E EasyChair Preprint

Ne 15653

Data Security Approaches in Spring Boot for
REST API

Saikal Batyrbekova and Gulzada Esenalieva

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 6, 2025

RESEARCH ON DATA SECURITY APPROACHES IN SPRING BOOT

FOR REST API
Batyrbekova Saikal - saikal batyrbekova(@alatoo.edu.kg

Gulzada Esenalieva - culzada.esenalieva(@alatoo.edu.ke

Ala-Too International University
ABSTRACT

Spring Boot offers a wealth of tools for securing web applications. This article takes a
detailed look at Spring Boot's built-in security and authentication mechanisms and how they can be
used to secure REST APIs. Particular attention is paid to aspects such as data encryption, CSRF

protection and context security.

Keywords: Security, authentication, Spring Boot, REST API, data protection, encryption,

CSREF, context security

NCCIEJOBAHUE ITIOAXO10B K OBECIIEYEHUIO BE3OITACHOCTH
JAHHBIX B SPRING BOOT JJISA REST API

bamuwipoexosa Caitkan - saikal.batvrbekova@alatoo.edu.kg

Tynv3aoa Icenanuesa - gulzada.esenalieva@alatoo.edu.kg

Mesicoynapoonuiti Ynusepcumem Ana-Too
AHHOTALUA

Spring Boot npeanmaraer OoniblIod WHCTpYMEHTapHil s oOecreueHHs Oe30MacHOCTH
BeO-TIpUIIOKEHUH. B cTaThe AeTanbHO pacCcMaTpUBAIOTCS BCTPOCHHBIE MEXaHU3MBbI 0€30ITACHOCTH U
ayreHTudukamuu Spring Boot, a Takwke wux mnpumenHenue s 3amuThl REST APIL. OcoGoe
BHUMaHME YJENISeTCs] TAKUM aclleKTaM, Kak mu@poBaHue 1aHHbIX, 3amuTa oT CSRF u koHTekcTHas

0€30I1aCHOCTb.

KiroueBbie cioBa: OezonmacHOCTh, ayreHTuduKanus, Spring Boot, REST API, 3ammra

nauubix, mudpoanue, CSRF, koHTekcTHas 6€301aCHOCTh

mailto:saikal.batyrbekova@alatoo.edu.kg
mailto:gulzada.esenalieva@alatoo.edu.kg
mailto:saikal.batyrbekova@alatoo.edu.kg
mailto:gulzada.esenalieva@alatoo.edu.kg

REST API YYYH SPRING BOOT TUPKEMEJIENUT'U KOOIICY3AYK
BIKMAJIAPBIH N3NJ1100

Bbamuwipoexosa Caitkan - saikal.batyrbekova@alatoo.edu.kg

TI'ynv3ada Icenanuesa - gulzada.esenalieva@alatoo.edu.kg

In Apanvik Ana-Too Yhusepcumemu
AHHOTAIIUA

Spring Boot BeO-TupKkemenepand KOProo Y4yH KOINTereH KypajaapAbl CyHYIITauT. Byn
Makanaga Spring Boot'TyH OpHOTyNIraH KOONCY3AyK *aHa ayTeHTU(UKALUS MEXaHU3MJICpU XKaHa
anmapael REST API'nepau koproo y4yH KaHTHUI KOJIJOHCO OOJNOpYH JeTalayy Kapam 4bIrar.
Maansimvartapasl mudpiaee, CSRF xoproo jkaHa KOHTEKCTTHK KOOTICY3/IYK CHISIKTYY acleKTUIIepre

©3reue KoHYJI OypyJar.

AYKBIY €O316P: KOOTCY31yK, ayTeHTuukarus, Spring Boot, REST API, maansimarrap/isr

koproo, mudpiee, CSRF, KOHTEKCTTHK KOOIICY3IyK

1. INTRODUCTION

Ensuring security in modern web applications has become one of the most pressing tasks for
developers. With the growing number of cyberattacks and data breaches, safeguarding user
information and data confidentiality is increasingly important. Spring Boot is a platform for creating
new Spring applications, offering numerous built-in security and authentication mechanisms that
help developers create secure applications. The security and authentication mechanism in Spring
Boot is primarily based on the Spring Security platform, a core component of the Spring ecosystem

widely used to provide security features.

