
EasyChair Preprint
№ 6280

An RDBMS-Only Architecture for Web
Applications

Alfonso Vicente, Lorena Etcheverry and Ariel Sabiguero

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 11, 2021

An RDBMS-only architecture for web applications
Alfonso Vicente∗, Lorena Etcheverry†, Ariel Sabiguero‡

Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República
Montevideo, Uruguay

Email: ∗avicente@fing.edu.uy, †lorenae@fing.edu.uy, ‡asabigue@fing.edu.uy

Abstract—Multi-tier architectures have been the de facto stan-
dard for web applications, leaving little room for alternative so-
lutions. Despite this, there is diversity in the proposals, especially
in the tiers’ number, size, and responsibilities. In particular, the
database-centric approach aims to implement application logic
and behavior within an RDBMS. In this work, we present,
model, and propose to extend the database-centric approach
into an RDBMS-only architecture, where the whole multi-tiered
application is implemented in the database server. We present
a characterization and description of the architecture and an
early prototype that implements the proposal. It is important to
note that both the database-centric and the proposed RDBMS-
only architectures are a particular case of a three-layered model
that needs to be differentiated from monolithic systems. Our
preliminary results show that this approach is not only feasible
but also advisable in some cases.

Index Terms—Database systems, Relational databases, Systems
architecture, Client-server systems

I. INTRODUCTION

Multi-tier architectures have been the de facto standard
for enterprise web applications for the last 30 years. They
minimally include a client-tier and a data-tier but often
include a middle-tier: an additional layer between them to sup-
port complex business logic [1]. This middle-tier is typically
implemented in an application server [2].

Adding specialized tiers is often a way to deal with com-
plexity, but the diversity of technology platforms implies an
increase in IT operations and maintenance costs [3] [4] [5].

The three-tier approach provides several architectural advan-
tages but requires interfacing overhead and coding expertise
[6]. This architecture is well suited for contexts where the
middle-tier introduces significant complexity to support busi-
ness logic not directly bound to presentation or persistence.

To ease the interfacing overhead, relevant Java frameworks
like Spring [7], collapse presentation and business layers into
a single framework. Different industrial proposals address the
need to ease tiering complexity, leading to simpler develop-
ment processes, adequate for multiple development needs.

Relational Database Management Systems (RDBMS) have
been the de facto solution for persistence, supporting almost
every persistence layer. We claim that the RDBMS can be
responsible for additional functionalities, like business logic
implemented into stored procedures in many cases. Along-
side the mainstream trend, there are proposals for database-
centric architectures in which the RDBMS performs different
functions in addition to persistence. This work addresses an
enterprise architectural proposal that collapses all the layers in
the RDBMS. We propose an RDBMS-only architecture, where

the three classic web application layers are implemented on
top of an RDBMS. In other words, an extreme database-centric
architecture based almost exclusively on the capabilities and
strengths of RDBMSs: the 50 years old relational model
[8]–[12], the Structured Query Language (SQL) [13] and
a Database Programming Language (DBPL) [14]. We also
present a working prototype and some preliminary results that
show that the proposed architecture poses some advantages in
certain use cases.

The rest of this document is organized as follows. Section II
presents a brief analysis of state of the art on database-
centric architectures, while Section III presents the proposed
architecture. In Section IV, we discuss some lessons learned
during developing a prototype that follows this architecture.
We describe the experiments in Section V based on an adap-
tation of the Transaction Processing Performance Council Web
Commerce Benchmark (TPC-W) [15] and present preliminary
results. In Section VI, we discuss known limitations and
aspects of immediate research. Finally, in Section VII, we
conclude and outline some future lines of work on this topic.

II. STATE OF THE ART AND RELATED WORK

At a conceptual level, information systems are designed
around three layers: presentation layer, application logic layer
or business logic layer, and resource management layer or
data access layer. The presentation layer is responsible for
managing the display and collecting information to and from
the end-user, usually in a Graphical User Interface (GUI).
The business logic layer performs the processing related to
the particular business application, while the data access layer
executes database functions like retrieval, addition, deletion,
and modification of records [16].

These layers can be combined and distributed in separate
tiers in developed systems, which usually means different
servers. Many modern web applications use a three-tier archi-
tecture, in which the layers are commonly called client-tier,
middle-tier and data-tier or persistence-tier. In most cases, the
layers coincide with tiers. In particular, the business logic layer
matches with a tier that is “in the middle”, between the client
and persistence tiers, constituting a middle-tier in the physical
sense. This situation may explain why the terms “business
logic layer,” “middle layer,” and “middle tier” are sometimes
used as synonyms. It is worth mentioning that existing works
contribute to clarify of these architectural concepts [6].

