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Abstract—Federated learning has become increasingly popular
due to its ability to bring together multiple learners, enhance
model generalizability, and promote knowledge exchange. Such
systems inherently rely on the bedrock of security, trust, and
fairness among training workers to ensure a conducive learning
environment. However, this collaborative landscape has encoun-
tered the challenge of free riders, individuals who join the systems
to gain benefits without making any substantial contributions.
This can negatively impact learning outcomes, fairness, sustain-
ability, and trust in a collaborative system. In this paper, we
first present a novel stake-based incentive mechanism aimed
at promoting active participation among contributors, and con-
currently maximizing the reward for clients with consideration
of free rider presence in the system. Second, we propose an
efficient method for identifying free riders in federated learning
based on log analysis. Our method delegates the detection of
free riders to training workers and the identification to the
aggregator, rather than relying solely on the aggregator. We
simulate potential deceptive strategies employed by free riders
and assess the extent of our method’s coverage across these
scenarios. The experimental results conducted on different free
rider ratios demonstrate the versatility and applicability of our
approach in detecting these clients within the federated learning
paradigm.

Index Terms—Federated learning, collaborative system, secu-
rity, free rider attacks, trust, fairness.

I. INTRODUCTION

Federated Learning (FL) [1], [2] is a cutting-edge approach

for distributed learning, divergent from the centralized training

paradigm. It prioritizes data privacy by executing computations

locally on devices, obviating the need for centralized data

transfers. In the FL framework, training workers execute

training, while a central aggregator merges these individual

models into a global one and then distributes it back to the

participating devices, ensuring data remains decentralized and

secure.

The success of this collaborative architecture is from the

contributions of training workers; therefore, an effective in-

centive mechanism plays a pivotal role in attracting more

contributors. In the context of open collaborations, incentives

should come with the guarantee of trustworthiness, fairness,

and appealing rewards. This is vital because the distribution

of rewards, divided equally among all training workers, could

be considered inequitable while there are some lazy workers.

Regarding this, the current FL implementations encounter

challenges related to the system’s sustainability, specifically

concerns of fairness and trust among training workers (as a

crucial requirement - R1), primarily due to the presence of

free riders. These cheating people seek to obtain the global

model like other training workers but contribute minimally to

the learning process, causing an imbalance within the system.

In free-rider attacks [3], [4] to FL systems, the free riders

act as training workers; instead of contributing to the learning

process, they aim to benefit from the system through global up-

dates while submitting false weights to the aggregator. These

free riders can produce fake weights in multiple ways, such

as generating random local weights or creating sophisticated

random local weights by adding Gaussian noise and modify-

ing standard deviation. This deceptive behavior compromises

the fairness and efficiency of the FL system, as it enables

some clients to gain advantages without making meaningful

contributions to the learning process.

As another requirement (R2), addressing the free riders

issue is crucial for facilitating the successful growth and

development of distributed learning and FL [5]. Many prior

works have dedicated significant effort to proposing incentive

methods [6], [7] and developing techniques to detect free riders

[8], [9] in collaborative learning environments. However, these

incentive methods often overlook free riders’ presence and

struggle with forming clear, quantifiable rewards for clients.

On the other hand, recent mainstream approaches for detecting

free riders did not explicitly provide information on creating

the free rider weights, making it challenging to reproduce their

results for comparison. The testing with a fixed noise value,

even though across various datasets, also cannot reflect the

reliable performance or coverage of their approach. Finally, the

reliance on the processing of the aggregator in all these works

can inhibit scalability and efficiency, causing bottlenecks and

stagnant workloads.

In this paper, we detail two primary contributions of our

work. Firstly, we introduce a novel incentive mechanism

based on the concept of staking, wherein training workers

demonstrating greater dedication are rewarded with propor-

tionately valuable incentives. Secondly, our approach to free

rider detection differs significantly from previous methods.

Instead of relying solely on the aggregator for detection, we

delegate this task to the training workers, empowering them to

identify abnormalities and trigger investigations autonomously.

By adopting this decentralized approach, we minimize the

workload on the aggregator, ensuring that it only intervenes

when necessary. Furthermore, our proposed solution undergoes

rigorous evaluation through explicit and intensive experiments,

encompassing diverse free rider strategies and ratios to validate



its efficacy and robustness.

The remainder of this work is organized as follows: Sec-

tion II discusses related work. Our methodologies are pre-

sented in Section III. Section IV provides a detailed description

and evaluation of the experiments. Finally, Section V discusses

and concludes this work.