Spring Security provides several key concepts: authentication, the process of verifying a
user’s identity; authorization, the process of determining whether the user has permission to access
a specific resource; and session management, which refers to managing user sessions within an
application. These concepts work together to form the security and authentication mechanism in
Spring Boot, where authentication identifies the user, authorization confirms their access

permissions, and session management oversees user sessions within the application.

mailto:saikal.batyrbekova@alatoo.edu.kg
mailto:gulzada.esenalieva@alatoo.edu.kg

Data security in modern information systems is of increasing significance. With the rise of
cyberattacks and information leaks, protecting user data privacy has become one of the top
priorities for developers and system administrators. REST API, one of the most popular methods of
interaction between client and server applications, requires special attention in terms of security.
Utilizing Spring Boot, a powerful framework for creating microservices, significantly simplifies the

process of developing secure REST APIs.

The purpose of this research is to examine various approaches to ensuring data security in
REST APIs developed using the Spring Boot framework. This study will analyze existing security
mechanisms, such as data encryption, protection against Cross-Site Request Forgery (CSRF), and
the implementation of contextual security. To achieve this, the study will investigate basic security
principles in REST API development, explore Spring Boot’s security capabilities, analyze
encryption methods used in Spring Boot, study CSRF protection mechanisms and their
implementation in Spring Security, consider contextual security and its application in Spring Boot
for managing resource access, and compare the effectiveness of different approaches to securing

data in REST APIs.

The object of this research is the process of ensuring data security in REST APIs developed
with Spring Boot, while the subject of this research includes the data security methods and tools,

such as encryption, CSRF protection, and contextual security implemented in Spring Boot.

This study will help identify optimal methods for ensuring security in various REST API
scenarios, develop recommendations for enhancing the security level of applications based on
Spring Boot, and foster an understanding of modern trends in web application data security. In
summary, the results of this study may be valuable for developers, architects, and information

security specialists involved in creating and maintaining REST APIs on the Spring Boot platform.

2. MAIN PART

No matter what our settings are, the server side has to do two important things anyway -
authentication and authorization. So, what are authentication and authorization in simple words?
Authentication is the process of establishing the identity of the user, our web application tries to
understand if the user is an imposter and if he is really who he claims to be. Authorization in turn
determines what actions the user can perform in the web application. Before getting access to
perform these actions and get the necessary resources - the first thing you need to do is to pass

authentication.

Let's see how authentication in Spring Security takes place in the context of REST APIL
First, we need to get the user's credentials. The user enters their username and password into the
registration form on the web page or passes them in the HTTP request header. Typically, the
UsernamePasswordAuthenticationFilter in Spring Security is responsible for extracting the user's
credentials from the HTTP request to the REST API. It then needs to compare them to the actual
username and password stored somewhere in the database. This is done by AuthenticationManager
in the authenticate() method. And the last step is to generate a JWT token, of course, after
successful authentication. Talking about the authorization process in the REST API, as [mentioned
earlier, after successful authentication, a JWT token is generated, which is like a pass ticket that
allows the user to perform actions in the web application. After receiving the token, the client sends
the token in every subsequent request. For example, a request to send a message, edit a profile or

purchase some product.

Authentication and authorization in REST APIs, of course, play a key role in data
protection, but they cannot guarantee data security if the data itself remains vulnerable. It's no secret
that storing sensitive information unencrypted is very risky. That's why data protection and

encryption become indispensable in this case.

Spring Boot recommends using standard encryption libraries such as JCE (Java
Cryptography Extension) to encrypt passwords, tokens and other sensitive data. For password
encryption, you should use BCrypt, which is built into Spring Security and provides strong

protection against password attacks.