There has been some confusion over the term client/server,
and it has sometimes been interpreted as synonymous for two-

tier architecture. To clarify the semantics, here we will use the
term client/server as a distributed computing model where a
client is a process that requests a service, and a server is a
process that provides a service [16]. Conceptually, any web
application follows the client/server model using HTTP as
the service protocol, regardless of its architecture’s physical
tiers. A web application with persistence can be described as
presented in Figure 1.

Fig. 1. Conceptual view of a web application with persistence

Web applications are accessed by a web browser, which
uses the HTTP protocol to connect to a web server, which
delivers the resources requested. The resources are typically
web pages, with associated resources like images or code
to be executed on the web browser. In this sense, a web
application can be seen as a client/server application where
the web browser is the client while the web server (along
with all the resources it uses in the background) is the server.
Enterprise web applications typically use a database managed
by a DBMS, often an RDBMS, to implement the persistence
tier.

Some “program” executes queries and manipulation state-
ments between the web server, which knows how to deliver
static content and the DBMS. This conceptual entity interacts
both with the web server and the DBMS. However, from
the logical point of view, it could reside in an independent
component, be integrated into the web server or DBMS, or
even be distributed among various components that may or
may not include the web server and DBMS. The growing
demands of building complex distributed applications main-
taining a low coupling have led to designing applications
using web services and middleware layers among databases
and client browsers [17]. In this model, each layer uses the un-
derlying layer services and provides more specialized services.
An architecture called Distributed Object Computing (DOC)
Middleware has also been proposed, a paradigm that supports
flexible and adaptable behavior based on the aggregation of
simple interactions through DOC Middleware layers [18].

To organize all the possible scenarios, Koppelaars performs

a classification of the eight theoretical combinations of the
three-tier systems (client-tier, middle-tier, data-tier) consider-
ing for each tier a thin version (“little code”) and a fat version
(“lots of code”) [19]. It is worth noting that there are seven
possible combinations in practice because the thin/thin/thin
case has no genuine interest. A thin/fat/thin architecture means
that the code is mainly in the middle tier, while a thin/thin/fat
architecture means that the code is primarily in the data tier.
Koppelaars also distinguishes between User Interface (UI)
Code, Business Logic (BL) Code, and Data Logic (DL) Code.

According to the Koppelaars classification, most modern
web applications have a thin/fat/thin architecture (or Thick
Middleware as presented in Figure 2). However, Middleware is
not the only tier that could be thickened by business logic. Web
applications require thin clients, but the use of a thick tier of
Middleware, while common, is neither necessary nor universal.
There is an alternative to locate the complex business logic:
the data-tier. In this case, and as Koppelaars points out, a
thin/thin/fat combination is theoretically possible, and in some
cases, it might be convenient. He refers to this case as the
database-centric architecture.

Fig. 2. A logical view of web Applications

In the literature, the terms database-backed, RDBMS-
backed, database-centric, and database-driven are used to
describe web architectures where the RDBMS plays a vital
role. Although the surveyed works usually do not provide
precise definitions of these terms, we sketch each approach
in the following, focusing on the RDBMS responsibilities.

In database-backed web sites, the content is dynamically
generated querying the database, and there is no application
server [20].

In the database-centric architecture, the RDBMS plays
a central role in the logic of applications [19], [21]–[25].
Simultaneously, the database-driven architecture extends the
database-centric approach, and the data stored in the database
is also used to determine the behavior of applications [26]–

[28]. Along with the central role of RDBMS in applica-
tion logic, the database-centric approach also prescribes a
methodology for the process of software development. This
process begins designing the data model and transactions in
an RDBMS, followed by a page flow design, and ending with
the implementation of the individual pages [20], [29].

Thickening the data tier with business logic could be con-
venient if the RDBMS implements a DBPL. This architecture
is possible whether we call it thin/thin/fat, database-centric, or
Thick database. However, couldn’t this database-centric archi-
tecture be more extreme? Without the need to use middleware,
the thin/zero/fat combination is possible.

In the industry, Application Express (APEX) is an Oracle
product that follows this extreme database-centric architec-
ture, and Oracle promotes what it calls the Thick Database
Paradigm, or Smart DB [30], [31]. APEX is an example of a
thin/zero/fat combination or RDBMS-only architecture, where
an entire application is contained in the RDBMS. Even the
web server can be contained in the RDBMS if the embedded
PL/SQL Gateway (EPG) is used. There are other alternatives
to deploy what Oracle calls the web listener, an Apache
module, or a Java application. Either way, this web listener is a
technological component, and in terms of the 4+1 view model,
the logical view of the architecture focuses exclusively on the
RDBMS. When Oracle says that the APEX architecture is
“simple”, it refers to the physical view. However, the essential
complexity of an application cannot be removed and can only
be moved. Although the RDBMS-only architecture’s physical
view is simplified by bringing all the complexity to a single
component, the logical complexity within this component
increases, raising design concerns.