II. RELATED WORKS

A. Incentive systems

In the landscape of collaborative learning systems, incentive

mechanisms assume a pivotal role in engendering contributor

engagement. As posited by Tu et al. [10], the impetus for

contributors often emanates from the enticements offered by

these mechanisms, a facet particularly pertinent in economic

and game theoretic paradigms, where the pursuit of maximum

benefits holds sway. While these mechanisms encompass vari-

ous strategies, they are mostly rooted in non-cooperative game

theory, where entities optimize their actions based on Nash

Equilibrium concepts [11]. For example, the work by Tang et

al. [12] in the context of cross-silo FL focuses on incentive

mechanisms that facilitate mutual agreement on computation

and fees between the aggregator and trainers. This approach

hinges on the historical profiles of trainers, enabling the

aggregator to assess trainers’ capabilities for maximal payoffs.

In close connection with our incentive viewpoint that re-

quires the amount of deposit from training workers, Tahanian

et al. [6] proposed a game-based robust federated averaging

approach to accept or reject local models via Nash Equilibrium

property. Particularly, the Nash Equilibrium property estimates

the probability that the aggregator accepts local updates via

the diversity of trainers’ behavior in order to maximize their

profits. Besides, the work of Weng et al. [7] introduces a

novel federated prediction serving framework that employs

an incentive mechanism rooted in Bayesian game theory to

attract training workers for collaborative machine learning

prediction. This mechanism also requires training workers to

deposit funds to partake in the system before acquiring any

rewards.

However, the crux of the matter is that: while existing

incentive mechanisms hold significant potential, they are not

a comprehensive solution due to the overlooked of free rider

existence. Free riders, who exploit contributions without of-

fering commensurate effort to gain rewards, can undermine

the equilibrium these mechanisms endeavor to establish. Thus,

incentive mechanisms aiming at fairness and engagement

require a supplementary layer to account for the presence of

free riders while still prioritizing reward maximization. This

is where our proposed rewarding method comes into play.

B. Free rider detection

Regarding free rider detection, there are diverse solutions

coming from different proposed works. Deep learning-based

methods, like those used in [13] and [3], may improve

detection accuracy with Gaussian Mixture Model and Deep

Neural Network. However, they also come with the cost

of increased computation complexity and potentially longer

detecting times. On the other hand, the statistical correlation

approach proposed by Xu and Lyu in [14] may not be reliable

in all free rider detection scenarios, as it is sensitive to

outliers or noise in the data. Additionally, their work assumes

a majority of honest clients rather than free riders, which may

not hold in certain real-world scenarios. Lastly, requiring sig-

nificant communication and computation overhead to update

user reputation scores is another potential weakness of their

method.

In terms of efficiency evaluation, prior works have predom-

inantly overlooked the verification of their methods across

diverse strategies and setups but often focused solely on a

single scenario. Specifically, [13] exclusively tests on weights

with Gaussian noise added, while [14] only focuses on random

weights scenarios, believing that the addition of Gaussian

noise to aggregated weights poses no significant challenge for

detection.

To distinguish our work from other mainstream solutions,

we provide more in-depth comparisons with a couple of

recently highlighted papers within the research community

[8], [9]. Wang et al. [8] conducted extensive experiments

using various datasets and aggregation methods. However,

they did not disclose the hyperparameters for setting up the

noise used by free riders. This omission is crucial when

variations in the σ value of the noise can significantly impact

the generated fake weights, thereby affecting the reliability of

their assessment. Lately, Chen et al. [9] introduced the WEF-

defense method and conducted thorough evaluations across

different experiments. Unlike Wang et al., they did not conceal

the way of setting the noise, albeit using only a fixed value,

which may not fully capture the coverage of their method

across different noises. Additionally, the requirement for each

client to upload the WEF-Matrix along with their model

weights can be a downside of this method, being inefficient in

large networks with thousands of training workers. Finally, all

the mentioned approaches only run the detection task at the

aggregator side, potentially causing a bottleneck and single

failure.

In response, our approach delegates part of the task to the

clients, ensuring that the aggregator only needs to work when

necessary. Our assessment includes two main cases of free

riders (random weights and Gaussian noise) with explicit setup

information on each case. We also conduct our experiments

with different free rider ratios, which are also considered in

[13], [15], and [3]. Notably, our approach is a more lightweight

and fast method to detect free riders since we enable the group

skipping policy based on the linkage clustering.

III. METHODS

This section presents separate components of our work, each

designed to fulfill requirements R1 and R2.

A. Collaborative learning with stakes

1) General idea: We propose a novel monetary incentive

mechanism for a fair collaboration (R1) where each client sets

a stake, which is returned later with an additional reward if
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Fig. 1: The incentive proposed mechanism, with high stake

leading to high returns

there is no indication of cheating (see, e.g., [16], [17] for

studies considering game-theoretic modeling of stakes). Our

idea is influenced by the underlying principle “Skin in the

game” [18], put forth by Nassim Nicholas Taleb, who argues

that individuals will exhibit greater responsibility, and less

recklessly behave when they have a personal stake or risks

involved in the outcomes of their actions. By introducing

deposits into the collaborative learning process, we aim to

create a gambling-like setting where learners cannot participate

without an investment.

