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Abstract: The entropy models have been recently adopted in many studies to evaluate the 

distribution of the shear stress in circular channels. However, the uncertainty in their predictions 

and their reliability remains an open question. We present a novel method to evaluate the 

uncertainty of four popular entropy models, including Shannon, Shannon-Power Low (PL), 

Tsallis, and Renyi, in shear stress estimation in circular channels. The Bayesian Monte-Carlo 

(BMC) uncertainty method is simplified considering a 95% Confidence Bound (CB). We 

developed a new statistic index called as FREEopt-based OCB (FOCB) using the statistical 

indices Forecasting Range of Error Estimation (FREE) and the percentage of observed data in 

the CB (Nin), which integrates their combined effect. The Shannon and Shannon PL entropies 

had close values of the FOCB equal to 8.781 and 9.808, respectively, had the highest certainty in 

the calculation of shear stress values in circular channels followed by traditional uniform flow 

shear stress and Tsallis models with close values of 14.491 and 14.895, respectively. However, 

Renyi entropy with much higher values of FOCB equal to 57.726 has less certainty in the 

estimation of shear stress than other models. Using the presented results in this study, the amount 

of confidence in entropy methods in the calculation of shear stress to design and implement 

different types of open channels and their stability is determined. 
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1. Introduction 

When studying sediment transport of sewer pipes and scour of the deposited materials or the 

channel walls, accurate calculation of boundary shear stress distribution is very important. At 



 
 

many places within urban sanitary or storm sewer networks, the flow tends to slow down, 

allowing carried sediment to be deposited on channel bed. With time and continuous deposition 

of sediment, the circular bed shape tends to build up in the form of irregular or flatbeds. This 

leads to the change in the channel shape, which alters the hydraulic characteristics of flow and 

shear distribution in the channel. This process is often encountered in practice, and many circular 

channels exhibit flatbeds. In circular open channels, the shear stress distribution has been 

experimentally analyzed by many researchers [ 3-1 ]. Others have developed models to predict the 

distribution of shear stress along a channel using numerical and analytical methods [4-6]. 

Numerical models depending on soft computing (SC) techniques have been recently presented 

for the prediction of shear stress distribution [7,8]. 

The entropy concept has been used by researchers to predict different flow variables such as 

velocity distribution [9-11], transverse slope of stable channels banks [12-14], and shear stress 

distribution [15]. Chiu [16], for the first time, introduced models for calcualting the shear stress 

in open channels using the Shannon entropy concept. Sterling and Knight [17] developed 

equations based on Shannon entropy for estimating boundary shear stress in open channels. 

Although, their results showed this approach could estimate the distribution of the shear stress 

reasonably well, however, they indicated some practical limitations in application of the Shannon 

entropy for practical cases. Sheikh and Bonakdari [18] employed the entropy concept and 

proposed Power Law (PL) techniques to develop new equations for predicting shear stress 

distribution in open channels. Their results compared with measured data and showed that their 

proposed Shannon PL model had good potential for practical applications besides Shannon 

entropy. 



 
 

Other entropies such as Tsallis and Renyi concepts can be applied to measure the probability of 

variables [14,19]. Tsallis [20] proposed Tsallis entropy as a generalization of the Shannon 

entropy comprising a supplementary parameter. Renyi and Tsallis entropies with non-additive 

parameters can be utilized to perform it less susceptible to the form of the probability distribution 

[14, 21-23]. Bonakdari et al. [24] showed that the Tsallis method could calculate the shear stress 

distribution along the wetted perimeter with reasonable accuracy. Khozani and Bonakdari [25] 

employed the Renyi entropy and presented a relationship for estimation of the shear stress 

distribution in circular channels. They concluded that their presented model showed the ability to 

calculate the shear stress distribution and compared well to measured results. Although many 

studies carried out on entropy models for prediction of shear stress distribution, wide 

implementation of entropy models has not taken place due to the absence of enough confidence 

in these models compared to previous conventional models in estimation of flow variables. Thus, 

it is beneficial to analyze the uncertainty of entropy models and compare the performance of 

them with previous conventional models. 

The uncertainty analysis of many hydraulic and hydrological models has been tackled by many 

researchers using various uncertainty methods [26-40]. Lamb et al. [41] used measured water 

depth in a Bayesian procedure as Generalized Likelihood Uncertainty Estimation (GLUE) to 

measure uncertainties for a simple model of the rainfall-runoff distribution. Misirli et al. [36] 

used the Bayesian Recursive Estimation (BaRE) to evaluate the watershed model’s uncertainty. 

They introduced the FREE statistic index for evaluating models’ uncertainty. FREE is equal to 

the absolute sum of the measured data within the confidence bound (FP) and the absolute sum of 

the measured data outside the confidence bound (FN). Thus, the FREE index represents the width 

of the CB. Corato et al. [42], using the uncertainty method introduced by Misirli et al. [36], 



 
 

analyzed the uncertainty of the Shannon entropy model in estimating the velocity distribution 

proposed by Moramarco et al. [43]. The proposed model for estimating velocity in their study 

was satisfactory for calculating the average velocity in multiple segments with 95% CB, but they 

did not present any results for the model's ability to calculate the velocity distribution at the 

channel cross-section. Rincon [44] provided a comprehensive overview of uncertainty methods 

that are widely used in hydrodynamics. Rincon [44] concluded that BMC is a powerful method 

for evaluating sources of uncertainty in hydrodynamic modeling. He stated that despite the BMC 

calculations required, this method could be easily applied in most cases. 