How APEX is designed is a valid question. Still, more
generally (and because the RDBMS-only architecture is not
a monopoly of a technology provider, but a little-explored
possibility that could have advantages in certain use cases), a
more interesting question is: how an RDBMS-only architecture
can be defined? We attempt to answer this question in Section
III.

But another valid question arises. Why has Oracle advanced
so much in a line of work that seems to go against the
general trend? Although we cannot answer this question, it
is interesting to note some historical data on the development
of web applications. One of the first approaches to generating
dynamic web content was an industry proposal formalized in
the Common Gateway Interface protocol, or CGI, in 1993
[32]. This protocol specifies how a web server can interact
with external programs, called CGI scripts, as well as how
in which these return the dynamic pages to the web server.
The object-Oriented Programming (POO) paradigm boomed
in the 90 when the web emerge [33]. Still, Object-Oriented
Database Management Systems (OODBMS) were not mature
and were sparsely adopted by the industry [34]. Proposals
for web applications after CGI have generally followed the
trend of incorporating object-orientation where it was most
mature: in the general-purpose programming languages, not
in databases. And the typical architecture has had an object-

oriented middle-tier and a relational data-tier.
The object-relational impedance mismatch issue has been

resolved with a component dedicated to implementing the
Object-Relational Mapping (ORM), and these components
have advanced to increase productivity by hiding much of the
complexity of data access.

Oracle, at least with its products Forms and APEX, against
the general trend, has historically adopted database-centric
architectures that make intensive use of its DBPL called
PL/SQL. However, the feasibility of walking this path does not
seem to depend on any particularity of the Oracle RDBMS,
and any RDBMS that implements a DBLP may be the basis
of the RDBMS-only architecture.

III. THE RDBMS-ONLY ARCHITECTURE

For the architectural proposal, we set three design objec-
tives: 1) Engine independence, 2) Thick Database Paradigm
empowerment, and 3) Separation of concerns. Engine inde-
pendence means the logical independence between the code
that makes the application works (engine) and the user’s
applications. Thick Database Paradigm empowerment means
the architecture will define a series of layers, each of which
can only invoke operations from the immediately preceding
layer. Furthermore, separation of concerns means that the
architecture will prescribe the number of layers and their
interests

Figure 3 shows the logical view of the architecture. On
the right side are the layers of user applications. Each layer’s
code only has allowed to know objects and invoke code that
resides in the layer immediately lower, and eventually, its
layer. The Data Logic (DL), Business Logic (BL), and User
Interface (UI) Code layers follow the Koppelaars classification.
However, a new Service Interface (SI) code layer is presented
at the same level as the UI Code layer. Also, the Interface
Wrapper layer aims to separate the input and output of data
from the particularities of both the graphical interface and web
services. On the left side is the engine, which does not follow
the layered architecture of user applications.

Fig. 3. A logical view of the RDBMS-only architecture

DL Code layer includes the DBPL code where SQL
statements are allowed to be used. It offers the top layer an
interface to manipulate the base tables as Abstract Data Types
(ADT). This layer can be generated and synchronized with
the database schema automatically, and a catalog of existing
functions could be kept to be used by the top layer. It could
also offer a separate standard interface of the RDBMS if there
were a standard DBPL, and the fact that such language does

not exist today does not mean that it cannot be developed in
the future.

BL Code layer consumes the DL Code layer’s operations
and contains the logic of the domain. This layer could be
subdivided, either in upper and lower sublayers or in segments
for cross functionalities, such as reports or authentication and
authorization systems. This layer’s interface offers high-level
operations in procedural format with the specific data types of
the RDBMS.

The Interface Wrapper layer consumes the BL Code
layer’s high-level operations. It offers them to the upper layers,
but with inputs and outputs in a standard text-based format
independent of the RDBMS data types and the interface, such
as XML or JSON.

Finally, in the UI and SI Code layers, two different
output format options are included. One is designed for end
customers through a web browser, and another is planned for
Web Services. As long as there are no interface elements in
any underlying layers, maintaining this interface should be
relatively straightforward.

It should be noted that the UI Code layer should only be
sufficient to offer interface elements, but this is not enough
to generate the browsing experience in a web application. For
that, we must have a navigation model. This model could be
based on Koppelaars’ original idea of an application such as a
page network: a directed graph where the nodes are the pages
and the edges the valid navigations between them [19].

The application’s behavior, including how dynamic pages
are generated, the internal structure of the pages, and nav-
igation, are defined in the engine. The general architecture
does not prescribe a data model for an application beyond
the hierarchy of the entities: application, page, region, item.
Our proposal also determines a development methodology. It
starts designing the data in the database and continues through
the design of the page flows. For example, in a bookstore e-
commerce application, entities such as book and author should
be modeled, resulting in the logical model of tables. There
should be support to generate the DL Code automatically.
Besides the structure of the pages, the flow between them
should be designed. For example, to go from a “Search
Results”page to a “Product Details” page, a book ID must be
passed, and a homogeneous mechanism must be provided to
perform this passage. These variables must be kept associated
with each session, and there may be session variables at the
application level or the page level.