The Java Cryptography Extension works well as a set of algorithms and is already built into
Java, making it easy to use its classes and methods without a separate installation. Here's what an

encrypted password looks like in the JCE extension:

Original Password: Ala-Too2025
Encrypted Password: S7mv+Q4J8DyV1IswQjQbzw==

When a user enters their password to register or change it, Spring Security uses the BCrypt
algorithm to create a hash of the password. Hashing is a process that converts a password into a
fixed length string that cannot be converted back to the original password. Java Spring Boot Code

Snippet:

package com.example.Memories App.config;

import org.springframework.security.crypto.bcrypt.BCryptPasswordEncoder;
import org.springframework.security.crypto.password.PasswordEncoder;

@Configuration

@RequiredArgsConstructor
public class ApplicationConfig {
private final UserRepository userRepository;
@Bean
public UserDetailsService userDetailsService () {
return email -

> userRepository.findByEmail (email) .orElseThrow(() -> new CustomException ("User
not found: ", HttpStatus.NOT FOUND)) ;

}

@Bean public PasswordEncoder passwordEncoder () {

return new BCryptPasswordEncoder () ;

1

@Bean

public AuthenticationProvider authenticationProvider () {
DaoAuthenticationProvider authProvider = new DaoAuthenticationProvider () ;
authProvider.setUserDetailsService (userDetailsService())
authProvider.setPasswordEncoder (passwordEncoder ()) ;
return authProvider;

}
@Bean
public AuthenticationManager authenticationManager (AuthenticationConfiguration
config) throws Exception {
return config.getAuthenticationManager () ;

While encryption and data protection provide security at the storage and transmission level,
it is important to consider threats that can occur at the user-application interaction level. One such

threat is CSRF.

Cross-site CSRF request forgery is an attack in which an attacker or a hacker forces a user to
perform an unwanted action on a site to which they are authenticated. In the case of REST APIs,
defense against CSRF attacks becomes especially important because tokens and sessions can be
vulnerable to these types of attacks. I would like to tell you how these unfortunate CSRF attacks
happen. Imagine, you log in to an online bank, and then you go to a website with an advertisement
that says you've won 100,000 soms. You click on the link and it secretly sends a request to transfer
money from your account to the attacker's account. Since you are still authorized, the bank performs
the transfer without suspecting fraud. This is a CSRF attack, where the attacker uses your active
session for their own egocentric purposes. It is important to connect CSRF protection in Spring
Security to prevent such attacks. Spring Security automatically adds a CSRF token to all forms and

validates it with every request, which prevents fake requests from being made.

CSRF protection is based on preventing spoofed requests, but it alone does not solve the
security problem if the user's session is not properly secured. After all, if an attacker gains access to
the session, he can perform actions on behalf of the user, bypassing even CSRF protection.

Therefore, session management is an important aspect of security.

In Spring Security it is possible to customize such parameters as session lifetime: each
session has an expiration date, which can be limited to inactivity time (if the user does not make
requests for 30 minutes, the session is closed) or a certain duration (the session ends after 12 hours),
the number of concurrent sessions per user (a user can log in to their account on a laptop and
simultaneously on a smartphone). For this purpose, the sessionManagement() method in the REST
API in Spring Security is used:

@Bean

public SecurityFilterChain securityFilterChain (HttpSecurity http) throws Exception
{

return http

.csrf(csrf -> csrf.disable())

.sessionManagement (session -> session
.sessionCreationPolicy (SessionCreationPolicy.STATELESS)
.maximumSessions (1)

.maxSessionsPreventsLogin (true)

.and ()

.sessionFixation () .migrateSession ())
.authorizeHttpRequests (auth -> auth

.requestMatchers ("/admin/**") .hasRole ("ADMIN")

.anyRequest () .authenticated()

.addFilterBefore (jwtFilter, UsernamePasswordAuthenticationFilter.class)

.build();

Security is a process that requires constant attention and improvement. By following the best
security practices in Spring security in REST API, a developer can significantly reduce risks and
protect their application from a multitude of threats. Utilizing Spring Security's built-in tools,
regularly updating dependencies, encrypting data, and being mindful of session management are

important steps towards creating a safe and secure application.