In more detail, training workers are required to deposit

an amount of money and report their model’s accuracy with

the aggregator, in addition to submitting trained weights. In

accordance with the principle of “high stake, high return”,

training workers with higher deposit amounts are considered

dedicated learners, who are less likely to break the system,

and thus, will receive more valuable rewards, while those with

lower deposits will obtain less. This approach ensures that

training workers receive a commensurate reward based on their

deposit amount, regardless of slight differences in the models’

quality, as long as their behavior does not violate the rules or

involve cheating. To clarify, the origin of rewards comes from

the allocated funds that regional aggregators received from the

task owners before the commencement of the training process.

This total reward will then be distributed equally among each

round. Figure 1 illustrates how staking is applied in the joining

process.

With regard to the distribution of rewards, let us consider the

case where a free rider (client 4) and a no-stake client (client

2) are present in the system (Figure 1). At each update round,

a deposit from clients serves as a joining fee and a guarantee

for their model validity. This ensures that only committed

clients can join the model update process and without it, the

contribution of the client will not be counted towards the

regional model. Additionally, the clients with no stake will

also not receive the aggregated model, as is the case with

client 2.

Upon receiving stake deposits from eligible clients, the

aggregator combines all local model updates, and distributes

Algorithm 1: Stake-based reward mechanism

Input : K IDs of eligible clients, deposit amount di
(i = client ID), total reward amount Rt

Output: Amount each client gets

1 D ← 0 // total deposits
2 for i in K do
3 D ← D + di
4 end
5 if conflict then
6 LCHEAT ← Execute Algorithm 2

7 if len(LCHEAT ) then
8 DFR ← 0 // free riders’ deposits
9 for j in K ∩ LCHEAT do

10 DFR ← DFR + dj
11 end
12 if Rt == D then
13 for j in K \ LCHEAT do
14 rj ← Rt × dj/D
15 end
16 Rt+1 ← Rt+1 +DFR

17 else
18 ξ ← DFR/len(K \ LCHEAT )
19 if Rt > D then
20 for j in K \ LCHEAT do
21 rj ← Rt × (dj + ξ)/D
22 end
23 else
24 for j in K \ LCHEAT do
25 rj ← Rt × dj/D + ξ
26 end
27 end
28 else
29 for i in K do
30 ri ← Rt × di/D
31 end

the results to eligible clients, regardless of whether they

are free-riding clients or not. In case no conflict is raised,

the distribution of rewards among clients is then based on

their respective deposit amounts, calculated by the ratio (%)

between that amount and the total deposits of all clients

(Algorithm 1, lines 1-4, 29-31). However, even if just a single

client makes a complaint, the aggregator must conduct an

investigation, referred to Algorithm 2. The aggregator will

then reaggregate the model and recalculate the reward for each

client based on Algorithm 1.

2) Rewarding mechanism: We consider three ways (A1-

A3) of rewarding when the investigation is triggered. With K
is the list of eligible clients, LCHEAT is the list of detected

free riders, D = sum(d1, d2, . . . , dn) is the total deposit

amount of all clients, DFR is the total deposit amount of

detected free riders (DFR ≤ D), and the distributed reward

at round t is Rt, we analyze the gain of each client in

corresponding approaches, summarized in Table I.



TABLE I: The reward amount client i get besides the returned

deposit, set r = Rtdi

D and ξ = DFR

len(K\LCHEAT )

Case No conflict Conflict
Strategy - A1 A2 A3
Apply condition - Rt = D Rt > D Rt < D

Gain amount
Client r r r + ξRt/D r + ξ
Rt+1 0 DFR 0 0

• A1 (Algorithm 1 lines 12-16): The deposit amount from

detected free riders, DFR will be added to the next round

(t+1)’s reward Rt+1. Incentive amounts are calculated

based on the original deposits of clients D by ratio.

• A2 (Algorithm 1 lines 18-22): An extra from free riders’

deposits (divided by number of benign clients) ξ =
DFR

len(K\LCHEAT ) is added to each client’s original deposit

amount di before calculating the incentive amount for

each client by ratio.

• A3 (Algorithm 1 lines 24-26): Incentive amounts are first

calculated based on the original deposits D by ratio, then

an extra amount ξ will be added to each client reward.

From Table I, we can see that the incentive gained for each

client at round t is varied with different reward values Rt and

the total deposit amount D. To maximize the benefit in each

case, the aggregator with the information of those amounts

will choose the proper approach to calculate.

