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Abstract 

 

Generative Adversarial Networks (GANs) have emerged as a transformative 

approach in digital media coding and compression, offering significant 

advancements over traditional methods. This paper explores the crucial aspects of 

quantization and bitrate control within the context of GAN-based coding. 

Quantization plays a pivotal role in translating continuous-valued GAN outputs into 

discrete values suitable for compression, while bitrate control manages the trade-off 

between data rate and quality. We examine various quantization techniques, 

including scalar and vector quantization, and their impact on the fidelity and 

efficiency of GAN-generated content. Additionally, we delve into bitrate control 

mechanisms, comparing fixed and variable bitrate approaches and highlighting 

adaptive methods tailored for GAN-based systems. Performance is evaluated 

through key metrics such as Peak Signal-to-noise ratio (PSNR), Structural Similarity 

Index (SSIM), and compression efficiency. The paper concludes with a discussion 

on future directions, addressing current challenges and proposing potential avenues 

for improvement. This study provides a comprehensive overview of how 

quantization and bitrate control interact with GAN-based coding, offering insights 

for enhancing digital media compression techniques. 

 

 

Introduction 
 

In recent years, Generative Adversarial Networks (GANs) have revolutionized 

various domains of artificial intelligence, particularly in the field of digital media 

compression. GANs, which consist of a generator and a discriminator, have shown 

remarkable success in generating high-quality images and videos. Their application 

in coding and compression has opened up new possibilities for reducing data sizes 

while maintaining or even enhancing the perceptual quality of media. 

 

Coding and compression are fundamental processes in digital media, aimed at 

reducing the amount of data required to represent content. Traditionally, these 



processes rely on techniques such as transform coding, entropy coding, and 

quantization to achieve efficient compression. GAN-based coding, however, 

introduces a novel paradigm by leveraging the generative capabilities of GANs to 

enhance these processes. 

 

Quantization is a critical step in compression, where continuous-valued data are 

approximated to a finite set of discrete values. In GAN-based coding, quantization 

of the generated outputs is essential for reducing the bit depth and facilitating 

compression. The choice of quantization technique directly impacts the trade-off 

between the quality of the reconstructed media and the compression ratio. 

 

Bitrate control, on the other hand, is concerned with managing the amount of data 

required to encode a media file. Effective bitrate control ensures that the compressed 

media meets specific quality standards while adhering to bandwidth constraints. In 

the context of GAN-based coding, bitrate control involves optimizing the balance 

between data rate and visual fidelity, often requiring adaptive strategies to 

accommodate varying content complexities. 

 

This paper aims to provide a comprehensive overview of quantization and bitrate 

control within the framework of GAN-based coding. We will explore the 

fundamental concepts of quantization and its impact on the performance of GAN-

based compression systems. Additionally, we will examine various bitrate control 

techniques and their integration with GANs to achieve efficient and high-quality 

media compression. By analyzing these aspects, we seek to contribute to the 

advancement of GAN-based coding methodologies and highlight potential areas for 

future research and development. 

 

Generative Adversarial Networks (GANs) 

 

Generative Adversarial Networks (GANs) represent a groundbreaking approach in 

the field of machine learning and artificial intelligence. Introduced by Ian 

Goodfellow and his colleagues in 2014, GANs have since become a pivotal 

technology for generating synthetic data that closely resembles real-world samples. 

They consist of two neural networks—the generator and the discriminator—that 

engage in a process akin to a game or competition, leading to the creation of highly 

realistic data. 

 

1. Fundamental Concepts 

1.1 Generator 

 



The generator is a neural network that produces synthetic data samples. It takes 

random noise as input and generates output that aims to mimic real data. Its objective 

is to create data that is indistinguishable from real-world examples. 

1.2 Discriminator 

 

The discriminator is another neural network tasked with distinguishing between real 

and synthetic data. It evaluates the output from the generator and classifies it as either 

'real' or 'fake.' Its goal is to correctly identify whether the input data is from the actual 

dataset or generated by the generator. 

1.3 Adversarial Training 

 

The generator and discriminator are trained simultaneously in an adversarial manner. 

The generator strives to improve its outputs to deceive the discriminator, while the 

discriminator works to become better at differentiating between real and synthetic 

data. This dynamic creates a feedback loop where both networks improve iteratively. 