In the fields of measuring the uncertainty of entropy models in the estimation of shear stress 

distributions in open channels, based on the knowledge of authors, no study is seen except the 

recent studies related to authors. Kazemian-Kale-Kale et al. [45], analyzed the Tsallis entropy 

uncertainty in the prediction of shear stress distribution in circular channels for the first time. 

Their proposed uncertainty method was based on models with Gaussian (normal) error 

distributions. Therefore, firstly, they studied the error distribution of shear stress predicted by 

Tsallis entropy and they emphasized on the necessity to normalize the shear stress data for the 

uncertainty analyses. Then, they calibrated the model to select the best sample size (shear stress 

data considered under different hydraulic conditions) and finally analyzed the uncertainty of the 

Tsallis entropy model using this Sample Size (SS). Although their results were well capable of 

evaluating the uncertainty of the Tsallis model, the calibration method was difficult, and in 

addition, they did not discuss the performance of the different transfer functions to normalization 

in the uncertainty results. Kazemian-Kale-Kale et al. [46] also analyzed the uncertainty of 

Shannon entropy in calculating shear stress in a circular channel. They simplified the calibration 

method of Kazemian-Kale-Kale et al. [45], and Johnson’s function was employed to analyze the 



 
 

Shannon entropy uncertainty. Kazemian-Kale-Kale et al. [45, 46] studied the uncertainty of the 

Tsallis and Shannon entropy models in calculating of shear stress distribution. However, because 

these statistics need to be examined simultaneously to determine each model’s uncertainty, they 

were not able to compare the uncertainty of different entropy models. Therefore, they did not 

discuss the reliability of the Shannon and Tsallis entropy models in calculating shear stress 

compared to other models. 

Based on these gaps, this paper aims at providing a novel uncertainty model for quantifying 

and evaluating the uncertainty of four different entropy models; Shannon, Shannon PL, Tsallis, 

and Renyi, in calculating shear stress in the circular channels. The obtained results are compared 

to those calculated by the established analytical equation for shear stress in uniform flow.  The 

uncertainty method introduced by Kazemian-Kale-Kale et al. [46] based on the BMC method is 

briefly presented as the Hybrid Bayesian and Monte-Carlo Estimation System (HBMES-1) then 

further improved, and the uncertainty method is presented in this study as HBMES-2. Using the 

improved model, the uncertainty of several different entropy models and the optimized/minimum 

CB that covers all measured data (OCB) are defined. The improved model is based on the 

optimized OCB (width of the confidence bound) and the absolute sum of measured data FREEopt. 

Given the value of OCB and FREEopt, the FOCB statistic is introduced that can show the effect 

of all uncertainty statistics. FOCB shows the degree of qualitative and quantitative uncertainty of 

shear stress models. Since the main purpose of current study is to assess and compare the 

uncertainty of four models in prediction of shear stress, it is easy to make a comparison using 

HBMES-2 results, due to the using only one statistic in HBMES-2 method, the accuracy of the 

models could be determined. 

 



 
 

2. Material and methods 

2.1. Entropy models 

2.1.1. Shannon model 

Sterling and Knight [17] employed Shannon entropy to present a model to predict shear stress 

distribution in circular channels as follow: 
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where τ is the local shear stress distribution, τmax is the maximum shear stress, P is the wetted 

perimeter of the circular channel, and y is the specific point in wetted perimeter, which we want 

to obtain the shear stress on it; value changes between 0 to P/2. Figure 1 shows the circular 

cross-section with related notations used in models. The shear stress values are only computed 

for half the wetted perimeter due to section symmetry and, consequently, hydraulic 

characteristics. In Equation (1) λ0 is the Lagrange multiplier that can be determined as: 
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where ρ is the fluid density, g is the gravity coefficient, R is the hydraulic radius, and s is the 

channel slope. In a circular channel with a flatbed, Equation (1) can be written as follows: 
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where ( )wmax  and ( )bmax , are the maximum shear stress at the wall and bed of channel 

respectively, Pw and Pb are the wetted perimeter corresponding to the wall and bed of the 

channel, and yw is an offset and taken as 5 mm in their analysis. 

The equations presented by Knight et al. [47] were used to predict the mean and maximum 

shear stress for wall and bed of circular with the flatbed channel as: 

( )wbw
w PPSF

gRS
+= 1%01.0




         (5) 

( )( )wbw
b PPSF

gRS
+−= 1%01.01




         (6) 

( ) ( ) 7108.0max
0372.2%01.0 wbw

w
PPSF

gRS
=




         (7) 

( ) ( ) ( ) 3287.0max
1697.2%01.01

−
−= wbw

b
PPSF

gRS


        (8) 

where w  and b  are the mean wall, and bed shear stress, respectively, and %SF is the wall 

shear force percentage determined by the following equation:  
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Figure 1. Cross-section of the circular with the flatbed channel and its notation. 

 

2.1.2. Shannon PL model 

Sheikh and Bonakdari [18] proposed the following equation to predict shear stress in circular 

channels. 



 
 

n

P

y 1

max )

2

( =            (10) 

where n is a non-dimensional parameter computed as: 





−
=

max

n             (11) 

where   is the mean shear stress value. It should be noted that these equations are used to 

predict the wall and bed sear stress of circular with flatbeds channel separately. The mean and 

maximum shear stress values are given in Equation (11) are obtained from Equations (5)-(8). In 

the entropy models presented below, the Equations (5)-(8) are also used. 