By using A2 and A3, each client will gain an extra amount

from the deposits of detected free riders. Specifically, with A2,

the reward amount for each client is calculated as
Rt(di+ξ)

D ,

which can be further interpreted as Rtdi

D + Rtξ
D . On the other

hand, with A3, the reward is given as Rtdi

D +ξ. The distinction

between these two approaches lies in the fraction Rt

D , which

determines the additional reward allocated to each client. If

this fraction is greater than one (indicating Rt > D), A2 offers

a higher reward to the clients, while A3 would maximize this

extra amount when the fraction is less than one. In contrast,

A1 maintains the same reward amount as in non-conflict cases

(Rtdi

D ), while increasing the reward in the next round. By

using A1, unnecessary computation steps for calculating the

extra reward can be minimized, while ensuring clients’ rewards

correspond appropriately to their deposits.

B. Log-based Free Rider Detection

1) Free rider presence detection: As previously discussed,

training workers are assigned the responsibility of detecting

the potential presence of free riders (R2) and triggering an

investigation on the aggregator’s end. This delegation aims to

reduce the aggregator’s workload by avoiding an unnecessary

investigation in each round of aggregation.

The collaborative learning process, as observed in the di-

agram in Figure 2, begins with clients receiving the model

weights from the aggregator and subsequently conducting local

training. Upon completion of the local training, clients join the

collaborative learning process with a deposit as the required

fee.

The aggregator then performs a weight copying check on

all submissions received to ensure that none of the submitted

Fig. 2: Training process in our learning system, with investi-

gation from the aggregator after the client’s trigger

models are copied from the previous round. This step helps to

identify and remove any free riders who directly use the ag-

gregated weights without making any additional adjustments.

Once the copying check is completed, the aggregator conducts

the aggregation and distributes the aggregated weights back

to all clients. It should be noted that at this stage, only the

aggregated model is returned, not the rewards.

Upon receipt of the aggregated model, clients will perform a

re-evaluation using the same validation dataset previously used

in their local training. The accuracy of the current aggregated

model is then compared to (i) the aggregated accuracy of the

previous round and (ii) the client’s own model at the current

round.

(i) If a decrease in the aggregated model’s accuracy is

detected, clients will request the aggregator to conduct an

investigation to identify any abnormalities, e.g. instances

of free riding. Our idea of this simple consideration de-

rives from the widely recognized paper of McMahan et al.

[1], which validated the improvement in the global model

accuracy when increasing rounds of communication. Sim-

ilar studies, [19] and [20], support this dependency.

(ii) In order to ascertain the deviation from their own model,

each client calculates the cosine distance between the

aggregated model and their individual model. If this

disparity exceeds the average distances observed in prior



rounds, clients may duly submit a request to the aggre-

gator, signaling the need for further investigation.

Finally, after the investigation is closed, identified cheaters

are removed from the system and the aggregated weights will

be recalculated, along with rewards, will be returned to all

benign clients.

Algorithm 2: Log-based Investigation

Input : Round R, Aggregated accuracy AR, previous

aggregated accuracy AR−1, latest safe gap

Agap (if R!=0), last submitted weights W ,

deposits D, reported accuracy Are

Output: LCHEAT ← IDs of cheaters

1 Initialize: LCHEAT ← empty list

2 Investigation process:
3 1. Calculate the distance among submitted weights

4 for Wi in W do
5 for Wj in W do
6 Dij

mat ← calculate cosine distance (Wi,Wj)

7 end
8 end
9 2. Groups G ← Apply Linkage Clustering on Dmat

10 3. Check weights in each group

11 for Gi in G do
12 for j in Gi \ LCHEAT do
13 Aj ← evaluate model accuracy (Wj , test set)

14 if not IsSafe(Aj , AR−1, AR, Agap) then
15 LCHEAT ← LCHEAT + j
16 else
17 break // skip group
18 end
19 end
20 if len(LCHEAT ) then
21 recalculate Agap

22 return LCHEAT

23 Function IsSafe(A,AR−1, AR, Agap):
24 maxA ← max(AR−1, AR)
25 gap ←| maxA −A |
26 if (A < maxA and gap > Agap)
27 or A < AR−1 ≤ AR then
28 return False
29 return True

2) Log-based investigation: Our investigation starts with

calculating all pairwise cosine distances between client i and

j and forming the distance matrix Dmat (Algorithm 2, line 4-

8), using it to construct a linkage clustering tree (Algorithm 2,

line 9) and spot the cheaters. In our work, linkage clustering is

used as an effective method for grouping similar objects (here

clients) into the same cluster based on their pairwise values

and calculating the distance between different clusters. At this

step, the aggregator will then go through each cluster and re-

evaluate the accuracy of each submitted weight (Algorithm

2, line 13) and then assess the honesty of clients with the

safe checking function - IsSafe (Algorithm 2, line 23-29).

It should be noted that the aggregator will first perform

the re-evaluation on a single member of each group and

subsequently determine whether to proceed with checking

all clients within the group or move on to another group

for time and computation optimization. Finally, upon going

through all groups, the aggregator will check if any cheater is

detected and remove them from the system, reaggregate the

model, and calculate the new Agap before proceeding to a new

communication round (Algorithm 2, line 20-22).

