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Abstract—In this paper, an adaptive fuzzy backstepping 

dynamic surface control (DSC) scheme is proposed for 

fractional-order nonlinear systems (FONSs) in strict-feedback 

form with external disturbances and unknown dead zone. 

Fuzzy logic systems (FLSs) are utilized to approximate 

unknown nonlinear functions. By utilizing the DSC to avoid 

the inherent problem of ‘explosion of complexity’ in the 

backstepping technique, at the same time, constructing the 

dead zone inverse to compensate for the dead zone effect. 

Finally, the raised method can ensure that all the signals of the 

fractional-order closed-loop system are bounded, and the 

tracking error becomes arbitrarily small. 
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unknown dead zone 

I. INTRODUCTION 

Fractional-order (FO) calculus is an ancient and novel 
subject. As early as the founding of fractional calculus, 
some scholars began to consider its meaning. Due to the 
lack of practical application drive, it develops very slowly. 
In the long history of nearly 300 years, it has been regarded 
as a profound pure theoretical problem in the field of pure 
mathematics. Fractional calculus is abstruse and abstract, 
and its development has been difficult. It was not until the 
1980s that scholars discovered that there are systems in 
nature and engineering where the order of calculus is not 
integer. Because of its ability to describe the system model 
more accurately, fractional calculus has become a powerful 
tool for studying fractal geometry and fractional dynamics, 
such as fractional-order uncertain viscoelastic models [1], 
etc. 

With the emergence of FO system, FO control is also 
developed. However, the research on fractional control is 
still in its infancy, and there are still many areas that need to 
be improved. Backstepping control technique has been a 
powerful method to deal with non-smooth nonlinear system. 
From then on, adaptive backstepping control technique has 
received widespread concern. FLSs and neural networks 
(NNs) have the characteristics of approximating unknown 
nonlinear continuous functions. The combination of 
backstepping control with adaptive fuzzy or NNs control are 
applied to integer-order nonlinear systems (IONSs), and 
many results have been achieved. For example, the authors 
in [2] designed an adaptive NNs-based decentralized control 
approach for uncertain switched interconnected nonlinear 
system in nonstrict-feedback form with the prescribed 
performance. However, because FO calculus is more 
complicated than integer-order (IO) calculus, some results 
obtained in IONSs may not be directly applied to FONSs. 
Moreover, in comparison with the IO controller, the FO 
controller possesses higher design freedom and better 
robustness and transient performance. So, in recent years, 

some scholars have begun to turn their eyes from IONSs to 
FONSs. Fractional calculus has been paid more and more 
attention. After continuous research, many results have been 
achieved. For example, in [3], an adaptive fuzzy 
backstepping control method put forward strict-feedback 
FONSs with unknown external disturbances. Nevertheless, 
in the use of backstepping control technique, some nonlinear 
functions need to be derived repeatedly, which leads to the 
issue of ‘explosion of complexity’. [4] is combined DSC 
with backstepping control to avoid the issue. Another point 
that needs to be noted is that in the actual control task, some 
components expose some subtle problems due to their own 
objective factors, such as non-smooth nonlinear. Dead zone 
is a common non-smooth nonlinearity, which exists may 
severely restrict system properties and even do great damage 
to system stability. In order to handle the system with 
unknown dead zone, a method was raised in [5]. A robust 
adaptive control put forward IONSs with unknown dead 
zone without constructing the dead zone inverse and it 
assumes that the slopes of dead zone must be equal without 
considering unequal situation.  

By the aforementioned observations, in the article, the 
main contribution is as follows. Considering the slopes and 
the breakpoints of the dead zone are not equal, that is, the 
asymmetric dead zone, the dead zone inversion method is 
used to handle this problem. Utilizing the dead zone inverse 
and the compensation term to compensate for the influence 
of the dead zone, external disturbances and approximation 
errors in the FONSs. By bringing in DSC, the calculation is 
simplified. Finally, it proves that the adaptive fuzzy DSC 
method can ensure the stability of the FONSs and has good 
tracking performance. 

The article structure is as follows. In Section Ⅱ, we bring 
in some preliminaries, formulations and system descriptions. 
The detailed design steps are described in Section Ⅲ. Some 
conclusions are given in Section Ⅳ. 