 

2.1.3. Tsallis entropy model 

Bonakdari et al. [24] employed the concept of Tsallis entropy to present the following 

relationship for estimating shear stress in a circular channel: 
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where 
q

q
k

1−
= , q is a real value, λ1 and λ2 are Lagrange multipliers that can be determined 

from the two following equations: 
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2.1.4. Renyi entropy model 

Khozani and Bonakdari [25] employed Renyi entropy to estimate the distribution of the shear 

stress distribution and introduced the following equation: 
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where 
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k  and αʹ is a real number between zero and one. λ′ and λ″ are Lagrange 

multipliers that can be calculated with two following equations [25]: 
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where 
max

ˆ


 = is the dimensionless mean shear stress. 

 

 

2.2. Global shear stress (ρgRs) 

The shear stress in open channels in case of uniform flow is considered as a basic model for 

comparison with entropy models as follows: 

gRs =            (18) 

 

2.3. Data Collection 

The measured shear stress data were collected from experimental results presented by Sterling 

[48]. The author measured the values of shear stress along the wetted perimeter of a circular 

channel with a diameter of 244mm in different flow conditions, as shown in Table 1. For 

simulating a circular with a flatbed channel, Sterling [48] laid a thickness of sediment in a 

circular channel. As seen in Table 1, the values of the shear stress are measured in four flow 

depths in the circular channel (t/D = 0) and the rest of values related to circular with a flatbed 



 
 

channel (t/D ≠ 0) with different bed-sediment thickness. These measured values shall be 

considered in the uncertainty analyses of the four entropy models. 

 

Table 1. Summary of the hydraulic parameters in the circular channel with and without 

sediment. 

 

2.4. Uncertainty analysis 

The uncertainty method presented in Kazemian-Kale-Kale et al. [46] is develpoed to analyze 

the uncertainty of four entropy models of shear stress predictor. This method is named HBMES-

1 (Hybrid Bayesian and Monte-Carlo Estimation System in the first stage). The HBMES-1 

uncertainty is improved and will be used to analyze the four entropy models in shear stress 

prediction. This method of uncertainty will be described further in this study as HBMES-2. 

 

2.4.1. HBMES-1 uncertainty method 

The basis of the uncertainty method presented by Kazemian-Kale-Kale et al. [45,46] was that 

the error distributions of the understudy models were assumed to follow a Gaussian (normal) 

distribution. Due to the importance of normalizing the data for the uncertainty analysis in the 

study of Kazemian-Kale-Kale et al. [46], two common transfer functions of Box-Cox and 

Johnson were compared to evaluate the shear stress estimations models’ uncertainty. Kazemian-

Kale-Kale et al. [45] considered the 95% CB and performed 15 tests for uncertainty calibration 

based on the same CB, considering shear stress data under different hydraulic conditions.  

These tests were performed to select the best sample size (shear stress data considered under 

different hydraulic conditions). In order to choose the best SS (sample size), they examined the 



 
 

variation of the Nin mean and the Box-Cox function transfer factor. Due to the combination of 

these two statistics, the best SS based on the method of Kazemian-Kale-Kale et al. [45] will be 

difficult, especially when the uncertainty of several models is considered.  

In this study, the best SS is selected based on the mean value of Nin. According to Corato et al. 

[42], the closer Nin is to 95% CB, the assumption of the Gaussian error distribution is more 

satisfying. Considering Nin’s changes, satisfy the initial condition of the Gaussian error 

distribution. After selecting the best SS, the best transfer factor value is used for the final 

evaluation of the uncertainty. The results of this evaluation are in multiple statistics of Nin, FP, 

FN, and FREE. Using these statistics, it is determined whether each of the entropy models is 

sufficiently certainty to predict shear stress. 

 

2.4.2. HBMES-2 uncertainty method 

As the HBMES-1 method requires multiple statistics to be evaluated concurrently, comparing 

the certainty of several models using this method is very difficult and in some cases are 

impossible. In this study, the HBMES-1 uncertainty method has been improved, and the result of 

uncertainty for each model is presented as a single statistic.  

The improved method in this paper called HBMES (in second stage) or HBMES-2. The 

HBMES-2 uncertainty process is in two parts: (1) The calibration section, and (2) The final 

analysis section and the introduction of new statistics. The calibration part of the HBMES-2 

method is similar to the HBMES-1 method and is performed with the 95% CB to select the best 

SS [46]. For the final analysis, a minimum CB that covers all shear stress measured data is 

found. This minimum CB is called OCB (Optimized Confidence Bound). The HBMES-2 

uncertainty analysis process is described using the following three steps. 



 
 

 

Step 1. Determining initial borders of the OCB (OCBi) 

First, the shear stress data are normalized using the Box-Cox transfer function and transfer 

factor obtained in the best SS, and then the Gaussian error distribution is calculated as follows: 

)/()/()/( PyZPyZPy pm −=         (19) 

where  (y/P) is the error of data normalization, Ze, and Zp are the normalized values of 

measured and predicted shear stress (τm and τp), respectively. 

Then with considering a given value for OCBi, the following relation is applied: 
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where I = 0, 1, 2, ..., n. This value, (Z |
±)i, indicates the effects of the considered OCBi and the 

Gaussian error distribution (Equation 19) on the shear stress data predicted by the model. (/2)i 

is the standard normal curve variable, which is related to the percentage of considered OCBi. 

By performing this dividing operation; 
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where ψi is the area below one side of the probability distribution diagram. Using ψi from the 

standard normal curve table, the value of the corresponding standard coefficient (α/2)i is 

obtained. The first assumption for OCBi (OCB)0= 95%, which will be ψ0 = 0.4750 by the above 

standard deviation from the table of the corresponding standard coefficient (α/2)0 =1.96. In the 

Equation (20), ε and ε are the mean and standard deviation of the Gaussian error distribution of 

the normalized shear stress data, respectively. Then the OCBi borders are obtained by the Box-

Cox transfer function through the following relation: 
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where ( |±)i are the borders of OCBi and λ is the Box-Cox transfer factor. 