2. Training Process 

2.1 Objective Function 

 

The training process involves optimizing an objective function known as the 

adversarial loss. This function is designed to encourage the generator to produce 

high-quality data and the discriminator to accurately classify data. 

2.2 Convergence 

 

During training, the generator and discriminator reach a point of equilibrium where 

the generator produces data that is very difficult for the discriminator to distinguish 

from real data. This balance is achieved through iterative updates to the neural 

network parameters. 

3. Applications of GANs 

3.1 Image Synthesis 

 

GANs are widely used for generating high-resolution images from noise or low-

resolution inputs. They have applications in art, design, and gaming. 

3.2 Video Generation 

 

GANs can be extended to create synthetic video sequences, which can be useful in 

animation, simulation, and virtual reality. 

3.3 Data Augmentation 

 

In scenarios with limited data, GANs can generate additional samples to enhance 

training datasets for other machine learning models. 



4. Challenges and Advances 

4.1 Mode Collapse 

 

A common challenge in GAN training is mode collapse, where the generator 

produces limited varieties of outputs. Various techniques, such as improved network 

architectures and regularization methods, are used to address this issue. 

4.2 Evaluation Metrics 

 

Evaluating the quality of GAN-generated data is challenging. Metrics such as 

Inception Score (IS) and Frechet Inception Distance (FID) are used to assess the 

fidelity and diversity of generated samples. 

5. Future Directions 

5.1 Improved Architectures 

 

Ongoing research focuses on developing new GAN architectures that improve 

training stability and output quality. 

5.2 Real-world Applications 

 

GANs are being explored for more diverse applications, including medical imaging, 

drug discovery, and advanced simulation techniques. 

Generative Adversarial Networks represent a significant advancement in data 

generation and synthesis, offering powerful tools for creating realistic and diverse 

synthetic data. Their continued development and application are likely to have a 

profound impact across various fields of technology and research. 

 

Quantization is a crucial step in digital data compression and coding, involving the 

transformation of continuous-valued data into discrete levels to reduce data size. In 

the context of Generative Adversarial Networks (GANs), quantization plays a 

significant role in optimizing the output of GAN models for efficient storage and 

transmission. This section explores the principles of quantization in GAN-based 

coding, its impact on compression performance, and the challenges associated with 

it. 

 

1.1 Definition and Purpose 

 

Quantization is the process of mapping a large set of input values to a smaller set, 

typically involving rounding continuous values to discrete levels. In coding, this 

reduces the amount of data required to represent a signal while aiming to maintain 

an acceptable level of fidelity. 

1.2 Types of Quantization 



 

Scalar Quantization: Each value is quantized independently. This is the most 

straightforward form of quantization, where each input is mapped to the nearest 

quantization level. 

Vector Quantization: Involves quantizing vectors of values rather than individual 

values. This method can capture more complex relationships and is often used for 

compressing higher-dimensional data. 

2. Quantization Techniques in GAN-based Coding 

2.1 Quantizing GAN Outputs 

 

The outputs of the GAN’s generator, which are typically high-dimensional and 

continuous, need to be quantized for compression. This involves discretizing the 

generated data while striving to preserve its quality. 

2.2 Post-Processing Quantization 

 

After the GAN generates data, post-processing techniques can be applied to quantize 

the outputs. This may include approaches such as uniform quantization, non-uniform 

quantization, and entropy coding to further optimize data representation. 

3. Impact on Quality and Compression Efficiency 

3.1 Trade-offs Between Quality and Compression 

 

Quantization introduces errors known as quantization noise. The degree of 

quantization affects the balance between compression efficiency and the quality of 

the reconstructed data. A finer quantization can reduce noise but may not achieve as 

high a compression ratio. 

3.2 Quality Metrics 

 

To evaluate the impact of quantization, metrics such as Peak Signal-to-Noise Ratio 

(PSNR) and Structural Similarity Index (SSIM) are used. These metrics assess the 

fidelity of the quantized outputs compared to the original data. 

4. Challenges in Quantization for GAN-based Coding 

4.1 Maintaining Visual Fidelity 

 

One of the main challenges is ensuring that the quantized data retains visual quality 

and perceptual realism. GANs generate high-quality content, and excessive 

quantization can degrade the quality, leading to artifacts and loss of detail. 

4.2 Quantization Noise 

 



Managing quantization noise is critical. Techniques such as dithering and noise 

shaping can help mitigate the impact of quantization errors, but they may introduce 

additional complexity. 