This paper looked into security measures when developing REST APIs using Spring Boot
such as identifying and verifying users, roles and policies, database encryption, protection against
CSREF attacks and user sessions among others. Spring boot together with its friend, Spring security
has provided great features in building applications that are secure and confidentiality as well as
integrity of information is achieved. Authentication and authorization are one of the most important
elements of a security model; these are achieved through the use of passwords and user IDs stored
in JSON web tokens (JWT). Encryption of sensitive data is one of the most important goals of IT
security, projects that help achieve this goal such as BCrypt and JCE are considered. Defense
against malicious attacks is the main goal of CSRF protection, and management of user

authentication sessions and variables is designed to enable or disable user sessions.

3. CONCLUSION

In conclusion, securing REST APIs in Spring Boot requires the application of several
built-in mechanisms for security such as securing the channel and preventing attacks. Applying
encryption, CSRF protection, and proper session management tools can greatly help improve the
security of the developers’ applications. It is important to note that even basic maintenance such as
working on dependencies and enforcing more sophisticated policies such as OAuth2 is critical in
the war against new threats. Therefore, by using these techniques, the REST API created by Spring

Boot developers are able to protect user information and the overall application’s functionality.

4. REFERENCES

e Esenalieva, G. A. (n.d.). Cyber Security in the Education System. Candidate
of pedagogical sciences, lecturer at the Department of Informatics and
Computer Engineering, Ala-Too International University.

e A.Khan, R. R. Mekuria and R. Isaev, "Applving Machine Learning Analysis for Software
Quality Test," 2023 International Conference on Code Quality (ICCQ)

e Toxkrorynosa I. A., TopoeB A. A., & Dcenanuena I. A. (n.d.). Bezonacnocmsp

UHDOPMAYUOHHBIX CUCTIEM.
e GeeksforGeeks. "CSRF Protection in Spring Security."

https://www.geeksforgeeks.org/csrf-protection-in-spring-security/

e Spring. "Spring Security." https://spring.io/projects/spring-security

e (CSDN. "Spring Security CSRF Protection Implementation."

https://blog.csdn.net/suifengme/article/details/136719602
e Snyk. "CSRF Attack: Understanding and Mitigation."

https://learn.snyk.io/lesson/csrf-attack/

https://elibrary.ru/item.asp?id=48356772
https://ieeexplore.ieee.org/abstract/document/10114664/figures#figures
https://ieeexplore.ieee.org/abstract/document/10114664/figures#figures
https://elibrary.ru/item.asp?id=22767587
https://elibrary.ru/item.asp?id=22767587
https://www.geeksforgeeks.org/csrf-protection-in-spring-security/
https://spring.io/projects/spring-security
https://blog.csdn.net/suifengme/article/details/136719602
https://blog.csdn.net/suifengme/article/details/136719602
https://learn.snyk.io/lesson/csrf-attack/
https://learn.snyk.io/lesson/csrf-attack/

e GeeksforGeeks. "Spring Boot: Enhancing Data Security with Column-Level Encryption."
h : :

n/

e Habr. "Kak 3amututhcs ot CSRF arak B Spring Security."
https://habr.com/ru/articles/798921/

e Stack Overflow. "How to Secure REST APIs in Spring Boot Web Application."

application

https://www.geeksforgeeks.org/spring-boot-enhancing-data-security-column-level-encryption/
https://www.geeksforgeeks.org/spring-boot-enhancing-data-security-column-level-encryption/
https://www.geeksforgeeks.org/spring-boot-enhancing-data-security-column-level-encryption/
https://habr.com/ru/articles/798921/
https://habr.com/ru/articles/798921/
https://stackoverflow.com/questions/42870489/how-to-secure-rest-apis-in-spring-boot-web-application
https://stackoverflow.com/questions/42870489/how-to-secure-rest-apis-in-spring-boot-web-application
https://stackoverflow.com/questions/42870489/how-to-secure-rest-apis-in-spring-boot-web-application