After determining OCBi borders, the distance of the measured data from the borders (distx) and 

the sum of the distances (FREE) using the equations of Kazemian-Kale-Kale et al. [46] can be 

calculated. If the distx value is positive, then the data is inside OCBi and if the distx is negative, 

then the data is outside OCBi. As a result, the value of Nin (the percentage of measured data 

within the OCBi) using distx values is obtained. 

 

Step 2. Assessment of the final OCB (OCBn) 

Given that in the OCBn, all points are within the CB, Nin should always be equal to 100%. If Nin 

is equal to 100, the OCBi value is considered lower, and the three steps a-c are done. However, if 

Nin is less than 100, the OCBi values considered higher, and the three steps a-c is performed. This 

should continue until Nin is equal to100% and the FREE values are at their lowest value. This 

FREE value is called FREEopt. How to determine OCBn is shown in Figure 2. In this figure, ξ is 

the accuracy of the standard normal table and equal to 10-2. 

 

Figure 2. Process of assessment of the OCBn (minimum confidence bound that covers all 

measured data) in HBMES -2 uncertainty method. 

 

Step 3. Introducing uncertainty index of FOCB  

After determining OCBn, the final borders of ( n|
±)n are obtained from Equation (22). In OCBn 

the distx value presented in the study by Kazemian-Kale-Kale et al. [46] is optimized and derived 

from the following equation: 
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where τm and τp are the values of measured and predicted shear stress, respectively. ( |±)n 

assesses the borders of OCBn, which is obtained by inserting the variable of standard normal 

curve that relates to OCBn as (/2)n (Equation 22). With considering OCBn, the values of FREE 

[46] are always positive, and in this paper is called FREEopt that written as follows: 




==
0xdist

xPopt distFFREE            (24) 

FREEopt index equals to the sum of the intervals of measured values inside the OCBn. The 

OCBn and FREEopt statistics are quantitative and qualitative criterion, respectively that shall be 

used to examine the uncertainty of the four shear stress predictor models. To consider the 

combined effect of these two statistics, the FOCB statistic is introduced such as that: 

100

* optn FREEOCB
FOCB =            (25) 

Given that OCBn is used as a result, the present research uses the term OCB for convenience. 

 

3. Result and discussion 

Since the calibration of both the uncertainty analysis methods presented in Sections 2.4.1 and 

2.4.2 are performed the same, the results of the uncertainty calibration of the four entropy models 

are shown first. Then, the results of the HBMES-1 uncertainty performed at the CB = 95% and 

the HBMES-2 results obtained with OCB are presented. 

 

3.1. Calibration 



 
 

As mentioned, the calibration was done based on Nin changes to select the best SS. 15 tests 

were performed for calibration, and the difference in each test varied in the number of data 

considered under hydraulic conditions. To select the best SS in each model, Nin values of each 

test (SS = 9 to SS = 23) were obtained at the calibration step with a default CB of 95%. Figure 3 

illustrates the changes in Nin values as a box plot for all four entropy models. As stated before, 

each SS that has an average Nin value is closer to 95%, is selected as the best SS. As seen in the 

figure, for the Shannon, Shannon PL, Tsallis, and Renyi entropies, the closest Nin values to the 

dotted line (95%) are 94.85%, 95%, 94.79%, and 94.23%, respectively. These values occur in SS 

amounts of 17, 15, 18, and 13, respectively. Therefore, the obtained SS values for each entropy 

model based on Nin values can be introduced as the best SS values in the calibration phase. After 

selecting the best SS, the value of Box-Cox transfer factor (λ) in this SS is considered for the 

final evaluation of the uncertainty of each model. So, the values of transfer factor (λ) are 

calculated for all models in different values of SS. These values of the λ include the average, 

upper, and lower limits for each SS (according to Figure 4). As seen in Figure 4, CB changes in 

all models are not more significant than the mean values of the λ. Thus, the mean amount of the λ 

in the best SS (which is chosen based on Nin values) is selected as the best λ. According to this 

figure, all model trends are similar and ascending. Changes of CB and also λ values in the initial 

values of SS are high, and with increasing SS value, the λ values decrease. The value of the λ in 

the optimized SS in the previous section (Figure 3) is determined as the best transfer factor (λ). 

 

Figure 3. The changes in the percentage of measured values within the confidence bound (Nin) 

in different SS values for all entropy models. 

 



 
 

According to Figure 4, for all entropy models, after reaching the best SS value, the variation in 

the λ is very low and tends to become constant. The constant changes of the factor λ (zero 

change) after the best SS indicates that in order to achieve a Gaussian error distribution in the 

shear stress data series, the minimum test for each model is in the best SS value. Moreover, the 

notable point is the similar trend in λ graphs and its change in three entropies of Tsallis, 

Shannon, and Shannon PL model, unlike the Renyi entropy model. Unlike others, in Renyi 

entropy, the CB variations are so significant in all SS values. Therefore, the less reliability of 

Renyi entropy is evidence and clear in here.  

 

Figure 4. Changes of transfer factor (λ) values in different sample sizes for all entropy models. 

 

The validity of the uncertainty analysis results depends on the normality of the error 

distribution of each entropy model. The mean and standard deviation of the Gaussian error 

distribution ( and ) are also examined in the calibration stage along with the selection of the 

best SS. Hence, the changes of λ were obtained for various SS values  and  were calculated 

for different SS (sample size) values. Using the  statistic, the degree of compliance of the shear 

stress error distribution obtained from each entropy is determined from the Gaussian distribution. 

The closer the error distribution is to the Gaussian distribution, leads to the greater the validity of 

the uncertainty results.  