In Section II, we mentioned that the web listener is a techno-
logical component without much relevance for the logical view
of the architecture. Figure 4 shows the web listener function
of translating an HTTP request into a DBPL request, and
back, translating a DBPL response into an HTTP response.
The architecture prescribes to support at least GET and POST
methods. Each request is the request of a page, and each
response is an HTML page, eventually with other resources
like images, CSS and JavaScript. The web listener is entirely
stateless, and even the session management is done in the
RDBMS. Due to this, there can be multiple web listeners

Fig. 4. The web listener as a HTTP / DBPL translator

serving HTTP requests for the same RDBMS.
There are common objections to database-centric archi-

tectures that discuss the ability to scale and provide high
availability, both related to a supposed monolithic architecture
structure of that “same RDBMS”. There is an old but current
debate about the TP-heavy versus TP-lite debate [35]. We
will not enter into that debate because scalability and high
availability issues within an RDBMS can be addressed and
entirely improved independently and transparently from this
proposal. We will only note that there are real-world cases
where scalability and high availability were central problems
in which a solution based on an RDBMS was chosen [36]–
[38]. Also, in recent years much progress has been made in
strategies to provide scalability, high availability and extreme
performance in both relational and non-relational DBMSs
[39]–[44].

In any case, we are not arguing that this proposal is compati-
ble with the most scalable and fault-tolerant architecture of the
possible ones. There is a niche for architectures and technolo-
gies that don’t need extreme scalability and high availability
requirements, after all [45]. The core of this work consists in
showing the feasibility of an RDBMS-only architecture and
technology applicable to any RDBMS with a powerful DBPL.
In others words, we question the “one size fits all” trend that
seems to rule today’s web development practices.

IV. PROTOTYPE IMPLEMENTATION

A prototype called webpg was developed with PostgreSQL
as RDBMS and an Apache HTTP Server module called
mod_plpgsql as a web listener, with the ability to run
arbitrary PL/pgSQL code1. We intentionally avoided Oracle as
RDBMS to check if the feasibility of developing a product like
APEX depended on some inherent features of this RDBMS.
PostgreSQL was used because it is a Free and Open Source
product with a mature and powerfull DBPL. Some ideas were

1Source code available at https://gitlab.fing.edu.uy/lorenae/rdbms-only

taken from APEX; nevertheless, in many ways, our prototype
differs from it.

Fig. 5. Physical view of the RDBMS-only architecture

Figure 5 presents the physical view of the architecture. An
important design decision is the syntax of the input parameters
of HTTP Requests, both in the case of GET and POST.
Following APEX, we decided not to pass any parameters with
business logic semantics in the requests. This decision has the
disadvantage that any navigation that must pass parameters
with semantics must use the POST method. However, it offers
a homogeneous and straightforward way to process requests
while constituting a safe design avoiding the possibility of
injections in requests.

Any request like http://host[:port]/plpgsql/...
that arrives at the host and port where the Apache HTTP
serves activates the mod_plpgsql module’s handler and
its code will process the request. The URL of a Request
when the GET method is invoked follows the syntax
plpgsql/conf?g&p=app[:page[:ses]]. The URL
of a Request when the POST method is invoked follows the
syntax plpgsql/conf?p, where the parameters should be
passed as a JSON map of the form:

{
” a pp id ” : ” app ” ,
” p a g e i d ” : ” page ” ,
” s e s s i o n i d ” : ” s e s s i o n ” ,
. . .

}
The mod plsql validates the existence of a configuration

called conf in a special file, which must have the connection
parameters for the database, and through libpq it executes
select * from g(’p=app:page:sess’). The func-
tion g() must exist in the database and must be in charge of
processing the GET, just as there must be a function p() in
charge of processing the POST. The syntax is arbitrary, but it
must be defined a priori. When an application is developed,
navigation can be implemented following the syntax, using
links or HTML Forms, as shown in Figure 6. It is worth noting
that other parameters with business semantics such as book id
can be passed.

In the case of the GET, both the page and the session are
optional. If a page is not specified, the application assumes
that a default application page is requested, and if a session
is not specified, the application assumes that it is of the first
request of a user.

Fig. 6. Navigation code example

Figure 7 presents a logical view of the engine. It is relevant
to appreciate the basic hierarchy: application, page, region,
item since an application will be a set of tuples that will
populate the tables derived from this Entity-Relationship (ER)
Model.

Fig. 7. Logical view of the engine

The central part of the prototype consists of developing
a function g() to attend HTTP requests with GET method;
and a function p() to attend HTTP requests with POST
method. In either case, it should be noted that the fundamental
problem is getting a page from an application beyond the
technological difference. For this reason, there is a generic
getpage() function, which could be used for both GET and
POST, as well as intermediate functions process get() and
process post() to solve particular GET and POST problems,

respectively. Figure 8 presents an excerpt from a process view
of the architecture, showing the relationship between the main
prototype functions.