II. PROBLEM FORMULATIONS AND PRELIMINARIES 

A. System descriptions 

Consider the following FONSs in strict-feedback form: 
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where 0 1   is the system order, 

1 2[ , ,... ] i

i ix x x x R   is the system state vector, and y R  

is the system output. (.)if , ( 1, 2,..., )i n  is the smooth 

unknown nonlinear function. ( )id t , ( 1, 2,..., )i n is the 

unknown but bounded external disturbance, | ( ) |i id t d , id  

is an unknown positive constant. Let dy be a desired 

signal. dy , 0

C

t dD y  and 2

0

C

t dD y are smooth, available and 

bounded. ( )D u R  is an asymmetrical dead zone output. 

According to [11], its definition as following 
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where rb  and lb  are the breakpoints, rm  and lm represent 

the slopes, respectively. The coefficients 0rm  , 0rb  , 

0lm   and 0lb  are unknown constants and | |r lb b , 

r lm m . 

The inverse of the dead zone nonlinearity can be shown 
as follows 
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where v  is a designed control law. 
,
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the estimates of the dead zone parameters 
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Define  as 

1 0

0 0

v

v



 


                          (4) 

Substituting (3), (4) into (2), we have 
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B. Preliminaries 

Definition 1 [6]: Suppose that 0: [ , )F t R   is a 

continuously differentiable function, its Caputo fractional 

order differentiable with order  ( ( , 1)    , N  ) is 

defined as: 
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where 1

0
( ) e d 


     denotes the Euler’s Gamma 

function, satisfying (1) 1  . 

Definition 2 [6]: The Mittag-Leffler function with two 
parameters can be defined as: 

     
,

0

( )
( )

j

j

E
j

 




 






 

                             (8) 

where  , 0   are constants,   is a complex number.  

Lemma 1 [6]: For two real numbers (0,1)  , 

( 2, min{ , })    and a complex number  , the  

following equation holds for all integer 1n  : 
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when | |   , | arg( ) |v    . 

Lemma 2 [6]: Let  satisfy (0, 2)   and  be an 

arbitrary real number. For an arbitrary positive constant   

such that ( 2, min{ , })    , then one has  
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where 0  , | | 0  , and | arg( ) |    . 

Lemma 3 [7]: Let 0x   be an equilibrium point of the 

fractional-order nonlinear system 0 ( ) ( , ( ))C

tD x t f t x t  , 

where ( )f  is a Lipsichiz continuous. If there exist a 

Lyapunov function ( , ( ))V t x t  and several class-  functions 

kg , 1, 2,3k  , such that inequalities hold, 

1 2 2 0 3(|| ( ) ||) (|| ||) , (|| ( ) ||)C

tg x t V g x D V g x t       (11) 

thus 0 ( ) ( , ( ))( (0,1))C

tD x t f t x t   is asymptotically stable.  

Lemma 4 [8]: For all 0   and S R , the following 

inequality will hold:  
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Lemma 5 [9]: Let ( )x t R be a smooth function. For all 

0t t , it satisfies 
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Lemma 6 [10]: Let ( )f x  be a continuous function 

defined on a compact set  . Then for any constant 0  , 

there exists an FLS such as 
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x
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From Lemma 6, we can use FLS to approximate 

unknown function ( )i if x  as 
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Due to [10], define the optimal parameter vector
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where U and i  are compact sets for ix  and i , 

respectively. The minimum approximation errors i are 

defined as  
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where i satisfies 
*| |i i  ,  

*

i  is an unknown positive 

constant. 

III. ADAPTIVE FUZZY CONTROL DESIGN AND STABILITY 

ANALYSIS 

A. Adaptive Fuzzy Control Design 

Consider the coordinate transformation as follows 
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where 1S is the tracking error, iS , 2,...,i n  is the surface 

error, i  is new intermediate variable which can be gained 

by making the intermediate control function i  through the 

fractional-order dynamic surface filter, i  is the fractional-

order dynamic surface filter output error. 

Step1: From (1), (17) and (18), the derivative of 1S  is 
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parameter error. 

Consider the following Lyapunov function:  
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where 1 0   and 1 0   are design constants, *
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Through Lemma 4, we can get 
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Design the adaptation laws and the intermediate control 
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where 1  and 1  are positive design constants. 