In Figure 5, the variations of  for different SS values are illustrated for the four entropy 

models. As observed in these Figures, for all models, the mean value of  shows the constant 

trend in different SS values, and these values are 0.09, 0.06, 0.08, and 0.21 for the Shannon, 

Shannon PL, Tsallis and Renyi entropies, respectively. The lower the value of , the more the 



 
 

error distribution of the transferred data will follow Gaussian distribution. Therefore, due to the 

small values of  for the error distribution of the shear stress obtained from the Shannon, 

Shannon PL, and Tsallis, compared to the Renyi entropy, it can be said that the error distribution 

of these three models compared to the Renyi model are closer to the Gaussian distribution. Also, 

the Renyi entropy with the ε value of three times larger than those of others did not have a 

favorable outcome.  

The variation of the  value is derived from all four entropy models, as illustrated in Figure 6. 

As shown in this figure, the changes of  for the Renyi entropy model is higher than those of the 

Shannon, Shannon PL, and Tsallis models. The  values for all four models in the different SS 

have an almost constant value, but because the range of  variations for Renyi entropy is much 

higher than other models so that this value of  is less reliable in this model. The absolute values 

of average  for Shannon PL, Tsallis, Shannon, and Renyi models are 0.001, 0.003, 0.055, and 

0.114, respectively. Therefore, the two entropies of Shannon PL and Tsallis contain less error 

than the Shannon entropy, and these three entropies perform better than Renyi entropy.  

 

Figure 5. The mean and standard deviation of the Gaussian error distribution;  and , 

respectively; versus sample size in all entropy models. 

 

3.2. Assessment of uncertainty of four entropy models using the HBMES-1 method 

By plotting the 95% CB using the HBMES-1 method introduced in Section 2.4.1, the 

uncertainty statistics for the 4 entropy models and the global shear stress model introduced in 

Section 2.2 were obtained and presented in Table 2. According to the researchers’ studies, the 



 
 

predictor model is highly reliable if 80-100% of the values are in the desired CB and the model 

was not able to predict if less than 50% of the values are within the CB [30,32,49,50]. 

Because of these studies, given the percentages of measured shear stress data within the CB 

equal to 95% (Nin), it can generally be said whether the entropy models are sufficiently accurate 

in estimating shear stress or not?. The values of Nin in column 2 of Table 2 represent the required 

certainty for all models in estimating shear stress since the Nin value for all models is greater than 

85%. Nin values in all entropy models are very close together and higher than Nin values for the 

conventional ρgRs model.  

Although Nin values can be used for certainty, to compare each model with another, FP, FN, and 

FREE values should be considered in addition to Nin values. The FP values given in the third 

column of Table 2 represent the absolute sum of the internal data from the borders of CB. The FN 

values given in the fourth column of Table 2 represent the absolute sum of the outer data from 

the borders of CB. The FREE values, which are equal to the sum of FP and FN, represent the 

Width of Confidence Bound (WCB) in the last column of Table 2.  

The lower these FREE, FP, and FN values, means the higher model’s certainty. These three 

values are close for the two Shannon and Shannon PL entropies as well as for the two Tsallis and 

ρgRs models, but these values are much higher for the Renyi entropy than the other four models. 

As can be seen, the Nin values with the values of the three FP, FN, and FREE statistics give 

different results in providing the uncertainty, and it is difficult to give a precise view to compare 

the accuracy of the models. For example, although the Nin value for the Renyi entropy is more 

than ρgRs, the FP, FN and FREE values are much better (lower) for the ρgRs model.  

Therefore, the general conclusion from the values in this table is that given the high values of 

Nin, all models are capable of predicting shear stress with high precision, but an accurate 



 
 

comparison of this uncertainty with respect to other statistics to be considered concurrently is 

complicated. In this study, HBMES-2 method is presented to solve this problem. In the next 

section, the results are provided and discussed in details. 

 

Table 2. Statistical indexes based on HBMES-1 uncertainty method in shear stress prediction 

by different entropy models and conventional ρgRs model. 

 

To clarify the results presented in Table 2, the shear stress distribution and 95% CB using the 

HBMES-1 method for a height ratio of the circular channel (t/D=0, h+t/D=0.333) and the height 

ratio of the circular channel with flatbed (t/D=0.25, h+t/D=0.333) is shown in Figure 6. It is seen 

in the figure that the trend of shear stress distribution in all four entropy models is in line with 

the trend of measured values for the bed area and the channel walls, whereas the conventional 

ρgRs model has both a constant amount in the bed and the walls of the channel.  

In the circular channel (Figure 6a), the entropy models of Shannon, Shannon PL, and Tsallis 

have predicted the shear stress distribution quite in accordance with the measured data. The 

Renyi entropy is also in good agreement with measured data except for channel sides (0<y/P<0.1 

and 0.9<y/P<1). However, the performance of the Renyi entropy is much better than the ρgRs. 

The ρgRs model at the walls of the circular channel predicts the shear stress value much lower 

than the measured values, and at the bed area (0.1<y/P<0.9), it predicts the shear stress value 

slightly below the corresponding measured values.  

Consequently, with designing, the channel based on the ρgRs model, both the resistance of the 

walls is considered unnecessarily high, and the scouring of the bed also occurs. In the circular 

with flatbed channel (Figure 6b), the results of all models are similar to the circular channel. 



 
 

However, the Shannon PL entropy, which is in accordance with the measured trend, predicts the 

shear stress values more than the two Shannon and Tsallis entropies. 