Fig. 8. Main functions of the prototype

The getRegion() and getItem() functions in Figure 8 retrieve
varchar values stored in tuples (which can correspond to
functions of the UI Code in Figure 3) and are executed
dynamically. Figure 9 shows examples of function items that
are executed dynamically, using page variables (see Figure
7). The value of a page variable can be a function like
get session var(), the string “###S###” is replaced at runtime
by the session ID, and the get session var() function returns
the value of a page variable called book id on page 9 (Product
Detail) for that session. Previously, when navigating from
another page to page 9, this session variable had to be set
in the POST. The model of Figure 7 supports variables at the
page level and at the session level. When page 9 is generated
for that session, the function items in Figure 9 are instantiated
with the values of the title, author and subject of the selected
book.

Fig. 9. Function items for dynamic execution

The development process of the prototype involved two
elements. The first one is the development of the database
code and structures, focused on the application domain. It
includes conceptual modeling, logical modeling, physical im-
plementation, execution of automatic functions that generate
the DL Code layer, development of business logic functions
at the BL Code layer, and the Interface Wrapper and UI Code
functions. The second part involves developing the application
pages, which is reduced to populating most of the structure
presented in Figure 7.

The prototype development process left several lessons
learned. For example, we discovered that it is impossible
to navigate and pass parameters with semantics using GET.
A workaround is to use the POST method, with a relative
increase in the complexity of the HTML code. However, the
most important lesson is that we successfully implemented a
complete use case described in the following section.

V. EARLY RESULTS

This Section presents an experiment consisting of devel-
oping a simple e-commerce application using our prototype
from Section IV. The system chosen was TPC-W, a well-
known benchmark for e-commerce systems that specifies all
the relevant details of an application [15], [46]. A TPC-W
implementation with Java Servlets is also available [47], [48].
There are at least two good reasons to develop an equivalent
implementation of this application using our prototype.The
first is that it is possible to validate if the prototype’s imple-
mented application achieves identical interfaces and behavior.
The second is that it is possible to benchmark both applications
according to quality characteristics, especially performance,
since TPC-W prescribes performance metrics.

TPC-W web application consists of 14 pages with various
navigation sequences among them. The ER model comprises
eight tables where both the schema and each table’s data
volume are specified. The user interface is also described in
the TPC-W specification, offering an HTML code sample for
each of the pages.

Development began by defining the most static pages, such
as the “Home”. Despite being an almost static page, its
development presented two different challenges. First, the
impossibility of implementing some links with arbitrary pa-
rameters as <a> tags. Second, obtaining five books to display
their thumbnails, according to a specific random procedure
defined in the benchmark’s promotional processing section.

Once the development of this small application was com-
pleted, the feasibility of implementing applications with this
architecture was empirically shown. Moreover, it also enables
performance comparison between our implementation and
Wisconsin’s Java Servlet-based implementation.

Figure 10 shows what the two implementations share and
how they differ. For this comparison, we use the same database
with the same schema and data volume. The Java Servlet-based
implementation accesses the database through Java Database
Connectivity (JDBC) and fetches filesystem images. The
RDBMS-only implementation uses the mod plpgsql module
as an adapter between the HTTP and libpq protocols. However,
it processes all requests in the database, including the images
that are stored in tables.

TPC-W performance tests prescribe three types of usage
scenarios on the e-commerce site: Shopping, Browsing and
Ordering. For each of these scenarios, it establishes the Re-
quests’ frequency to each of the 14 pages of the site. The most
relevant performance measure is the Web Interaction Response
Time (WIRT), which is the time that passes from when the

Fig. 10. Implementation comparison

first byte is sent from the browser until the browser receives
the last byte.

Figure 11 represents the results of a performance compar-
ison using the WIRT measure. The frequencies of loading
times for two of the most accessed pages were compared
during Shopping Mix interactions. The results correspond to
10 Emulated Browsers (EB) running concurrently for one hour,
and a catch & reply strategy was used. Therefore the sessions
performed the same navigations on the two systems.

Fig. 11. Performance comparison

Figure 11 shows that there are no significant performance
differences between the two implementations. There are also
no significant differences from this comparison with the other
pages and the other types of Mix interactions. A preliminary
observation is that the Java Servlets implementation has a
higher frequency of slightly better response times but has
higher dispersion than the RDBMS-only implementation. Our
prototype seems to have slightly slower response times but is
more stable in observed response times. It is worth noting that
no database optimization was done.

This result must be interpreted in the light of the objectives:
we are not trying to show that our RDBMS-only prototype
would have better performance than an alternative based on
Java Servlets, but we are only trying to show that it does
not have to have worse performance. For more comprehensive
performance analysis, the entire prototype code should be op-
timized. It should be borne in mind that beyond performance,
one of the objectives of implementing an alternative to TPC-W
was to validate the possibility of developing a small working
application.

