
EasyChair Preprint

№ 189

On Expanding Standard Notions of Constructivity

Liron Cohen and Ariel Kellison

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

May 30, 2018



On Expanding Standard Notions of Constructivity
Liron Cohen∗

Cornell University
Ithaca, NY, USA

lironcohen@cornell.edu

Ariel Kellison
Cornell University
Ithaca, NY, USA

ak2485@cornell.edu

Abstract
Brouwer developed the notion of mental constructions based
on his view of mathematical truth as experienced truth.
These constructions extend the traditional practice of con-
structivemathematics, andwe believe they have the potential
to provide a broader and deeper foundation for various con-
structive theories. We here illustrate mental constructions in
two well-studied theories – computability theory and plane
geometry – and discuss the resulting extended mathematical
structures. Further, we demonstrate how these notions can
be embedded in an implemented formal framework, namely
the constructive type theory of the Nuprl proof assistant.
Additionally, we point out several similarities in both the
theory and implementation of the extended structures.

1 Introduction
Plane geometry and computability theory share a construc-
tive foundation. Since its inception in the Elements, Euclidean
plane geometry has been conceived of as a theory based
on straightedge and compass constructions. Similarly, com-
putability theory is founded on functions for which there is
an effective method, or computation, for obtaining the values
of the function. Just as standard geometric constructions are
informally perceived as those of the straightedge and com-
pass, the standard computations are informally perceived as
those computable by some pen and paper method.
Intuitionistic mathematics as conceived by Brouwer (see

e.g. [15, 31, 25]) extends the standard notions of construc-
tions by admitting also those constructions corresponding to
human experiences of mathematical truths, which we here
refer to asmental constructions. Brouwer adds to the effective,
algorithmic constructions mental constructions made by the
idealized mathematician (or the “creative subject” ).
According to Brouwer, mathematical truths are experi-

enced, and thus mental constructions are formed, based on
temporal, rather than spatial, intuitions:

From this intuition of time, independent of expe-
rience, all the mathematical systems, including
spaces with their geometries, have been built
up, and subsequently some of these mathemati-
cal systems are chosen to catalogue the various
phenomena of experience. [14]
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In computability theory, the notion of infinitely proceeding
sequences of freely chosen objects, known as free choice se-
quences (which lay at the heart of intuitionistic mathematics),
can only take place when regarding functions as constructed
over time. In plane geometry, the construction of points at
infinity, which are the intersection of infinitely proceeding
parallel lines (which are the essence of projective geometry),
has no basis in our intuition of space, which is fundamen-
tally Euclidean and thus limits our capacity for experiencing
geometric truths.
We here incorporate free choice sequences and points at

infinity into their corresponding theories. Even though ex-
ploiting the intuitionistic notion of mental constructions in
these theories exceeds their respective standard construc-
tions, we demonstrate how they can be captured in a formal
computational framework. Namely, we outline how these
ideas can be expressed in the constructive type theory of the
Nuprl proof assistant [18, 1].

2 Expanding the Function Space
2.1 Standard Computability Theory
Church-Turing computability constitutes the standard no-
tion of computation. This notion defines the computable
functions as those for which there is an effective method
for obtaining the values of the function. For those, Turing
used the term ‘purely mechanical’, whereas Church used
‘effectively calculable’.

define the notion ... of an effectively calcu-
lable function of positive integers by identi-
fying it with the notion of a recursive func-
tion of positive integers (or of a λ-definable
function of positive integers). [16]

This notion of computability is the one underlying the
computational theories invoked by standard constructive
type theories, which in turn are at the base of extent proof
assistants such as Nuprl, Agda [9], and Coq [4]. Thus, the
elements of the function type A → B are taken to be the
effective (computable) functions from the type A to the type
B. The canonical form of elements of this type are therefore
terms of the form λx .t .