2 2
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ˆ S S   is a compensation term used to compensate 

for  
*

1  and 1d , as well as in the following steps. 

Substituting (22)-(24), adding and subtracting 1 1S   into 

(21), we can get 
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Let the intermediate control function 1  pass through a 

fractional-order dynamic surface filter with a time constant 

1  to get 1 . 
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where 1( )G   is a continuous function. From the existing 

results [4], there is an unknown positive constant 1M such 

that 1 1| ( ) |G M  in a given compact set 1 . 
1M̂  is the 

estimation of 
1M , 

1 1 1
ˆM M M   is the parameter error. 

Step i: From (1), (17) and (18), the derivative of iS  is 
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where 
i  is the estimation of *
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i i i     is the 

parameter error. 
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Through Lemma 4, we can get 
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Design the adaptation laws and the intermediate control 

function i  are as follow 
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where i , i  and 1i   are positive design constants. 

Substituting (31)-(33) into (30), adding and subtracting 

i iS , we can get 
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Let the intermediate control function i  pass through a 

fractional-order dynamic surface filter with time constant i  

to get i . 
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where ( )iG   is a continuous function. There is an unknown 

positive constant iM  such that | ( ) |i iG M  in a given 

compact set  ， 1 2 1... n      . ˆ
iM is the 

estimation of 
iM , ˆ

i i iM M M   is the parameter error. 

Step n: From (1), (17) and (18), the derivative of nS  is 
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where 
n  is the estimation of *

n , *

n n n     is the 

parameter error. 

Consider the following Lyapunov function: 
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where 1 , 2 , 3 , 4 , n , n , and 1n   are positive design 

constants. * *

n n nd      and ˆ
n  is the estimation of 

n , 

ˆ
n n n      is the parameter error. 

From (37) and (38), the time derivative of nV  is 
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Through Lemma 4, we can get 
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Choose the adaptation laws and design actual control 
law v  as follow 
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where n , 4 , n , 3  1n  , 2  and 1  are positive design 

constants. 
2 2ˆ

n n nS S   is a compensation term used to 

compensate for the bound of n , nd and  . 

Substituting (40)-(42) into (39), we can gain 
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By utilizing Young’s inequality, we get 
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Taking (44) into (43), we have 
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B. Stability Analysis 

Theorem 1: For fractional-order strict-feedback 
nonlinear system (1), the actual controller (42), the 
intermediate control function (23) and (32) and the 
parameter adaptation laws (24), (33) and (41), guarantee that 
all signals in the closed-loop system are bounded, and the 
system output can track the desired signal. 

There exists a positive time-varying parameter ( )t , 

combining with (45), we can get 
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Using the inverse Laplace transform on (47), we can 
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where * is the convolution operator. We consider the last 
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It worth noting that arg( )ct    ， | | 0ct   for all 

0t   and (0, 2)  . From Lemma 2, there must be a 

positive constant  such that  
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Thus, there must exist a time constant 1 0t  , for 

arbitrary 1t t  and every 1 0  , we can obtain 
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Moreover, we use Lemma1 and let 1m  , we gain 
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There exists a time constant 2 0t  , for arbitrary 2t t  

and every 2 0   yields 
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Besides, for every 3 0t  , we appropriately adjust the 

design parameters to get 3c  . Therefore, we have 
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Invoking (52) and (56), we get 

1 2 3n
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From the above analysis, once the inequalities (45) and 

(57) are held, combined with definition of ( )nV t  and 

Lemma 3, we can come to a conclusion that all signals of 
the  fractional-order closed-loop system (1) keep bounded 

and the tracking error 
1 1 2 3| | 2( )S      can converge to 

a small neighborhood of the origin, for 1 2max{ , }t t t .This 

completes the proof. 

IV. CONCLUSIONS 

In this article, an adaptive fuzzy fractional-order DSC 
method has designed for FONSs in strict-feedback form 
with unknown dead zone and external disturbances. The 
FONSs under consideration contains asymmetric dead zone 
and external disturbances. FLSs are used to model unknown 
nonlinear functions. Utilizing DSC to simplify the 
calculation. The dead zone inverse and compensation terms 
are added to compensate for the influence of the dead zone, 
approximation errors and external disturbances. Finally, the 
designed scheme can ensure the fractional-order system is 
stable and has good tracking performance. 
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