VI. OPEN ISSUES AND KNOWN PAIN POINTS

Some aspects already identified that are still not addressed
must be addressed soon. A key aspect is version control
and change management. Modern software delivery method-
ologies and team collaboration require heavy use of source
code versioning. As application logic inside an RDBMS-only
system will be stored as DBPL, versioning should be addressed
with DBPL versioning tools. Applicability of database schema
and data versioning tools like liquibase [49], DbPatch [50],
Flyway [51], Evolve [52] and gitSQL [53] must be analyzed.
These tools proved adequate for full database versioning in
real application scenarios. We believe that they should be
specialized for the RDBMS-only requirements.

Another relevant problem is the availability of general-
purpose libraries. Although an RDBMS-only technology can
produce and consume web services, there are difficulties
interoperating and performing specific tasks due to the absence
of libraries that solve everyday problems. If we sacrifice
some of the design principles to certain levels, particularly
Engine Independence, we can select general-purpose DBPL
extensions. Our prototype is built on top of PostgreSQL [54],
which provides PL/Tcl, PL/Perl and PL/Python procedural
languages in the core distribution, in addition to PL/pgSQL
[55]. There are additional procedural languages maintained
by projects external to the PostgreSQL Global Development
Group (PGDG) such as PL/Java, PL/Lua, PL/R, PL/sh and
PL/v8 [56]. Beyond PostgreSQL, this diversity of extensions
is not common. No similar extension is available, for example,
in MariaDB [57]. Just in recent versions of MariaDB, a subset
of Oracle’s PL/SQL language has been supported in addition
to the traditional SQL/PSM-based MariaDB syntax [58]. In
Oracle, Java stored procedures are available [59], but Java
code stored in one RDBMS is not transportable to another,
at least without an abstraction layer of the RDBMS. Given
the importance of standard access to libraries, it could also be
considered to analyze feasibility of an RDBMS independent
extension that would allow uniform access to general-purpose
libraries. Detailed analysis and implementation proposals are
beyond the scope of this work.

Other development tools like IDEs and debuggers are a must
too in order to produce an industrial-grade solution. Despite
the analysis done and the confidence in finding a solution, all
these aspects are work in progress and must be considered
research subjects.

VII. CONCLUSIONS AND FUTURE WORK

Existing approaches to ease multilayering in web devel-
opment often neglect the data tier. As far as we know, ex-
treme database-centric architectures have not been previously
addressed or described in the literature. However, the industry
offers products like Oracle APEX, and Oracle claims several
success stories in several clients [60].

This work proposes RDBMS-only architecture, describes
it, and suggests future lines of research. It aims at showing
its existence and taking a position on its convenience in
specific scenarios. It seems an excellent alternative to convert
desktop applications to web applications when the architecture
is already database-centric, and the business logic layer is
implemented in the RDBMS using a DBPL. Investing in
the implementation of business logic in the DBPL of an
RDBMS also seems a good option in cases where presen-
tation and middleware technologies are expected to change
more frequently in the long term than RDBMS technologies.
Besides, technological simplicity could reduce IT operating
costs. Despite the promising results of the prototype, the
architecture has some aspects that require immediate attention,
as discussed in Section VI. To reach a certain maturity, version
control and change management need to be addressed. The
goal of RDMBS independence introduces limitations on the
availability of general purpose libraries that solve common
problems. This difficulty is accidental and is explained by
the low popularity of this type of architecture. In addition,
the maintainability of an RDBMS-only application depends
on the functionalities offered by the Integrated Development
Environment (IDE).

An in-depth analysis of the internal architecture of APEX
can help to refine the essence of the type of architecture that
emerges from the specimen specifics, trying to discern what
is necessary and what is contingent.

A second exciting line of research, outside the scope of
this paper, is the development of the SI code layer to use
the RDBMS-only architecture to provide web services. In this
case, without all the complexity of GUI elements, it may be
even easier to provide data services with an RDBMS-only
approach.

The third line of research could be the development of
an IDE that allows the development of applications in a
productive way.

Finally, progress could be made in the development of such
prototypes and their analysis as a software product using a
framework such as ISO 25010 [61].

REFERENCES

[1] W. W. Eckerson, “Three Tier Client/Server Architecture: Achieving
Scalability, Performance, and Efficiency in Client Server Applications.”
Open Information Systems, vol. 10, no. 1, 1995.

[2] X. Liu, J. Heo, L. Sha, and X. Zhu, “Adaptive control of multi-tiered
web applications using queueing predictor,” in NOMS. IEEE, 2006,
pp. 106–114.

[3] M. Mocker, “What is complex about 273 applications? untangling
application architecture complexity in a case of european investment
banking,” in 2009 42nd Hawaii International Conference on System
Sciences, 2009, pp. 1–14.