4.3 Adaptive Quantization 

 

Adaptive quantization methods, which adjust the quantization levels based on the 

content characteristics, can improve performance. These methods require 

sophisticated algorithms and may increase computational complexity. 

Some approaches leverage machine learning techniques to learn optimal 

quantization parameters. This can involve training additional networks to refine the 

quantization process, improving the overall quality of the quantized outputs. 

 

Combining traditional quantization techniques with GAN-based methods can yield 

better results. For example, using GANs to enhance the quality of quantized data or 

applying advanced quantization schemes to GAN-generated outputs. 

Quantization in GAN-based coding is a vital component of the compression pipeline, 

affecting both the efficiency of data representation and the quality of the generated 

content. While it presents several challenges, advances in quantization techniques 

and their integration with GANs continue to push the boundaries of digital media 

compression, offering promising avenues for future research and development. 

 

Bitrate Control in GAN-based Coding 

 

Bitrate control is a fundamental aspect of data compression and coding, focusing on 

managing the amount of data required to represent a given piece of content while 

balancing quality and file size. In GAN-based coding, bitrate control is particularly 

crucial due to the unique characteristics of GAN-generated data and the need to 

optimize the trade-off between compression efficiency and perceptual quality. This 

section delves into the principles of bitrate control in the context of GAN-based 

coding, explores various techniques, and discusses associated challenges and 

advancements. 

 

1. Importance of Bitrate Control 

1.1 Definition and Significance 

 

Bitrate control refers to the management of the data rate at which media is encoded. 

Effective bitrate control ensures that the compressed media meets specific quality 

standards and adheres to constraints such as bandwidth limitations or storage 

capacity. 

1.2 Impact on Quality and Compression 



 

The bitrate directly influences the quality of the compressed content. Higher bitrates 

generally result in better quality but larger file sizes, while lower bitrates reduce file 

size at the expense of quality. Effective control aims to achieve a balance that meets 

the desired quality within the given constraints. 

2. Techniques for Bitrate Control 

2.1 Fixed Bitrate (CBR) 

 

Definition: Fixed Bitrate (Constant Bitrate) encoding involves maintaining a 

constant data rate throughout the entire media stream. 

Advantages: Predictable file sizes and consistent streaming performance. 

Disadvantages: May result in suboptimal quality if the content complexity varies, as 

it does not adapt to changes in scene complexity. 

2.2 Variable Bitrate (VBR) 

 

Definition: Variable Bitrate encoding allows the data rate to change dynamically 

based on the complexity of the content. 

Advantages: More efficient compression and better quality for varying content 

complexities. 

Disadvantages: Less predictable file sizes and potential issues with streaming 

consistency. 

2.3 Adaptive Bitrate Control 

 

Definition: Adaptive bitrate control involves adjusting the data rate in real-time 

based on content characteristics and encoding conditions. 

Techniques: Includes methods like rate-distortion optimization, where the bitrate is 

adjusted to minimize distortion for a given rate. 

Advantages: Improved quality and efficiency, especially for streaming applications. 

Disadvantages: Increased computational complexity and potential for latency. 

3. Integration with GANs 

3.1 GAN-based Bitrate Control 

 

Approach: GANs can be used to generate high-quality data with varying 

complexities, and bitrate control strategies can be integrated to optimize 

compression. 

Techniques: Using GANs to model the distribution of data and applying bitrate 

control to handle variations in generated content. 

3.2 Rate-Distortion Trade-offs 

 



Rate-Distortion Optimization: Balancing bitrate with the distortion introduced 

during quantization and encoding. GANs can assist in improving the quality of 

quantized data, thus influencing the rate-distortion trade-off. 

4. Challenges and Solutions 

4.1 Handling Varying Content Complexity 

 

Challenge: GAN-generated content may have varying levels of complexity, 

requiring adaptive bitrate control to maintain quality across different scenes or data 

segments. 

Solutions: Implementing advanced adaptive algorithms that adjust bitrate based on 

real-time analysis of content complexity. 

4.2 Computational Complexity 

 

Challenge: Advanced bitrate control methods, especially those integrated with 

GANs, may introduce significant computational overhead. 

Solutions: Optimizing algorithms for efficiency and leveraging hardware 

acceleration to manage computational demands. 