To check the uncertainty of the models, the WCB and the percentage of measured data within 

the CB (Nin) in Figures 6 should be considered. The Nin value and the WCB at these height ratios 

were calculated according to the overall ability of the entropy models and considering all the 23 

different hydraulic conditions in Table 1. Given that the Nin in both height ratios for all models is 

more than 93%, all models are capable of estimating shear stress with high certainty. Figure 6a 

shows that the CB for the Shannon and Shannon PL models with all data covered is very small 

and almost uniform.  

In the Tsallis and Renyi models, two shear stress data in free surface (y/P=0) fall outside the 

CB (hollow points in Figure 6), indicating that the certainty of these models in predicting shear 

stress at the free surface of the circular channel is less than the other wet areas. This issue is more 

seen by Renyi entropy model. On the other hand, the WCB of the Tsallis model is much less than 

the WCB of the Renyi model, which demonstrates the more reliability in addition to the accuracy 

of Tsallis model especially in areas near the water surface.  

The WCB of the ρgRs, Shannon, and Shannon PL, covered all data, but the WCB in the ρgRs 

is larger than the other two models. Furthermore, the ρgRs model is not capable of estimating 

shear stress values; so that there is no consistency with observed values. When comparing the 

certainty of the ρgRs and Tsallis model, it should be noted that although the Tsallis entropy has 

two data at the free surface outside the CB, the WCB is much lower in the Tsallis model than the 

ρgRs model.  

Therefore, the certainty of Tsallis model is much more than ρgRs model in addition to more 

accuracy of the Tsallis model. The Renyi model also has the lowest certainty in predicting shear 



 
 

stress at this height ratio with the highest WCB and the least amount of Nin. It is also observed in 

Figure 6b that the WCB for the three Shannon, Shannon PL, and Tsallis models are 

approximately the same, with free surface data (y/P = 0) and a data between the wall and the bed 

of the channel (y/P = 0.1) which are in outside of the CB.  

This indicates that the accuracy of these three models is lower in estimating shear stress at the 

free surface and the boundary of the wall and bed than other wet points. Although the Renyi 

entropy model has more data within the CB, its WCB is much larger than the three Shannon, 

Shannon PL, and Tsallis models. Comparing the uncertainty of the Renyi and ρgRs, it can be 

said that the two models have approximately the same WCB and Nin, but the certainty of the 

Renyi model at the intersection of the wall and bed and the certainty of the ρgRs at the free 

surface are lower than other wet points. 

 

Figure 6. 95%CB for uncertainty analyzing presented models in shear stress prediction by 

HBMES-1 method in height ratios (a) t/D = 0, h+t/D = 0.333; and (b) t/D = 0.25; h+t/D = 0.333). 

 

3.3. Comparison of the uncertainty of four entropy models using HBMES-2 method 

Through drawing 95% CB, it was found that all models had sufficient certainty in predicting 

shear stress in circular and circular with flatbed channels, and the strengths and weaknesses of 

each model were determined. However, it is challenging and almost impossible to provide a 

classification and opinion on the final degree of uncertainty of each model.  

Therefore, the results of the HBEMS-2 uncertainty method are presented below to compare the 

uncertainty of the models. In this method, by drawing the minimum confidence bound (OBC) all 

measured values are dropped in the band, and the Nin statistic is equal to 100% and eliminated to 



 
 

check the uncertainty. Also, the FREE value introduced in previous studies [36,42,45,46] is 

optimized (FREEopt) and according to Equations (22) and (23) are obtained. The transfer factor 

of Box-Cox function derived from the best SS was used to evaluate the uncertainty of shear 

stress predictor models.  

The introduced statistics with HBMES-2 were obtained for 23 of sample for all entropy 

models, some of which are presented in Table 2. In the first column of this table, the OCB 

statistic shows the minimum CB that represents all measured data. The lower the OCB value, the 

higher the model’s certainty in the shear stress prediction. The FREEopt statistic, which is the 

total distance of the measured data of the OCB, represents the width of OCB. If this value is 

lower for a model, the certainty of this model is higher.  

As mentioned before, the OCB criterion can be considered as a quantitative criterion for 

determining the certainty of a model. Also, FREEopt is a qualitative criterion to evaluate the 

uncertainty of models. The third column of Table 2 is the value that shows the combined effect 

of OCB and FREEopt, which is considered as the main criterion in this study as (FOCB) (FREEopt 

and OCB).  

Therefore, it is sufficient to find only the FOCB statistic for evaluating the uncertainty of shear 

stress predictor models. As can be seen in the last column of Table 2, the overall uncertainties of 

all models decrease with an increasing amount of water and sediment in the channel bed (h+t). In 

all samples, the FOCB statistic has the lowest value for the Shannon PL entropy and the highest 

value for the Renyi entropy, as a result, among the proposed models, Shannon PL models 

showed the highest certainty, and the Renyi has the lowest certainty.  

The FOCB value for the Renyi entropy is more than several times of the other models, and this 

indicates a much lower certainty of this model than the other models in shear stress prediction. In 



 
 

the three samples 1, 2, and 11, the entropies of Shannon, ρgRs, and Tsallis have the lowest 

amount of the FOCB and the highest certainty, respectively. In samples 8 and 11, the values of 

the FOCB for the three entropies Shannon, ρgRs, and Tsallis are also close together, indicating 

an almost identical degree of certainty for these models. 

To illustrate the uncertainty statistics presented in Table 3, the OCB for two samples 1 and 11 

is shown in Figure 7. Figure 7 shows the minimum confidence bound that covers all measured 

shear stress, OCB, for four entropy models and ρgRs model. The Figure 7a corresponds to 

Sample 1 for a circular channel (t/D = 0, h+t/D = 0.333) and the Figure 7b also relates to sample 

11 for a circular with flatbed channel (t/D = 0.25, h+t/D = 0.333).  

