
EasyChair Preprint

№ 529

Taking e-Assessment Quizzes - A Case Study with

an SVD Based Recommender System

Oana Maria Teodorescu, Paul Stefan Popescu and
Marian Cristian Mihaescu

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 26, 2018



Taking e-Assessment Quizzes - A Case Study
with an SVD Based Recommender System

Oana Maria Teodorescu, Paul Stefan Popescu, and Marian Cristian Mihaescu

University of Craiova, Romania,
teodorescu oanamaria@yahoo.com, {popescu, mihaescu}@software.ucv.ro

Abstract. Recommending learning assets in e-Learning systems repre-
sents a key aspect. Among many available assets there are quizzes that
validate and also evaluate learner’s knowledge level. This paper presents
a recommender system based on SVD algorithm that is able to prop-
erly recommend quizzes such that learner’s knowledge level is evaluated
and displayed in real time by means of a custom designed concept map
for graphs algorithms within the Data Structures course. A preliminary
case study presents a comparative analysis between a group a learn-
ers that received random quizzes and a group of learners that received
recommended questions. The visual analytics and interpretation of two
representative cases show a clear advantage of the students received rec-
ommended questions over the other ones.

Keywords: SVD,· recommender systems,· quizzes, · e-Learning.

1 Introduction

E-assessments are an important part of any e-learning platform, as they test
the learners accomplishment of meeting the learning objectives. They are useful
in two directions, for both the learner and the professor. One of them is for
strengthening ones knowledge (involving primarily the learners objective when
studying a course) and the other is evaluating the learners comprehension of the
course (involving both the learner and the professor, as a means of self-evaluation
and progress tracking versus progress evaluation and defectiveness of learning
materials).

Therefore, development of knowledge evaluating and tracking methods is an
issue that gets continuous attention in educational data mining. One of the pa-
per’s purpose is to investigate a visualization approach of the students knowledge
by means concept maps and question coverage. Thus, several visualization meth-
ods accompanied by a SVD based recommendation algorithm were proposed.
Firstly, for each student, we design a student’s concept map which presents con-
cepts and their coverage in percentages. Based on available weighted concept
maps, a students time-line is constructed for one or more tests (i.e, pool of
quizzes), such that the evolution in time of the concepts coverage in percentages
may be easily visualized.



2 O. M. Teodorescu et al.

The scope of this paper is the evaluation of the effectiveness of the test
question recommender system implemented in the Tesys platform for multiple
types of questions. This will be done by studying and comparing the results and
knowledge gained by learners taking tests using the random vs recommender
strategy. Furthermore, an objective function will be defined for each learner to
visualize the unique path taken by each individual when learning new concepts.
This function will also be used to validate the recommenders effectiveness against
the random-pick strategy. The function will result from creating a concept map
for the concepts of a particular subject and by mapping them, in a many-to-
many relationship, to the questions designed for the self-testing purpose of the
learner for each chapter of that subject. This also allows for the tracking and
evaluation of a students progress by both learner and professor.

2 Related Work

Tesys [2] is a web e-learning platform running for the students of the University
of Craiova enrolled in distance education. It provides the resources need by
students, professors and secretaries to perform their activity.

D3.js (or just D3 for Data-Driven Documents) is a JavaScript library for
producing dynamic, interactive data visualizations in web browsers. In contrast
to many other libraries, D3.js allows great control over the final visual result. [15]
Its development was noted in 2011, [8] as version 2.0.0 was released in August
2011 [17]. The data can be in various formats, most commonly JSON, comma-
separated values (CSV) or geoJSON, but, if required, JavaScript functions can
be written to read other data formats. [17]

Before we go into concept maps, we must define concepts which are defined
as perceived regularities or patterns in events or objects, or records of events or
objects, designated by a label and are depicted as shapes in the diagram. [13]

A concept map or conceptual diagram is a diagram that depicts suggested
relationships between concepts. It is a graphical tool that instructional designers,
engineers, technical writers, and others use to organize and structure knowledge.
[9]

Content-based recommendation systems analyze item descriptions to identify
items that are of particular interest to the user. [7] In a content-based recom-
mender system, keywords are used to describe the items and a user profile is
built to indicate the type of item this user likes.This approach has its roots in
information retrieval and information filtering research. [5]

Collaborative Filtering (CF) is a subset of algorithms that exploit other
users and items along with their ratings(selection, purchase information could
be also used) and target user history to recommend an item that target user
does not have ratings for.. CF differs itself from content-based methods in the
sense that user or the item itself does not play a role in recommendation but
rather how(rating) and which users(user) rated a particular item. (Preference of
users is shared through a group of users who selected, purchased or rate items
similarly) [3]



Title Suppressed Due to Excessive Length 3

An example of use of hybrid filtering is the American global provider of
streaming films and television series Netflix, which make recommendations by
comparing the watching and searching habits of similar users (i.e. collaborative
filtering) as well as by offering movies that share characteristics with films that
a user has rated highly (content-based filtering) [11] Basic techniques for rec-
ommender systems (collaborative, content-based, knowledge-based, and demo-
graphic techniques) have known shortcomings such as the well known cold-start
problem for collaborative and content-based systems (what to do with new users
with few ratings) and the knowledge engineering bottleneck [10] in knowledge-
based approaches, as Wikipedia states in [11].