 

Challenge: Maintaining consistent quality and bitrate control across diverse media 

types and applications. 

Solutions: Developing robust control algorithms that can generalize well across 

different scenarios and content types. 

Ongoing research aims to develop more sophisticated bitrate control algorithms that 

leverage advancements in GAN architectures and machine learning techniques. 

Exploring how GAN-based coding and bitrate control can be integrated with 

emerging technologies such as 5G, edge computing, and real-time streaming 

applications. 

 

Developing new metrics and benchmarks to more accurately evaluate the 

performance of bitrate control strategies in the context of GAN-based coding. 

Bitrate control is essential in optimizing GAN-based coding, influencing both the 

quality and efficiency of compressed media. By employing effective techniques and 

addressing associated challenges, it is possible to achieve high-quality compression 

that meets specific constraints. Continued research and development in this area 

promise to enhance the capabilities and applications of GAN-based coding, driving 

improvements in digital media compression and delivery. 

 

Evaluation and Performance Metrics in GAN-based Coding 

 



Evaluating the performance of GAN-based coding involves assessing both the 

quality of the generated content and the efficiency of the compression process. 

Accurate evaluation is crucial for understanding the trade-offs between compression 

ratio, data fidelity, and computational requirements. This section outlines the key 

metrics and methods used to evaluate GAN-based coding systems and discusses how 

these metrics can be applied to measure performance. 

 

1. Quality Metrics 

Quality metrics are used to evaluate how closely the compressed and reconstructed 

data match the original data. These metrics assess various aspects of visual and 

perceptual quality. 

 

1.1 Peak Signal-to-Noise Ratio (PSNR) 

 

Definition: PSNR is a commonly used metric that measures the ratio between the 

maximum possible signal power and the power of the noise affecting the signal. 

Higher PSNR values indicate better quality. 
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 ), where MAX is the maximum possible pixel value and MSE is the mean squared 

error between the original and reconstructed images. 

Application: Widely used in image and video compression to assess the quality of 

reconstructed data. 

1.2 Structural Similarity Index (SSIM) 

 

Definition: SSIM measures the similarity between two images based on luminance, 

contrast, and structure. It provides a perceptual similarity score ranging from -1 to 

1, with 1 indicating perfect similarity. 

Formula: SSIM compares local patterns of pixel intensities and takes into account 

structural information. 

Application: Provides a more perceptually relevant measure of quality compared to 

PSNR. 

1.3 Learned Perceptual Image Patch Similarity (LPIPS) 

 

Definition: LPIPS is a deep learning-based metric that assesses perceptual similarity 

between images. It leverages pre-trained neural networks to capture human-like 

perception. 

Application: Used for evaluating perceptual quality, especially when traditional 

metrics like PSNR and SSIM may not align with human perception. 

2. Compression Metrics 

Compression metrics assess the efficiency of the encoding process, including how 

effectively data is compressed and the trade-offs involved. 

 

2.1 Compression Ratio 

 

Definition: The ratio of the size of the original data to the size of the compressed 

data. 

Formula:  

Compression Ratio 

= 

Size of Original Data 

Size of Compressed Data 

Compression Ratio=  

Size of Compressed Data 

Size of Original Data 

 

  

Application: Indicates the effectiveness of the compression in reducing data size. 

2.2 Bitrate 



 

Definition: The amount of data transmitted or processed per unit of time, typically 

measured in bits per second (bps) or kilobits per second (kbps). 

Application: In video coding, bitrate controls the trade-off between quality and file 

size or streaming bandwidth. 

2.3 Rate-Distortion Performance 

 

Definition: Measures the trade-off between the bitrate (rate) and the quality of the 

reconstructed data (distortion). It evaluates how changes in bitrate affect the quality 

of the output. 

Application: Used to optimize coding algorithms by balancing compression 

efficiency and quality. 

3. Computational Metrics 

Computational metrics evaluate the efficiency and feasibility of GAN-based coding 

systems in terms of resource usage. 

 

3.1 Encoding and Decoding Time 

 

Definition: The time required to encode and decode data. This includes the time 

taken by the GAN model to generate and process data. 

Application: Important for assessing the practicality of GAN-based coding in real-

time applications. 

3.2 Memory Usage 

 

Definition: The amount of memory required to store and process data, including 

model parameters and intermediate results. 

Application: Evaluates the resource requirements of GAN-based coding systems. 