Considerations about metrics and functions used in our

investigation are detailed below:

Safe gap calculation: One of the important metrics in our

analysis is the safe accuracy gap Agap, which serves as a

threshold to identify free riders. This value is calculated based

on the average gap between the accuracy of the aggregated

model and clients in all prior rounds. For example, if the

investigation is triggered at iterator 8, the average gap value

is referred to the one computed up to round 7. Of note, for

the first aggregation round, all submitted weights will be re-

evaluated to obtain the correct accuracy value since there is

no previous round to reference. We formulate this gap value

under Equation 1, where M is the number of clients, R is

the number of rounds before the investigation, At
agg and Ait

re

are the aggregated model’s accuracy and reported value from

client i at round t, respectively.

Agap =
1

M

1

R

M∑

i=1

R∑

t=1

| At
agg −Ait

re | (1)

In preparation for any potential future investigations, this gap

value is calculated and updated at every round. However, if

cheating is detected, the aggregator will need to calculate

the new Agap after reaggregating and excluding the violated

weights (Algorithm 2, line 21).

IsSafe function: The purpose of this function is to de-

termine whether a client is safe enough and not engaged in

any cheating behavior by reevaluating their submitted weight’s

accuracy. During each aggregation round, aggregators receive

submissions from participating clients, containing details like

submitted weights W , timing information, deposit amounts

D, and reported accuracy of the client’s model Are. At this

stage, free riders may fabricate the accuracy to deceive the

aggregator about their low-quality models, whereas benign

clients will provide their actual accuracy scores obtained

from their models. However, it is important to note that free

riders may also provide accurate reports of their underperfor-

mance. Aside from this, certain strategies can be employed

by different types of free riders. Some may promptly send

their randomly generated or noise-added weights along with

a minimal deposit, while more dodgy cheaters might delay

their submission, subsequently depositing a larger amount

to appear more legit. Given these intricacies, individually

checking clients based on submission time and deposit size

becomes time-wasting and ineffective in identifying all free

riders. As a result, we formulate this function by analyzing the



typical learning process and setting conditions that potential

free riders are likely to breach.

The first condition involves checking for a decrease in

accuracy during the investigation round as compared to the

previous round. While this condition is rooted in the client-

side detection mechanism, it needs to be coupled with an-

other condition in this identification process: the absolute

difference between the maximum aggregated accuracy and

the re-evaluated accuracy of the client (Algorithm 2 line 25)

not exceeding the safe accuracy gap Agap. To clarify, the

maximum aggregated accuracy is determined by selecting the

higher value between the two aggregated accuracies - one

from the investigation round and the other from the previous

round (Algorithm 2, line 24). With input from submission

logs, the aggregator reevaluates the corresponding weights of

each client on its test data and makes the comparison. If this

absolute difference is within the bounds of Agap, the client is

considered benign and passes the checking. However, if this

value surpasses Agap, it does not necessarily indicate a free

rider. Instead, the client is appended to the list of potentially

cheating clients, LCHEAT , if their re-evaluated accuracy is

lower than the maximum aggregated accuracy (Algorithm

2, line 26). We can see that when the gap value exceeds

both Agap and the maximum aggregated accuracy, it suggests

that the client is benign. This interpretation is valid because

their accuracy is consistently increasing over communication

rounds, which is in stark contrast to free riders. This combined

condition is of particular importance in scenarios where free

riders dominate the system, resulting in the aggregated model

accuracy closely aligning with the free riders’ values rather

than those of legitimate clients. In such cases, solely relying

on the gap value concerning the current aggregated accuracy

(not with the maximum value) could lead to misclassifying

benign clients as free riders.

The second criterion for detecting a client as a free rider

occurs when their re-evaluated accuracy is lower than the

accuracy in the previous round, despite the fact that the

average accuracy of this round continues to gradually increase

and surpasses that of the previous round (Algorithm 2, line

27). This condition is grounded in the consistent incremental

improvement observed in both the global accuracy and the

accuracy of individual client models across communication

rounds. Regarding this, we expect both the global model and

a benign client to have higher accuracy compared to the last

aggregation round, not just higher in the global model.

Distance metric: We measure the distances between client

weight matrices, as flattened vectors, by utilizing cosine dis-

tance as opposed to other metrics such as Euclidean, Manhat-

tan, or any Lp distances. This can be explained by a couple

of reasons. First, cosine distance can be directly calculated

based on the angle between vectors, without depending on the

magnitude. This is particularly important in the case where a

free rider generates a random weight matrix with a different

size and shape compared to a properly fitted weight matrix of

the model. In such a case, Lp distance may need to pad one

vector with zeroes to equalize the dimensions between the two

before calculating the distance. This requires additional steps

and time in the investigation process. Second, the range of

cosine distance is within [−1, 1], which makes it a simple and

effective metric compared to the other two, which have no

specific range.