[4] S. Scantlebury, W. Thiel, A. Datel, and S. Kimmel, “From it complexity
to commonality: Making your business more nimble,” Opportunities for
Action in Information Technology, 2004.

[5] P. Child, R. Diederichs, F.-H. Sanders, and S. Wisniowski, “Smr fo-
rum: the management of complexity,” MIT Sloan Management Review,
vol. 33, no. 1, p. 73, 1991.

[6] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, “Web services,” in
Web Services. Springer, 2004, pp. 123–149.

[7] “Spring Framework.” [Online]. Available: https://spring.io/
[8] E. Frank Codd, “Derivability, Redundancy and Consistency of Relations

Stored in Large Data Banks,” IBM Research Report RJ 599, Tech. Rep.,
Aug. 1969.

[9] ——, “A Relational Model of Data for Large Shared Data Banks,”
Communications of the ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[10] ——, “A Data Base Sublanguage Founded on the Relational Calculus,”
in Proceedings of the 1971 ACM SIGFIDET (now SIGMOD) workshop
on data description, access and control, Jul. 1971, pp. 35–68.

[11] ——, “Further Normalization of the Data Base Relational Model,” Data
Base Systems: Courant Computer Science Symposia Series 6, vol. 6, pp.
33–64, 1972.

[12] E. Frank Codd et al., Relational Completeness of Data Base Sublan-
guages. IBM Corporation, Mar. 1972.

[13] D. D. Chamberlin and R. F. Boyce, “Sequel: A structured english query
language,” in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD)
workshop on Data description, access and control, 1974, pp. 249–264.

[14] J. Schmidt, H. Eckhardt, and F. Matthes, “Dbpl report,” 1988.
[15] T. P. P. C. (TPC), “Tpc benchmark w (web commerce) specification,”

Dec. 2003. [Online]. Available: http://www.tpc.org/tpc documents
current versions/pdf/tpcw v2.0.0.pdf

[16] J. Scourias, “Aspects of client/server database systems,” 1995.
[17] P. A. Bernstein, “Middleware: a model for distributed system services,”

Communications of the ACM, vol. 39, no. 2, pp. 86–98, 1996.
[18] R. E. Schantz and D. C. Schmidt, “Middleware for distributed systems:

Evolving the common structure for network-centric applications,” Ency-
clopedia of Software Engineering, vol. 1, pp. 1–9, 2001.

[19] T. Koppelaars, “A Database-Centric Approach to J2EE Application De-
velopment,” Oracle Development Tools Users Group (ODTUG), 2004.

[20] P. Greenspun, Database Backed Web Sites: The Thinking Person’s Guide
to Web Publishing. Ziff-Davis Publishing Co., 1997.

[21] J. C. Shafer and R. Agrawal, “Continuous querying in database-centric
web applications,” Computer networks, vol. 33, no. 1, pp. 519–531,
2000.

[22] J. Ploski, W. Hasselbring, J. Rehwinkel, and S. Schwierz, “Introducing
version control to database-centric applications in a small enterprise,”
IEEE software, vol. 24, no. 1, 2007.

[23] S. M. Krishna, S. Karnati, A. Biswas, and J. Srinivasan, “Analysis and
Modeling of Evolving Database-centric Web Applications.” in COMAD,
2010, p. 65.

[24] T. Chen, “Improving the quality of large-scale database-centric software
systems by analyzing database access code,” in 2015 31st ICDE Work-
shops, 2015, pp. 245–249.

[25] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “Doc-
umenting database usages and schema constraints in database-centric
applications,” in Proc. of the 25th International Symposium on Software
Testing and Analysis, 2016, pp. 270–281.

[26] S. Ceri, P. Fraternali, and S. Paraboschi, “Data-driven, one-to-one web
site generation for data-intensive applications,” in VLDB, vol. 99, 1999,
pp. 7–10.

[27] K. S. Candan, W.-S. Li, Q. Luo, W.-P. Hsiung, and D. Agrawal,
“Enabling Dynamic Content Caching for Database-driven Web Sites,”
in SIGMOD. New York, NY, USA: ACM, 2001, pp. 532–543.

[28] M. Muji, “Application Development in Database-Driven Information
Systems.” Acta Universitatis Sapientiae-Electrical & Mechanical En-
gineering, vol. 2, 2010.

[29] Eve Andersson, Philip Greenspun, and Andrew Grumet, Software
Engineering for Internet Applications, 2006. [Online]. Available:
http://philip.greenspun.com/seia

[30] P. Cimolini, Oracle Application Express by Design: Managing Cost,
Schedule, and Quality. Apress, 2017.