4. Comparative Evaluation 

Comparing GAN-based coding with traditional coding methods can highlight 

advantages and limitations. 

 

4.1 Benchmarking 

 

Definition: Using established datasets and metrics to compare GAN-based coding 

with other compression techniques. 

Application: Provides insights into the relative performance of GAN-based methods 

compared to conventional approaches. 

4.2 Case Studies 

 



Definition: Analyzing specific applications or use cases to understand how GAN-

based coding performs in practical scenarios. 

Application: Helps identify strengths and weaknesses in different contexts and 

media types. 

5. Future Directions 

5.1 Enhanced Metrics 

 

Development of new metrics that better capture perceptual quality and user 

experience, particularly for complex or high-dimensional data. 

5.2 Real-World Testing 

 

Incorporating real-world scenarios and diverse datasets to validate the performance 

of GAN-based coding systems. 

5.3 Adaptive Evaluation Methods 

 

Creating adaptive evaluation methods that can dynamically assess performance 

based on varying content and encoding conditions. 

Evaluating GAN-based coding involves a comprehensive assessment of quality, 

compression efficiency, and computational performance. By employing a range of 

metrics and techniques, it is possible to gain a thorough understanding of how GAN-

based coding systems perform and identify areas for improvement. Ongoing 

advancements in evaluation methods will continue to enhance the capabilities and 

applications of GAN-based coding in digital media compression. 

 

Future Directions and Challenges in GAN-based Coding 

 

As Generative Adversarial Networks (GANs) continue to advance, their application 

in coding and compression presents both exciting opportunities and significant 

challenges. Exploring future directions can help address these challenges and drive 

innovation in GAN-based coding techniques. This section outlines potential areas 

for development and the obstacles that need to be overcome. 

 

1. Future Directions 

1.1 Enhanced GAN Architectures 

 

Advancements in GAN Models: Developing more sophisticated GAN architectures 

that improve stability, training efficiency, and the quality of generated data. 

Examples include Progressive Growing GANs, StyleGAN, and BigGAN, which 

offer better performance in image synthesis and can be adapted for coding 

applications. 



Multimodal GANs: Integrating GANs with other modalities (e.g., combining images 

with text or audio) to create more comprehensive coding solutions that handle 

diverse types of data. 

1.2 Adaptive and Context-Aware Coding 

 

Content-Adaptive Quantization: Implementing adaptive quantization techniques 

that adjust based on the content characteristics to optimize compression while 

preserving quality. This could involve real-time adjustments during encoding based 

on the complexity of the generated content. 

Context-Aware Bitrate Control: Developing adaptive bitrate control methods that 

respond to varying content complexities and real-time conditions, improving overall 

compression efficiency and quality. 

1.3 Integration with Emerging Technologies 

 

5G and Edge Computing: Leveraging high-speed networks and edge computing to 

enhance the real-time performance of GAN-based coding systems, enabling 

applications like live streaming and real-time video processing. 

Virtual and Augmented Reality: Adapting GAN-based coding for VR and AR 

environments, where high-quality and low-latency encoding are critical for 

immersive experiences. 

1.4 Cross-Modal Generative Models 

 

Unified Generative Models: Developing models that can generate and encode 

multiple types of data (e.g., images, videos, and audio) simultaneously, leading to 

more unified and efficient coding strategies. 

1.5 Improved Evaluation Metrics 

 

Perceptual Quality Metrics: Creating advanced metrics that better align with human 

perception and quality assessment, particularly for high-dimensional and complex 

data. Incorporating user studies and subjective evaluations can complement existing 

quantitative metrics. 

2. Challenges 

2.1 Training Stability and Convergence 

 

Challenges: GANs are known for their training instability and convergence issues. 

Ensuring consistent training of GANs for coding applications remains a significant 

challenge, often requiring sophisticated techniques to stabilize and optimize the 

training process. 



Solutions: Implementing advanced training methods such as improved loss 

functions, regularization techniques, and novel architectures to enhance training 

stability. 

2.2 Quantization and Compression Trade-Offs 

 

Challenges: Balancing the trade-offs between quantization levels and compression 

efficiency can be difficult. Excessive quantization can degrade quality, while 

insufficient quantization may lead to suboptimal compression ratios. 

Solutions: Developing adaptive quantization techniques and hybrid approaches that 

combine GAN-generated data with traditional compression methods to achieve 

optimal trade-offs. 

