence on the smooth splicing of the surface. If the parameters are properly 

selected, the smoothness of the splicing is relatively good. 
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