According to an MIT tutorial for SVD (Singular Value Decomposition) [4],
calculating the SVD for a matrix M consists of finding the eigenvalues and
eigenvectors of MM at the power if T and M at the power of T multiplied
by M. The eigenvectors of Mat the power of T multiplied by M make up the
columns of V, the eigenvectors of MM at the power of T make up the columns
of U. Also, the singular values in are square roots of eigenvalues from MM at
the power of T or M at the power of T multiplied by M. The singular values are
the diagonal entries of the matrix and are arranged in descending order. The
singular values are always real numbers. If the matrix M is a real matrix, then
U and V are also real.

Recommender systems for e-Learning platforms are based on many approaches
like web mining and information retrieval [6], recommender systems based on
the context [14] or even using intelligent agents [16]. One interesting approach
of using collaborative filtering in e-Learning systems [1] was to assign greater
weights for users with higher knowledge than the users with lower knowledge
and to obtain that the authors propose some new equations in the nucleus of
the memory-based collaborative filtering. Another interesting paper, presenting
clear results regarding recommender systems in smart e-Learning environments
presents their approach [12] along with their encouraging results and their aim
to extent the system for more faculties.

3 Proposed Approach

One of the goals of this project is to offer the users of Tesys a personalized
experience by the ability of the Tesys e-learning platform to adapt to the students
individual needs in order to enhance the effectiveness of the learning process. For
achieving this, a recommender system for choosing questions to be included in
a test for a specific subject and chapter has been used. The algorithm used for
the recommender system is SVD. The unique path taken by each student in the
learning process of a subject is displayed using an evolution concept map based
on the concepts covered in questions answered in a self-testing environment.

The following question types were defined: Matching question - given two
columns, A and B, with options on both sides, match the corresponding item
from column A with the one on column B given a certain criteria stated in
the question, Short-answer question - given a phrase, fill in the gaps with a



4 O. M. Teodorescu et al.

short answer (word or group of words), Numerical question - given a phrase,
fill in the gaps with a numerical value (may be either an integral value or a
real number), True/False question - given a statement, assert its truth value.
Therefore, we have designed a SVD based recommender system that performs
in the following way. The procedure is presented below:

Algorithm 1 Recommendation algorithm using SVD

Apply SVD algorithm on matrix M =(m(i,j)) of size n x m which generates matrices
U =(u(i,j)) of size n x k and V =(v(i,j)) of size k x m.
if the student is new (has taken no tests for the subject and chapter so far) then

Construct user feature row as a row vector L of size 1 x k filled with values of 1.
else

Extract user feature row as a row vector L of size 1 x k from the user-features
matrix U.

end if
for each question feature column vector C in the question-features matrix V (index
i) do

Perform the dot product p between L and C.
Save dot product p value to question recommendation vector along with its index
i as key.

end for
Sort question recommendation vector ascending with respect to values, then keys.
Select the first recommended questions that were not previously answered by the
student.
if the number of required questions has not been reached then

Select from a list of unanswered questions by any student.
end if
if the number of required questions has not been reached then

Select the last recommended questions (they were previously answered by student,
thus selecting the ones the current student or others answered mostly incorrectly).

end if

Input. The logical input of our algorithm consists of students results to tests,
or more specifically, to questions in tests. We collect this information based on
subject and chapter, as was previously stated in the previous section and process
it to a form which is understandable to the algorithm we chose for recommenda-
tion (singular value decomposition). Therefore, the actual (processed) input of
our algorithm consists of: A list of n students taken into account for the rec-
ommendation process (represented, in our implementation, by the list of student
identifiers). A list of m questions taken into account for the recommendation
process, that have been answered by students (represented, in our implementa-
tion, by the list of question identifiers). A matrix M = (m(i,j)) of size n x m,
having values in the range [0, 1] which represent the accuracy of the student i
when answering the question j (a measure computed by normalizing the average
grade of a student for a question by the maximum grade for that question)



Title Suppressed Due to Excessive Length 5

Output. The output of the algorithm consists of a list of questions recom-
mended to be included in a test taken by a student for a specific subject. The
aim is to provide personalized results that help the student to discover areas
which need to be improved in the learning process of a particular subject.