2.3 Computational Resources 

 

Challenges: GAN-based coding systems can be computationally intensive, requiring 

significant processing power and memory. This can limit their applicability in 

resource-constrained environments. 

Solutions: Exploring hardware acceleration, optimizing algorithms, and developing 

more efficient GAN architectures to reduce computational demands. 

2.4 Real-World Deployment and Scalability 

 

Challenges: Scaling GAN-based coding systems for large-scale real-world 

applications poses challenges related to deployment, performance consistency, and 

integration with existing systems. 

Solutions: Conducting extensive testing and optimization for different deployment 

scenarios and integrating GAN-based coding with scalable infrastructure to support 

large-scale applications. 

2.5 Handling Diverse Data Types 

 

Challenges: GANs need to handle a wide range of data types and formats, including 

images, videos, and audio. Ensuring that GAN-based coding systems can effectively 

manage diverse data types remains a challenge. 

Solutions: Developing cross-modal GAN models and coding techniques that can 

seamlessly handle and encode different types of data. 

The future of GAN-based coding is promising, with numerous opportunities for 

innovation and improvement. By addressing the challenges and exploring future 

directions, researchers and practitioners can enhance the capabilities and 

applications of GAN-based coding systems. Continued advancements in GAN 

architectures, adaptive coding techniques, and integration with emerging 

technologies will drive the evolution of digital media compression and coding. 

 



Conclusion 
 

Generative Adversarial Networks (GANs) have significantly transformed the 

landscape of digital media compression and coding, offering innovative approaches 

to data generation and representation. As this field evolves, GAN-based coding 

presents both exciting possibilities and notable challenges that must be addressed to 

fully leverage its potential. 

 

Quality Enhancement: GANs excel in generating high-quality, realistic data, which 

is crucial for maintaining visual fidelity and perceptual quality in compressed media. 

Techniques such as learnable quantization and advanced quality metrics are essential 

for optimizing the trade-off between compression efficiency and data quality. 

 

Efficient Bitrate Control: Effective bitrate control is critical for balancing file size 

and quality. Approaches such as adaptive bitrate control and integration with GAN-

generated data enable more flexible and efficient compression, particularly for 

varying content complexities and real-time applications. 

 

Evaluation Metrics: Accurate evaluation of GAN-based coding systems requires a 

comprehensive set of metrics. Traditional metrics like PSNR and SSIM, alongside 

advanced perceptual metrics like LPIPS, provide valuable insights into the quality 

and efficiency of compressed data. 

 

Challenges 

Training and Stability: Ensuring the stability and convergence of GANs during 

training remains a significant challenge. Advanced training techniques and robust 

architectures are needed to address these issues and improve the reliability of GAN-

based coding systems. 

 

Quantization and Compression Trade-Offs: Balancing the quantization process to 

achieve optimal compression while preserving quality requires ongoing research and 

development. Adaptive quantization techniques and hybrid methods can help 

mitigate these challenges. 

 

Computational and Resource Constraints: GAN-based coding can be 

computationally intensive, necessitating efficient algorithms and hardware 

acceleration to manage resource demands and enable practical deployment. 

 

Future Directions 



Innovative GAN Architectures: Continued development of advanced GAN models 

and architectures will drive improvements in data generation and compression. 

Exploring multimodal and cross-modal GANs can further enhance coding 

capabilities. 

 

Adaptive Coding Techniques: Implementing adaptive and context-aware 

quantization and bitrate control methods will optimize compression efficiency and 

quality, especially for dynamic and real-time applications. 

 

Integration with Emerging Technologies: Leveraging advancements in 5G, edge 

computing, and virtual reality will expand the applicability of GAN-based coding 

and improve performance in diverse scenarios. 

 

Enhanced Evaluation Methods: Developing new metrics and evaluation frameworks 

will better capture perceptual quality and provide a more comprehensive assessment 

of GAN-based coding systems. 

 

GAN-based coding represents a transformative approach in digital media 

compression, offering the potential for high-quality and efficient data representation. 

Addressing the challenges and pursuing future directions will enhance the 

capabilities and applications of GAN-based systems, driving innovation and 

improving performance in various contexts. Continued research and development 

will be crucial in realizing the full potential of GAN-based coding and overcoming 

the barriers to widespread adoption. 
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