[31] B. Llewellyn, “NoPlsql versus ThickDB.” [Online]. Available: https:
//blogs.oracle.com/plsql-and-ebr/noplsql-versus-thickdb

[32] T. A. S. Foundation, “Rfc 3875 - the common gateway interface
(cgi) version 1.1,” 2004. [Online]. Available: https://tools.ietf.org/html/
rfc3875

[33] J. Nielsen, “Noncommand user interfaces,” Communications of the ACM,
vol. 36, no. 4, pp. 83–99, 1993.

[34] W. Kim, “Object-Oriented Database Systems: Promises, Reality, and
Future.” in VLDB, vol. 19, 1993, pp. 676–692.

[35] J. Gray, “Why tp-lite will dominate the tp market.” in HPTS, 1993, p. 0.
[36] J. Shute, M. Oancea, S. Ellner, B. Handy, E. Rollins, B. Samwel,

R. Vingralek, C. Whipkey, X. Chen, B. Jegerlehner et al., “F1-the fault-
tolerant distributed rdbms supporting google’s ad business,” 2012.

[37] J. Shute, R. Vingralek, B. Samwel, B. Handy, C. Whipkey, E. Rollins,
M. Oancea, K. Littlefield, D. Menestrina, S. Ellner et al., “F1: A
distributed sql database that scales,” 2013.

[38] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman,
S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild et al., “Spanner:
Google’s globally distributed database,” ACM Transactions on Computer
Systems (TOCS), vol. 31, no. 3, pp. 1–22, 2013.

[39] M. Stonebraker and R. Cattell, “10 rules for scalable performance
in’simple operation’datastores,” Communications of the ACM, vol. 54,
no. 6, pp. 72–80, 2011.

[40] R. Cattell, “Scalable sql and nosql data stores,” Acm Sigmod Record,
vol. 39, no. 4, pp. 12–27, 2011.

[41] I. Rae, E. Rollins, J. Shute, S. Sodhi, and R. Vingralek, “Online, asyn-
chronous schema change in f1,” Proceedings of the VLDB Endowment,
vol. 6, no. 11, pp. 1045–1056, 2013.

[42] S. Loesing, M. Pilman, T. Etter, and D. Kossmann, “On the design and
scalability of distributed shared-data databases,” in Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data,
2015, pp. 663–676.

[43] S. Harizopoulos, D. J. Abadi, S. Madden, and M. Stonebraker, “Oltp
through the looking glass, and what we found there,” in Making
Databases Work: the Pragmatic Wisdom of Michael Stonebraker, 2018,
pp. 409–439.

[44] G. A. Schreiner, R. Knob, D. Duarte, P. Vilain, and R. d. S. Mello,
“Newsql through the looking glass,” in Proceedings of the 21st Inter-
national Conference on Information Integration and Web-based Appli-
cations & Services, 2019, pp. 361–369.

[45] C. Nance, T. Losser, R. Iype, and G. Harmon, “Nosql vs rdbms-why
there is room for both,” 2013.

[46] D. A. Menascé, TPC-W: A Benchmark for E-commerce, 2002.
[47] H. W. Cain and R. Rajwar, “An architectural evaluation of Java TPC-

W,” in Proc of the 7th Int. Symposium on HPC Architecture, 2001, pp.
229–240.

[48] T. Bezenek, T. Cain, R. Dickson, T. Heil, M. Martin, C. McCurdy, R. Ra-
jwar, E. Weglarz, C. Zilles, and M. Lipasti, Java TPC-W implementation
distribution, 2011.

[49] “Liquibase.” [Online]. Available: https://www.liquibase.org/
[50] “DbPatch.” [Online]. Available: https://github.com/dbpatch/DbPatch
[51] “Flyway.” [Online]. Available: https://flywaydb.org/
[52] “Evolve.” [Online]. Available: https://evolve-db.netlify.app/
[53] “gitSQL.” [Online]. Available: https://gitsql.net/
[54] “Postgresql.” [Online]. Available: https://www.postgresql.org
[55] “PostgreSQL: Documentation: 13: Chapter 41. Procedural Languages.”

[Online]. Available: https://www.postgresql.org/docs/current/xplang.
html

[56] “PostgreSQL: Documentation: 13: Chapter h.3. External Projects -
Procedural Languages.” [Online]. Available: https://www.postgresql.org/
docs/13/external-pl.html

[57] “Mariadb enterprise open source database.” [Online]. Available:
https://mariadb.com

[58] “SQL MODE ORACLE - MariaDB Knowledge Base.” [Online].
Available: https://mariadb.com/kb/en/sql modeoracle/

[59] “Java Programming in Oracle Database.” [Online].
Available: https://docs.oracle.com/en/database/oracle/oracle-database/
21/jjdev/Java-application-strategy.html

[60] “Oracle success stories.” [Online]. Available: https://apex.oracle.com/
en/solutions/success-stories/

[61] ISO/IEC, “ISO/IEC 25010 System and software quality models,”
ISO/IEC, Tech. Rep., 2010.