2.2 The Creative Subject and Choice Sequences
In his exploration of intuitionistic mathematic Brouwer put
forward a new notion of computation that exceeds the stan-
dard Church-Turing computability. He proposed accepting



non-lawlike computations, i.e. computations for which there
is no method governing them. This notion was captured
using the concept of free choice sequences [12, 30, 19].

Choice sequences are never finished sequences of objects
created over time by a creative subject. They can be lawlike in
the sense that they are determined by an algorithm (i.e., stan-
dard computable functions), or lawless in the sense that they
are not subject to any law (i.e., free). Free choice sequences
are described as:

new mathematical entities. . . in the form
of infinitely proceeding sequences, whose
terms are chosen more or less freely from
mathematical entities previously acquired. . . [12]

Hence, a free choice sequence is infinitely proceeding, i.e.
it comes into existence by a never ending process of picking
natural numbers. Therefore, it is never fully completed and
can always be extended. The choices of values in a free choice
sequence are made freely, that is, they are not governed by
any rule. For instance, one might think of the results of toss-
ing a dice time and time again as a free choice sequence.
While this clearly steps out of the realm of sequences con-
structed by an algorithm, there is a mental conception of how
to create such sequences. The ideal mathematician, or the
creative subject, can simply pick numbers as time proceeds.

Choice sequences were originally introduced by Brouwer
in order to explain the structure of the continuum. In contrast
to Bishop’s account of the constructive reals, Brouwer’s intu-
ition was that the continuum can not be seen as constructed
by discrete elements, rather the continuum should have the
property that it cannot be “pulled apart”.1 Brouwer devel-
oped the intuitionistic continuum by defining a real number
as a choice sequence of nested rational intervals. A key point
is that the choice sequence itself is the real number, and not
its limit. Brouwer’s interpretation of the continuum is then
given by the concept of a spread, which can be thought of as
a totality of choice sequences. In the spread one is not able to
refer to any specific path (i.e., an individual choice sequence)
only to a subspread. This is reflected in the central axiom for
free choice sequences (known as ‘Axiom of Open Data’ [29])
which roughly speaking states that if a property holds for
a free choice sequence, then there is a finite initial segment
of that sequence, s , such that this property holds for all free
choice sequences with s as initial segment. Thus, the axiom
does not provide information on a specific choice sequence,
rather on the subspread determined by an initial segment,
therefore in a sense constitutes as a continuity principle.

The existence of free choice sequences has major implica-
tions which lay at the heart of intuitionistic mathematics. For
example, the Axiom of Open Data (more precisely, the conti-
nuity principle for numbers which follows from it) was used

1As put nicely in [8]: “In Brouwer’s case there seems to have been a nagging
suspicion that unless he personally intervened to prevent it, the continuum
would turn out to be discrete.”.

by Brouwer in order to prove that all real-valued functions
on the unit interval are uniformly continuous [13, Thm.3].
The bar induction principle, which is a powerful intuitionis-
tic induction principle (equivalent to the classical transfinite
induction) is another consequence of the introduction of free
choice sequences [11, 10], which has also been explored in
the context of the Nuprl proof assistant [28].

3 Expanding the Point Space
3.1 Standard Constructions for Euclidean Geometry
What does it mean for a geometric proposition to be true?
Certainly, a geometric proposition is true if it is validated
by a straightedge and compass construction. Conviction in
geometric truths of this nature requires, for a formal analy-
sis, axioms expressed using the formalization of these tradi-
tional tools. In such a treatment of geometry it is possible
to conceive of an abstract human geometer, who applies –
in an algorithmic way – the traditional geometric tools to
“geometric things”. This is notably similar to the informal cor-
respondence between computable functions and algorithms
that can be carried out by some idealized human computer
by pen on paper. 2

The analogy between the human computer and the human
geometer becomes less apparent when it is necessary to iden-
tify what exactly is meant by “geometric things”. While the
human computer uses only purely mathematical structures
as inputs when evaluating functions, the abstract geometer
may not be required to carry out constructions on objects
with definite mathematical properties. For example, in Eu-
clid’s Elements, points are defined only as “that which has no
part” [20]. Axiomatizations of Euclidean geometry are there-
fore historically synthetic – they do not stipulate what the
primitive objects are – admitting both “pre-mathematical”
and purely mathematical models [22].
Numerous works have developed axiomatic systems for

geometry that rely on straightedge and compass (or similarly
familiar) constructions, e.g. [24, 2, 3, 27]. Euclidean geometry
based on straightedge and compass constructions has been
implemented in the Nuprl proof assistant as well [6].