Linkage clustering: Linkage clustering is used due to

its standing out in hierarchical clustering for its adaptability

and depth in revealing complex data relationships through

a dendrogram. Unlike flat clustering methods like K-means,

which require prior knowledge of cluster numbers and are

sensitive to outliers, this one does not necessitate a predefined

number of clusters and effectively handles different data and

densities. Besides, its intuitive dendrogram presentation also

helps in visualizing and interpreting the clustering process,

providing clear insights into the hierarchical structure of data

groupings.

IV. EXPERIMENT AND EVALUATION

A. Experiment setup

Data preparation: We used the MNIST [21] dataset to

evaluate our proposed approach. The training set was split

by a ratio of 0.85 : 0.15 for the training and validation set,

resulting in 51000 images for training and 9000 images for

validation. The training data was then equally divided among

10 clients in the network, with each receiving 5100 images

for their local training and 900 images for validation. We

also shuffled the data with the same random seed value before

dividing and distributing it to clients. Beyond the foregoing,

the entire test dataset of 10000 images was used with a random

of 5000 images for each testing time, making sure the test set is

smaller than the training set of each client to provide unbiased

evaluation.

Model training: Before the training, all images need to be

transformed into tensors and normalized. Next, on each round,

we trained the local model for 10 epochs using the Adadelta

optimizer and a learning rate of 0.001. All experiment setups

were conducted with 10 clients and 1 aggregator, running

with 10 FedAvg aggregation rounds. The model is a simple

convolutional neural network, containing over 62K parameters

with 6 layers, including 2 convolutional layers, 2 dropouts, and

2 fully connected layers with softmax activation at the end.

Experiment scenarios: To evaluate the versatility and ef-

fectiveness of our approach, we conducted experiments under

two different scenarios of fake weights: random weights (wf1 )

and noise-added weights (wf2 ). Regarding wf1 , we run a

random function on free rider clients to randomize weight

values drawn in the range of [a, b] and send it to the aggregator.

In most cases, a and b values are decided based on the previous

weights to have better random results [3]. These random

weights are formulated as wf1 = a+(b−a)× rand(). About

noise-added cases (wf2 ), Fraboni et al. [4] showed that free

riders aim to utilize the weights sent from the aggregator at

each iteration and to evade detection, free riders may generate

new weight values by adding noise N (μ, σ2) to the ones

they obtained. Here μ denotes the mean (usually set to 0)

and σ denotes the standard deviation in the Gaussian noise



(a) [10−3, 10−2]

(b) [10−2, 10−1]

(c) [min,max]

Fig. 3: Random scenario: accuracy reported from clients and

aggregated model (upper), distance between clients’ weights

and aggregated weights (middle), and accuracy gap between

aggregated model and clients’ re-evaluated models (lower)

across communication rounds

function. The modification process at iterator t is illustrated

via formulated as wf2 = wagg(t−1)
+N (μ, σ2).

In more detail, we create noise with 4 different σ values

(a) σ = 0.1

(b) σ = 0.01

(c) σ = 0.001

Fig. 4: Noised scenario: accuracy reported from clients and

aggregated model (upper), distance between clients’ weights

and aggregated weights (middle), and accuracy gap between

aggregated model and clients’ re-evaluated models (lower)

across communication rounds

(0, 0.001, 0.01, and 0.01) and μ = 0 in Gaussian cases, and

use different ranges of value to randomize the weight in the

random cases ([10−3, 10−2], [10−2, 10−1], and [min, max]).



To clarify, in the [min, max] random scenario, we test our

method with the fake weights generated in the range of the

minimum and maximum values of the previous aggregated

weights. We also varied the proportion of free riders in each

scenario (20%, 40%, and 60% from the total number of

training workers) to examine how our method performs when

free riders dominate the system. To ensure the objectivity of

our experiments in all setups, free riders initially pose as

benign clients before revealing their cheating behavior at a

randomly selected activation round. This is referred to the

work of Xie et al. [22], who pointed out that a malicious

party may pretend to join the FL system solely to obtain the

distributed global model. The free rider mode was activated

at round 8 for the random case and at round 5 for the two

aggregated weight scenarios.

Evaluation metrics: For the performance assessment, we

validate the efficacy of our method in abnormal detection and

free rider identification ability, ensuring no missing cases or

false alarms are called. In particular, we employ two checking

conditions on the client side: the drop in the aggregated

accuracy and the distance between the aggregated and client

models. We present our findings through various visualizations

and tables. Firstly, we plot the self-reported accuracy val-

ues from each client alongside the corresponding aggregated

model’s accuracy for each communication round (Figure 3

and 4). Additionally, we analyze the accuracy gap between

the aggregated model and each client’s re-evaluated model

(Table IV), as well as the cosine distance between the client’s

model and the aggregated model during the investigation

round (Table II). Next, we present Table III with detailed

figures on the accuracy gap and the averaged gap values to

provide a comprehensive analysis of the identification process.