Each model, which has a higher OCB width, shows higher uncertainty in the prediction of 

shear stress. The width of OCB of the three entropy models of Tsallis, Shannon PL, and Shannon 

is very close and contains a very small region, while the Renyi entropy model has larger OCB 

region compared with other three models.  

 

Table 3. Statistical indexes based on HBMES-2 uncertainty method for four entropy models 

for shear stress prediction. 

 

In Figure 7a the OCB widths for the two Shannon PL and Shannon models are perfectly within 

the range of the OCB plotted for the ρgRs model, but the OCB plotted for the Tsallis entropy is 

slightly wider than the OCB for the ρgRs model. Therefore, the certainty of the Shannon PL, 

Shannon, ρgRs, Tsallis, and Renyi, respectively, is higher in predicting shear stress in this 

sample. The results of the FOCB values also confirm this classification.  



 
 

In Table 3, sample 1 (t/D = 0), the OCB values for three Shannon PL, Shannon, and ρgRs 

models are close to each other and are less than the OCB values of two Tsallis and Renyi models. 

Despite the proximity of the OCB values for the two Tsallis and Renyi models, the width of OCB 

for the Renyi model is much higher than Tsallis model; the FREEopt value of the Renyi model is 

much larger than the other four models, which is shown in Table 3. In Figure 7b, although the 

OCB values are very close to each other for all models, the width of OCB, in bed and wall of 

channel, for the Renyi entropy model is much larger than the four models. This issue is very 

clear in the (FOCB) statistics in Table 3 for all samples. 

 

Figure 7. OCB for analyzing presented models in shear stress prediction by HBMES-2 

uncertainty method in height ratios (a) t/D=0, h+t/D=0.333; and (b) t/D=0.25; h+t/D=0.333). 

 

In Table 4, the values of this statistic are given for all models for the studied cases. These 

values show that the certainty of all models to calculating shear stress in a circular channel is 

much higher than in circular with flatbed channel. Except for the Renyi entropy with identical 

almost values for FOCB, it indicates the same uncertainty in the prediction of shear stress values. 

In Table 4, the values of FOCB for the Renyi entropy in both circular and circular with flatbed 

channels are much higher than in the other models. Given that the ρgRs model has been 

considered as a basic model in this study for comparison with entropy models, it should be said 

that the Renyi entropy model is not a good model for predicting shear stress values. In a circular 

channel, the entropies of Shannonn PL, ρgRs, Shannon, Tsallis have more certainty in predicting 

shear stress.  



 
 

The models are more certain for Shannon, Shannon PL, ρgRs, and Tsallis models to predicting 

shear stress in circular with flatbed channel, respectively. Finally, considering the number of 

samples presented in Table 1, the average values in Table 4 are given for the entire circular 

channel. The average values indicate that Shannon, Shannon PL, ρgRs and Tsallis models have 

the most certainty to estimating shear stress in the circular channels, respectively. 

 

Table 4. The values of FOCB in circular and circular with flatbed channels for all entropy 

models to predicting shear stress distribution. 

 

4. Conclusion 

In this study, we present the uncertainty of four popular entropy models, including Shannon, 

Shannon PL, Tsallis, and Renyi have been analyzed for calculating shear stress in circular 

channels. The uncertainty analysis method of Kazemian-Kale-Kale et al. [46] based on the 

Bayesian Monte-Carlo technique was employed and named in this study as HBMES-1. However, 

using the HBMES-1 method along with the Nin statistic required three additional statistics (FP, 

FN, and FREE) to compare the uncertainty of the model, it was not feasible to rank the 

uncertainty of several models. For this reason, in the proposed new HBMES-2 method, the 

minimum CB that covers all measured data and the OCB were obtained, and a new statistic 

called FOCB was introduced to evaluate the uncertainty. The FOCB indicates the degree of 

uncertainty as both a qualitative and a quantitative index. Calibrations for both HBMES-1 and 

HBMES-2 methods were performed in different sample sizes and under different hydraulic 

conditions. Based on the percentage of measured data within the confidence bound (Nin), the best 

SS (sample size) for each entropy model was selected. At the calibration stage, the mean and 



 
 

standard deviation changes of the error distribution of normalized shear stress data ( and ) of 

all four entropy models in different SS were investigated. The lower  values, the distribution of 

the error is approaching to the Gaussian distribution, and the validity of the obtained uncertainty 

results is more reliable. The values  for the entropies of Shannon, Shannon PL, Tsallis, and 

Renyi, were 0.09, 0.06, 0.08, and 0.21, respectively. The absolute values of  for the entropies 

of Shannon PL, Tsallis, Shannon, and Renyi, were 0.001, 0.003, 0.055, and 0.114, respectively. 

Applying the Box-Cox function transfer factor in the best SS selected from the model 

calibration, the final evaluation was performed using two uncertainty methods. In the HBMES-1 

method, it was found that all four entropy models with a percentage of measured data within 

95% CB higher than 93% along with the ρgRs conventional model have high certainty in 

predicting shear stress in circular channels. According to the results of HBMES-2 method in a 

circular channel, the entropies of Shannon PL, ρgRs, Shannon, Tsallis, and Renyi with the FOCB 

values were 1.339, 2.026, 2.432, 2.961, and 58.457, respectively. In the circular flatbed channel, 

the entropies of Shannon PL, Shannon, ρgRs, Tsallis, and Renyi, the FOCB values were 10.118, 

11.591, 17.115, 17.407, and 57.565, respectively. According to the mean results of FOCB in 

different hydraulic conditions, it was generally found that the Shannon PL, Shannon, ρgRs, 