3.2 Extending the Euclidean Point Space: The
Projective Extension

A commonplace extension of the Euclidean plane is the pro-
jective extension. A projective plane is constructed from the
Euclidean plane by adding to the Euclidean points points at
infinity corresponding to the perception that parallel lines
intersect at a point on the horizon.3 This extension is triv-
ial classically, but requires great effort in an intuitionistic

2We borrow this analogy from, e.g. [26].
3Actually, one also has to add to the Euclidean lines a line at infinity to
which all the points at infinity are incident. The formalization of this line is
straightforward once the extension of points is established, therefore we
elide this treatment in what follows.
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setting.4 The projective extension exceeds the notion of stan-
dard constructions in Euclidean geometry. Nonetheless, the
projective extension can be captured within a formal com-
putational framework as we outline in the next section.

Remark. Note that, even in the Euclidean plane, an intu-
itionistic treatment admits constructions that exceed the
straightedge and compass [2]. In order to ensure that the
intuitionistic continuum serves as a model for geometry, it
is necessary to make use of the apartness relation on points
(or some equivalent notion, see Sec. 4.2.1). Apartness, to-
gether with its corresponding axiom of co-transitivity on
points, provides a “global notion” that imposes a continuous
behavior on the topological space of synthetic points [32]. A
result of this extension of the traditional straightedge and
compass constructions in the Euclidean plane is a surpris-
ingly concise capturing of Euclid’s propositions. Specifically,
in our Nuprl implementation of Euclidean geometry with
the apartness relation, we were able to prove a construc-
tive version of Proposition 2 from Book I of the Elements
in its full form. Proposition 2 constructs the rigid compass
from the collapsing compass (the collapsing compass is the
“axiomatic” compass taken by Euclid). In [2], Beeson shows
that the full form of Proposition 2 is not provable in a sys-
tem of Euclidean geometry using constructive logic without
apartness.

4 Type Theoretic Account
In this section we demonstrate how the aforementioned
extended notions of constructions can be implemented in a
formal system, namely the Nuprl proof assistant. We start
by outlining the key components of the implementation of
each theory, and then discuss the similarities between them.

4.1 Implementation in Nuprl
The Nuprl proof assistant implements a type theory called
Constructive Type Theory (CTT), which is a dependent type
theory, in the spirit of Martin-Löf’s extensional theory [23],
based on an untyped functional programming language. It
has a rich type theory including equality types, W types,
quotient types, set types, union and (dependent) intersec-
tion types, PER types, approximation and computational
equivalence types, and partial types.
The quotient type [17] is of particular use to us in this

work. Given a type T and an equivalence relation E on T we
can form in Nuprl the quotient type T //E whose elements
are the elements ofT , but the underlying equality of the type
is redefined by E. That is, two elements x ,y ∈ T are equal in
the quotient type T //E provided E(x ,y).

4Heyting was the first to publish on the intuitionistic projective extension,
which exemplified the complexities of the intuitionistic method [21].