Finally, to emphasize the importance of client grouping in our

investigation, we utilize a dendrogram to visualize the linkage

clustering results based on clients’ submission weights (Figure

5 and 6).

TABLE II: Cosine distance between benign clients’ and the

aggregated model

Weights Params Free riders ratio
20% 40% 60%

Randomized
[10−3, 10−2] 0.014559 0.08678 0.2873
[10−2, 10−1] 0.4877 0.7648 0.88156

[min, max] 0.7727 0.8765 0.9313

Noised
σ = 0.1 0.6154 0.7958 0.8620
σ = 0.01 0.0277 0.0989 0.1893
σ = 0.001 0.00031 0.0012 0.0027

B. Evaluations

1) Detecting the potential presence of free riders: In this

evaluation, we examine the client’s sensitivity to the received

aggregated model during the learning process and rigorously

assess the effectiveness of each checking condition employed

by the clients to trigger an investigation.

As in Figure 3, we observe a significant drop in the

accuracy of the aggregated model (upper plots) at round 8

TABLE III: Safe gap value - Agap (%) and the averaged gap

(%) of free riders model to the global one

Weights Params Agap
Free riders ratio

20% 40% 60%

Randomized
[10−3, 10−2] 1.45 75.77 75.60 75.16
[10−2, 10−1] 1.45 75.55 75.55 75.41

[min, max] 1.45 76.09 75.62 75.28

Noised
σ = 0.1 1.57 67.86 67.86 67.86
σ = 0.01 1.57 8.67 7.12 5.92
σ = 0.001 1.57 1.78 1.37 0.9

across all three experimented ranges of the random scenario.

Concurrently, the distance between clients’ and aggregated

weights (middle plots) also witnessed a surge at the activation

round of cheating, surpassing the safe distance value by at

least 1000 times (safe distance calculated from benign clients

vs. aggregators is 1.434e−5 or 0.00001434). In particular, the

smallest distance of 0.0146 is observed in the [10−3, 10−2]
range with 20% free riders, and this difference becomes more

pronounced with higher percentages of free riders and across

different ranges. For example, in the [10−2, 10−1] and [min,

max] ranges, the distances are 0.4877, 0.7648, 0.88156, and

0.7727, 0.8765, 0.9313 for 20%, 40%, and 60% free riders,

respectively. However, it is worth noting that across all random

cases in our experiments, the second condition of the cosine

distance is not necessary, as the drop in the aggregated weights

alone can capture the client’s attention, effectively triggering

an investigation.

Regarding the Gaussian scenario, it is worth noting that the

accuracy drop does not hold true for all cases. Specifically,

while the first condition remains effective in noise cases

with standard deviations of 0.01 and 0.1, we observe a chal-

lenge when using σ = 0.001, which generates sophisticated

weights. In this case, the aggregated accuracy exhibits a

gradual increase (see Figure 4), potentially misleading the

client into considering it a normal training process. However,

the analysis of distance values between the client and the

returned aggregated weights can still spot the abnormality,

especially in the case of 20% free riders, where the distance

value was 0.00031, approximately 20 times higher than the

safe distance. This difference also becomes more pronounced

with higher ratios of free riders and larger standard deviations,

as indicated in Table II. This can be explained by the higher

standard deviation values creating more significant disparities

between the disguised and original weights.

Finally, for the case of using direct weights, the initial

check for weight copying conducted right after the aggregator

receives the submission will help identify the occurrence of

this cheating type at an early stage without requiring further

investigation triggers, referred to Figure 2.

2) Identifying free riders: In the evaluation of the effective-

ness of the log-based algorithm, our primary focus remains

on the random and Gaussian scenarios, given that free riders

who directly utilize aggregated weights have been eliminated

through a straightforward check conducted at the aggregator

before initiating any investigation. Our assessment involves a



TABLE IV: Aggregated accuracy in previous round, current investigation round and the free rider’s re-evaluated (real) accuracy

Weights Params Previous
Free riders ratio

20% 40% 60%
Current Re-evaluated Current Re-evaluated Current Re-evaluated

Randomized
[10−3, 10−2] 0.8544 0.1079 0.0989 0.1008 0.0988 0.0977 0.1002
[10−2, 10−1] 0.8544 0.4188 0.0966 0.1839 0.0984 0.1237 0.1027

[min, max] 0.8544 0.1935 0.0936 0.1292 0.0982 0.101 0.1015

Noised
σ = 0.1 0.8118 0.5952 0.1332 0.3154 0.1332 0.1992 0.1332
σ = 0.01 0.8118 0.8263 0.7396 0.8108 0.7396 0.7925 0.7396
σ = 0.001 0.8118 0.8288 0.811 0.8247 0.811 0.82 0.811

(a) [10−2, 10−1] (b) [10−3, 10−2] (c) [min,max]

Fig. 5: Dendrogram of linkage clustering tree at investigation round - randomized weights. Orange and green lines represent

intra-group distances among clients, while the blue line indicates the inter-group distance.