The recommendation mechanism. The algorithm relies on the SVD tech-
nique which decomposes a matrix into two matrices U and V in a lower dimen-
sional feature space. The decomposition is used to achieve a separation of the
user and question models into features that identify individual attributes of the
students and questions whose associations give their uniqueness.

4 Experimental Results

4.1 Usage of SVD method for recommending questions

If M is the initial matrix of m x n dimension, the algorithm finds U of m x m,
of m x n and V of n x n dimensions that multiplied give an approximation of
the initial M matrix. The U matrix represents the strength of the associations
between a user and the features in the hidden feature space while the V matrix
represents the strength of the associations between an item and the features in
the hidden feature space. is a diagonal matrix.

In our case, the users are students and items are questions for a specific
subject and chapter.

U =


0.44 −0.22 −0.90
0.66 0.69 0.30

0 0 0
0.61 −0.73 0.31

V =

0.75 −0.07 −0.66
0.55 −0.50 0.67
0.38 0.86 0.33


With these two matrices, we will select a number of q questions for a student

at the request of a test on a specific chapter. We identify two cases:

1. student is new and the system knows nothing about him (no row data in the
matrix)

2. student has already answered some questions

These two cases will be explained separately in the following sub-chapters.
Selecting Questions for a New Student
In the case of a new student, nothing is known about his/her skills (he/she

has taken no tests). This is called cold-start. But from the V matrix, the features
of each question were extracted from the experience with the other students who
already answered some questions.

To deal with this problem, consider a user L line matrix of dimension k filled
only with values of 1. This indicates that the features have equal probability
for the user and the system will rely solely on how these features impact the
questions in the recommendation. By multiplying this line with each questions
column from V through the features space (), for each question a value is ob-
tained, thus leading to a one dimensional matrix R.



6 O. M. Teodorescu et al.

In our example, the computed L and R matrices are:

L =
(
1 1 1

)
R = L ∗Σ ∗ V =

(
1 1 1

)
∗Σ ∗

0.75 −0.07 −0.66
0.55 −0.50 0.67
0.38 0.86 0.33

 =
(
0.01 0.72 1.58

)
By sorting the values ascending in the R vector and recalling the previous

indexes, the first questions are taken for our student as the recommendation.
The result of this approach is the questions that most students answered

correctly with a higher probability have priority, so the questions selected to be
used to test our new student will test his/her basic skills first and then adjust
the difficulty after more tests have been taken.

In the above example, the top 2 recommended questions are the third and
second questions.

Selecting Questions for an Existing Student
In the case of an existing student, matrix U contains user-features information

and the row corresponding to the user can be used to compute the recommenda-
tion vector. If the user row in the U matrix is L, then compute the final vector
by multiplying it with the V vector containing question-features information
through the features space ().

Lets say we want to recommend 2 questions for a test to student. In this case
and the conditions of the example above, the computed L and R matrix are:

L =
(
0.61 −0.73 0.31

)
R = L∗Σ∗V =

(
0.61 −0.73 0.31

)
∗Σ∗

0.75 −0.07 −0.66
0.55 −0.50 0.67
0.38 0.86 0.33

 =
(
0.30 0.91 −0.29

)
Like in the new student case, by sorting the values ascending in the R vector

and recalling the previous indices, the system can take the first questions for
our student as the recommendation. The result will select more similar ques-
tions with respect to the features identified which have not been answered by
the student or, in case the number of questions needed is higher than the num-
ber of questions the student didnt answer, it will take questions from a list of
questions unanswered by any student (new questions), and if the number of
questions needed for the test still hasnt been reached, it takes the last values in
the ascending ordering. The reason to do this is we want to select the questions
that the student mostly failed to answer.

In the above example, the top 2 recommended questions are the third and
first questions.

4.2 Case Study using Recommender System and Concept Map

A case study has been conducted on bachelor students in 3-rd semester at Com-
puters to assess the recommender systems efficiency. A set of 98 questions were



Title Suppressed Due to Excessive Length 7

added for the self-testing of students in the Tesys platform for a chapter module
about Graphs at Data Structures course. Further, each question has been associ-
ated a concept within a custom built concept map whose structure is presented
in figure 1.

Fig. 1. The concept map for graphs

Students were divided in two groups: some using the platform with the ran-
dom approach while others were using the recommender system for picking the
questions for the tests. A number of 50 students participated at trial, 21 were
randomly selected to receive random questions and 29 received questions from
the recommender system. A total number of 140 tests were taken by all

Figure 2 presents the current status of the concepts covered by the student in
three tests with random selection of quizzes. For each concept there are provided
two values: the number of correctly answered questions and the total number
of questions available for that concept. Initially, all nodes are red since there is
there are no correct answers, but this situation is not presented in figure 2.