4.1.1 Choice Sequences
Recently we have integrated choice sequences into the con-
structive type theory implemented by Nuprl proof assistant
[5], thus showing that CTT is expressive enough to extend
computation to Brouwer’s broader notion that includes non-
lawlike computability. The free choice sequences were there
introduced into the function type A → B, which previously
exhibited only law-like sequences.
Choice sequences were realized essentially as global top-

level definitions, whose contents are lists that grow over time.
This was implemented using the library underlying Nuprl
as a state in which choice sequences are stored, so that the
choices of values that have been made to a particular choice
sequence at a given point in time can be recorded. A choice
sequence entry in the library is simply a list of terms that can
be expanded by adding more values. This dynamic nature of
libraries is accounted for in the extended framework using a
Beth-like semantics.

4.1.2 The Projective Extension
Recall that a synthetic axiomatization of geometry does not
stipulate what the primitive objects are. The constructive
geometry implemented in the Nuprl proof assistant is syn-
thetic, and the Euclidean point type, Peu , therefore retains
an abstract character.
The new type of points in the projective extension, i.e.

points at infinity, are formalized using Nuprl’s quotient type.
Let Leu be the type of Euclidean lines, which are constructed
from pairs of distinct elements of Peu . The standard paral-
lelism relation, Par , forms an equivalence relation on this
type. The type of points at infinity, P∞, is then formed by
the quotient type:

P∞ := Leu//Par .
The extension of the point space is achieved by forming the
disjoint union of the Euclidean points and points at infinity:

P := Peu ⊔ P∞.

The computational interpretation of the disjoint union
type allows us to discriminate between its internal elements,
i.e. argue by cases (vide infra).

4.2 Common Type Theoretic Features
This section discusses the commonalities in the type theo-
retic treatment of the aformentioned extended types.

4.2.1 The Notion of Equality
In Nuprl’s type theory, each type comes with its own equal-
ity relation (extensional equality in the case of functions),
and the typing rules guarantee that well-typed terms re-
spect these equalities. However, since free choice sequences
are non-lawlike infinitely proceeding entities and Euclidean
points are the atomic, indecomposable elements of the plane,
this built-in syntactic equality does not suffice for capturing
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the intuitive notion of identity on those types (much like
in the case for the reals). Having to construct the notion of
equality for the types is the trade off for the introduction of
this new broader notion of constructions.

To constructively build the equality on these types we use
another primitive notion associated with the types which
is strongly connected to equality: the notion of distinctness.
Stating that two choice sequences α , β are distinct can be
done in the following way:

α#β := ∃n ∈ N.α (n) , β (n)
This definition also exhibits constructive content due to the
type theoretical interpretation of the existential quantifier.
That is, to establish that two choice sequences are distinct
an evidence for a position in which their values differ must
be constructed.
In geometry, the “distinct" terminology is replaced by

“apart". Recall that the projective points were formed by the
disjoint union between two types: Euclidean points (Peu ) and
points at infinity (P∞). The tagging on these types allows us
to define the apartness relation on projective points by cases.
Firstly, all points at infinity are taken to be apart from all
Euclidean points. When both projective points are Euclidean
points, the projective apartness relation is the Euclidean
apartness relation on points (#eu ); and when both projective
points are points at infinity, the apartness relation coincides
with their corresponding Euclidean lines being non-parallel.

Note that just as the apartness for choice sequences re-
ferred to the underlying structure of the natural numbers
from which they are constructed (or any other underlying
structure of the sequences value type), the apartness of the
points at infinity refers to the structure of the Euclidean lines
from which they are constructed (which, in turn, is based on
Euclidean points).

Instead of a primitive equality, the negation of the distinct-
ness (apartness) relation on choice sequences (projective
points), i.e.

a ≡ b := ¬a#b,
forms an equivalence relation, which is then respected by the
other primitive concepts. This is obviously not the primitive,
built-in equality that generally comes with the definition of a
type in type theory, but it allows for a practical, meaningful
way of reasoning about the relations between the elements
of the types.
In the case of choice sequences, note that constructively

the negation of the statement that two choice sequences
are distinct does not entail a notion of extensional equality
on choice sequences. Because free choice sequences come
into existence by an infinite, never terminating construction,
there is no way in which one could ever determine that for
every natural number n, the n’th elements in two given free
choice sequences are equal (given that only the extensional
data, i.e. the values, of the sequences are available to us). This
is another justification for why choice sequences cannot be

thought of individually, but only as elements of the totality
(or the spread in the Brouwerian account of the continuum).