Tsallis, and Renyi models have the highest certainty in shear stress of circular channels with 

FOCB values of 8.781, 9.808, 14.491, 14.895, and 57.726, respectively. These results show that 

the three Shannon, Shannon PL, and Tsallis entropy models, along with the ρgRs conventional 

model, have high certainty in shear stress prediction, whereas the Renyi entropy model has the 

least certainty in predicting shear stress in the circular channels. 
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Figure 1. Cross-section of the circular with the flatbed channel and its notation 

  



 
 

 

Figure 2. Process of assessment of the OCBn (minimum confidence bound that covers all 

measured data) in HBMES -2 uncertainty method 

  



 
 

 

Figure 3. The changes in the percentage of measured values within the confidence bound (Nin) 

in different SS values for all entropy models  



 
 

 

Figure 4. Changes of transfer factor ( ) values in different sample sizes for all entropy models 

  



 
 

 

Figure 5. The mean and standard deviation of the Gaussian error distribution;  and , 

respectively; versus sample size in all entropy models 

  



 
 

Figure 6. 95%CB for uncertainty analyzing presented models in shear stress prediction by 

HBMES-1 method in height ratios a) t/D = 0, h+t/D = 0.333; and b) t/D = 0.25; h+t/D = 0.333)  



 
 

 

Figure 7.  OCB for analyzing presented models in shear stress prediction by HBMES-2 

uncertainty method in height ratios a) t/D=0, h+t/D=0.333; and b) t/D=0.25; h+t/D=0.333) 

  



 
 

Table 1. Summary of the main hydraulic parameters in the circular channel with and without 

sediment 

Q(l.s-1) Fr S0×103 h+t/D t/D Section Sample 

5.36 

11.7 

17.3 

22.9 

0.516 

0.505 

0.441 

0.375 

1.00 

1.00 

1.00 

1.00 

0.333 

0.506 

0.666 

0.826 

0 Circular 

1 

2 

3 

4 

1.32 

8 

3.3 

16.5 

22.1 

23.8 

3.39 

18.2 

38.9 

0.671 

0.748 

0.656 

0.68 

0.663 

0.626 

1.71 

1.7 

1.59 

1.96 

1.96 

1.96 

1.96 

1.96 

1.96 

8.62 

8.62 

8.62 

0.332 

0.499 

0.398 

0.666 

0.755 

0.795 

0.333 

0.499 

0.666 

0.25 

Circular with 

flatbed 

5 

6 

7 

8 

9 

10 

11 

12 

13 

4.4 

12.2 

17 

22.1 

12 

0.718 

0.685 

0.669 

0.721 

1.96 

2.00 

2.00 

2.00 

2.00 

2.00 

0.499 

0.666 

0.75 

0.8 

0.499 

0.332 

Circular with 

flat bed 

14 

15 

16 

17 

18 

8.4 

16 

1.4 

1.42 

9.00 

9.00 

0.666 

0.75 

0.5 

Circular with 

flatbed 

19 

20 



 
 

20 1.33 9.00 0.8 21 

3.09 

4.93 

1.44 

1.55 

8.80 

8.80 

0.75 

0.8 

0.664 

Circular with 

flat bed 

22 

23 

 

  



 
 

Table 2 Statistical indexes based on HBMES-1 uncertainty method in shear stress prediction by 

different entropy models and conventional gRs model 

 Models Nin FP FN FREE 

Entropy 

Shannon 94.81 6.521 0.096 6.617 

Shannon PL 93.41 6.018 0.107 6.125 

Tsallis 92.43 8.525 0.239 8.764 

Renyi 91.58 26.041 0.658 26.699 

Conventional gRs 85.41 8.124 1.715 9.839 

 

  



 
 

Table 3. Statistical indexes based on HBMES-2 uncertainty method for four entropy models for 

shear stress prediction 

Samples Models OCB FREEopt FOCB 

1 

Shannon PL 

Tsallis 

Shannon 

Renyi 

gRs 

89.26 

98.96 

92.32 

100 

87.4 

0.525 

1.995 

0.718 

24.312 

1.628 

0.469 

1.974 

0.663 

24.312 

1.423 

2 

Shannon PL 

Tsallis 

Shannon 

Renyi 

gRs 

98.44 

100 

95.86 

100 

93.14 

0.768 

4.057 

0.975 

60.569 

1.480 

0.756 

4.057 

0.935 

60.569 

1.379 

8 

Shannon PL 

Tsallis 

Shannon 

Renyi 

gRs 

94.76 

97.6 

96.06 

99.02 

99.14 

1.927 

1.953 

2.931 

29.049 

4.920 

1.826 

1.906 

2.815 

28.764 

4.878 

11 

Shannon PL 

Tsallis 

Shannon 

Renyi 

gRs 

99.5 

100 

99.62 

100 

98.98 

5.166 

6.723 

5.727 

22.773 

11.157 

5.14 

6.723 

5.705 

22.773 

11.043 



 
 

18 

Shannon PL 

Tsallis 

Shannon 

Renyi 

gRs 

100 

100 

100 

100 

99.56 

17.426 

22.231 

16.049 

41.814 

21.233 

17.426 

22.231 

16.049 

41.814 

21.139 

 

  



 
 

Table 4. The values of FOCB in circular and circular with flatbed channels for all entropy 

models to predicting shear stress distribution 

Section 

FOCB 

Shannon PL Shannon Tsallis Renyi gRs 

Circular 1.339 2.432 2.961 58.457 2.026 

Circular with 

flat bed 

11.591 10.118 17.407 57.569 17.115 

Average 9.808 8.781 14.895 57.726 14.491 

 

 

 

 

 

 