The concept graph from the top of the figure 2 presents the situation after
first test is taken. As it may be observed, some nodes are becoming orange
or even yellow, as the number of correctly answered question covers a higher
percentage from the entire number of questions assigned to a specific concept.
For example, concept GSearch is covered half, while SSSP/APSP Wrappup and
Misc are less covered. The concept graphs form the second and third test show
the randomness of the selection process of quizzes as nodes are becoming orange
at the end of the graph while prerequisite concepts are still red, that is not
covered.

Figure 3 presents the current status of concepts in five tests with recom-
mended quizzes. Visual analytics of the concept coverage reveals a smooth col-
oring of concepts from red to orange to yellow and finally to green without major
red areas in front of between nodes with progress (i.e., orange, yellow or green).

5 Conclusions

The paper presents an SVD based recommender system that offers students the
possibility to visualize their knowledge level in a weighted graph of concepts.



8 O. M. Teodorescu et al.

Fig. 2. Three tests evolution with random quizzes



Title Suppressed Due to Excessive Length 9

Fig. 3. Five tests evolution with recommended quizzes



10 O. M. Teodorescu et al.

We defined a concept map as a graph where each node represents a concept
which has an associated weight representing the knowledge as a percentage of
correctly answered questions from the number of available questions at that
concept.The concept map was designed for Graphs chapter within the Data
Structures discipline. The main goal of the recommender system is to provide
a personalized set of questions depending on their current status (i.e., correctly
and incorrectly questions answered so far) and the status of all other colleagues
that have previously taken tests. Visual analytics of the experimental results
in terms of impact of recommendation procedure in knowledge coverage of the
concept map show pro missing initial results. Further work needs to be performed
in terms of defining and integrating appropriate quantitative and qualitative
metrics for measuring accumulated knowledge with and without the usage of
the recommender system.

References

1. Bobadilla, J., Serradilla, F., Hernando, A., et al.: Collaborative filtering adapted
to recommender systems of e-learning. Knowledge-Based Systems 22(4), 261–265
(2009)

2. Burdescu, D.D., Mihaescu, M.C.: Tesys: e-learning application built on a web plat-
form. In: ICE-B. pp. 315–318 (2006)

3. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating collaborative
filtering recommender systems. ACM Transactions on Information Systems (TOIS)
22(1), 5–53 (2004)

4. Hoekstra, R.: The knowledge reengineering bottleneck. Semantic Web 1(1, 2), 111–
115 (2010)

5. Jannach, D., Zanker, M., Felfernig, A., Friedrich, G.: Recommender systems: an
introduction. Cambridge University Press (2010)

6. Khribi, M.K., Jemni, M., Nasraoui, O.: Automatic recommendations for e-learning
personalization based on web usage mining techniques and information retrieval.
In: Advanced Learning Technologies, 2008. ICALT’08. Eighth IEEE International
Conference on. pp. 241–245. IEEE (2008)

7. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender
systems. Computer (8), 30–37 (2009)

8. Myatt, G.J., Johnson, W.P.: Making sense of data iii: A practical guide to designing
interactive data visualizations, vol. 3. John Wiley & Sons (2011)

9. Novak, J.D., Cañas, A.J.: The theory underlying concept maps and how to con-
struct and use them (2008)

10. Ricci, F., Cavada, D., Mirzadeh, N., Venturini, A., et al.: Case-based travel recom-
mendations. Destination recommendation systems: behavioural foundations and
applications pp. 67–93 (2006)

11. Shani, G., Heckerman, D., Brafman, R.I.: An mdp-based recommender system.
Journal of Machine Learning Research 6(Sep), 1265–1295 (2005)

12. Soonthornphisaj, N., Rojsattarat, E., Yim-Ngam, S.: Smart e-learning using recom-
mender system. In: International conference on intelligent computing. pp. 518–523.
Springer (2006)

13. Sowa, J.F.: Conceptual structures: information processing in mind and machine
(1983)



Title Suppressed Due to Excessive Length 11

14. Verbert, K., Manouselis, N., Ochoa, X., Wolpers, M., Drachsler, H., Bosnic, I.,
Duval, E.: Context-aware recommender systems for learning: a survey and future
challenges. IEEE Transactions on Learning Technologies 5(4), 318–335 (2012)

15. Viau, C.: Whats behind our business infographics designer? d3. js of course (2012)
16. Záıane, O.R.: Building a recommender agent for e-learning systems. In: Comput-

ers in education, 2002. proceedings. international conference on. pp. 55–59. IEEE
(2002)

17. Zhu, N.Q.: Data visualization with D3.js cookbook. Packt Publishing Ltd (2013)