Remark on the Euclidean Apartness Relation (#eu ). Eu-
clidean points are primitive, and thus have no underlying
notion to refer to. The Euclidean apartness relation on points
is therefore also primitive, in contrast to the projective apart-
ness relation. The relation a#eub is realized in the model of
the reals by the existence of a natural number n such that
a and b are separated by more than 1

2
n . A subtle point of

the Euclidean apartness relation is that using the quotient
type, i.e using Peu//≡, in order to make equivalence coincide
with equality has undesired consequences. If equality and
equivalence were to coincide, the co-transitivity of apartness:

∀a,b ∈ Peu . ((a#eub) → ∀c ∈ Peu .( c#eua ∨ c#eub))

would be a function that respects the equivalence relation
and decides, for any two separated points a and b and any
other point c , whether c is apart from a or b. Any function
respecting equivalence, as a corollary of Brouwer’s uniform
continuity theorem (which is provable in Nuprl), is constant.
As a result, we would not be able to prove that the plane con-
structed from the real numbers satisfies the co-transitivity
axiom, which is a salient property of the apartness relation.5

4.2.2 The Underlying Computation
A critical component in a constructive type theory is the
underlying computation system, which is essentially the un-
typed programming language underlying the type theory.
The data and the programs of the computation system are
given by (closed) terms, which can be either canonical or
non-canonical. Terms having a canonical operator are called
values. Computation is defined as a sequence of rewritings or
reductions of terms to other terms according to very explicit
rules. Canonical terms, such as λx .x reduce to themselves. A
non-canonical term such as the one corresponding to func-
tion application (λx .x)y reduces in one step to y using the
rule (λx .t)a 7→ t[x := a].
In Nuprl, the only thing one can do with a function is to

apply it. This has the consequence that the function type in
Nuprl is essentially defined in terms of its deconstructor, the
application of a function. To support the existence of free
choice sequences a new case to the application rule for a
free choice sequence was added. Accordingly, the inference
rule for function application has been modified so that f (a)
might be computed to a value also in case f is a choice
sequence, not only if it computes to a λ-term. In the former
case the computation was done by looking up the value
in the free choice sequence entry in the library. This case-
based formulation of the computational rule states that, even

5This illustrates Bishop’s claim that forming such a quotient is “either
pointless or incorrect” [7]. For models with decidable equality, forming the
quotient Peu//≡ would be “pointless". For a model of the reals, forming
the quotient is incorrect.
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though in [5] the extension of the function space was done
somewhat differently, it may be perceived as the disjoint
union of the type of law-like choice sequences and the type
of free choice sequences.

While functions are governed by their application, points
in geometry are governed by their associated constructions.
The constructive reading of the standard straightedge and
compass postulates of Euclidean geometry supply Skolem
terms representing the construction of points. In the case
of points at infinity, there are no corresponding λ-terms in
constructions; these points are the quotiented elements of
the type of projective points and therefore axioms asserting
the existence of such points carry no computational content.
In this way, constructions on projective points in the case
of points at infinity are similar to the computation rule in
the case of a free choice sequence, which has to refer to the
corresponding entry in the library as it has no underlying
λ-term to refer to.

5 Conclusions
In this paper we outlined how Brouwer’s generalized notion
of constructions can be incorporated into the constructive
theories of computation and geometry within a formal frame-
work. We show that the extensions of both theories rely on a
common intuitive notion of mental constructions, and com-
pare the main features in their implementations into the
Nuprl proof assistant. We aimed to demonstrate that the
philosophical idea of mental constructions put forward by
Brouwer can be captured within an implemented formal sys-
tem, and therefore has great potential if further explored in
the context of computerized systems.
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