(a) μ = 10−1 (b) μ = 10−2 (c) μ = 10−3

Fig. 6: Dendrogram of linkage clustering tree at investigation round - noised weights. Orange and green lines represent intra-

group distances among clients, while the blue line indicates the inter-group distance.

detailed analysis of the IsSafe function’s condition, examining

its performance and reliability in each specific case.

In our experiments of both random and Gaussian scenarios,

the benign clients demonstrate a consistently low average gap

between the aggregated and re-evaluated accuracy, which does

not exceed 1.6% (refer to Table III). However, the measured

gap in the two scenarios was observed with differences.

Specifically, Figure 3 illustrates that the sharp drop in

accuracy of the aggregated model (upper) coincides with a

rapid surge in the accuracy gap value (lower) for free riders,

occurring between the round when the free-rider mode is acti-

vated and the previous round. These gap values reached over

75 or 76 in all conducted experiments of random scenarios. A

similar trend is observed in the Gaussian cases with σ values

of 0.1 and 0.001, yet with a less steep accuracy drop and

smaller accuracy gap, as detailed in Table III. Remarkably, the

noise weights with σ being 0.0001, as previously analyzed in

the detection evaluation, exhibit an increase in the cheating

activation round (Figure 4). Consequently, the gap values

become extremely low (1.78 for 20% free riders) or even

fall below the safe value (e.g., 1.37 and 0.9 for 40% and

60% free riders, respectively). As a result, we can see that

the first gap condition in the IsSafe function appears to be

effective only for detecting cases with 20% of free riders or

less in the Gaussian case. However, by also incorporating the

second condition, which considers the relationship between

the aggregated accuracy of the previous and current rounds,

along with the re-evaluated accuracy, our method was able to

accurately identify free riders in the rest two cases with smaller

accuracy compared to both previous and current rounds’ val-

ues. Detailed figures are reported in Table IV. Finally, at round

8 in the random scenario and round 5 in the Gaussian scenario,

the lines representing free riders in all plots come to an abrupt

end, indicating that the free riders, who had fabricated their

accuracy reports and were successfully detected and exposed

through our investigation process.

The dendrograms in Figure 5 and Figure 6 provide a

visual representation of the distances between clients using

the distance matrix obtained from the second part of the

investigation. Since the hierarchical clustering treats each data



point as a separate cluster and iteratively merges them based on

their distances to get one cluster at the end, clients displayed

with the same colors in the dendrogram will have a higher

possibility of being in the same group. Additionally, the height

of the line segment implies the possibility of merging these

clusters, with higher values indicating larger distances between

them and lower values indicating smaller distances. The results

observed in Figure 5 and Figure 6 demonstrate the exactness

of the clustering method in all scenarios by sharply grouping

free riders and benign clients. We can observe the difference

between clients in the same group (orange or green) with

relatively small heights in the dendrogram, while the blue line

indicates a significant distance between the benign and free

rider groups. This enables us to confidently skip the entire

group checking after the first positive re-evaluation without the

risk of missing any free riders in that group. More intriguingly,

the dendrograms reveal that while the randomized weights can

be easily detected via our investigation with the accuracy gaps,

the distance between client clusters in those cases is varied

according to the change in the free riders ratio. Particularly,

the higher the ratio, the smaller the distance, which means

the clients become more similar to each other. In contrast, the

Gaussian scenario causes challenges in detecting differences in

accuracy, but a clear distinction between the groups of benign

and cheating players can be seen with a distance of 1 for

all experimental cases, showing that the weights are clearly

different among the benign clients and free riders.

V. CONCLUSION

This study emphasizes ensuring fairness and trust in the FL

system, dealing with the presence of free riders. In detail, our

contribution encompasses a novel monetary incentive mecha-

nism that ensures clients receive optimal rewards proportional

to their contribution, thus fostering active participation. We

detailed the joining rules with stakes and analyzed the rewards

for various cases considering free rider presence. This provides

a more explicit approach for calculating the incentive of

each client, compared to other prior works. Concurrently, we

propose a lightweight yet effective approach to detect and

identify free riders in an FL system, where the detection

task is delegated to FL training workers while the aggregator

identifies the possible free riders. This approach aims to reduce

the bottleneck and unnecessary tasks at the central agent,

the aggregator. The effectiveness of our proposed method

was demonstrated through empirical experiments involving

different free rider ratios and settings in both randomized and

noise-added scenarios.
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