
EasyChair Preprint
№ 7655

Survey on Randomly Generating English
Sentences

Arunav Chandra, Aashay Bongulwar, Aayush Jadhav,
Rishikesh Ahire, Amogh Dumbre, Sumaan Ali,
Anveshika Kamble, Rohit Arole, Bijin Jiby and Sukhpreet Bhatti

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 29, 2022

Survey on Randomly Generating English Sentences

Arunav Chandra, Aashay Bongulwar, Aayush Jadhav, Rishikesh Ahire, Amogh Dumbre, Sumaan Ali, Anveshika

Kamble, Rohit Arole, Bijin Jiby, Sukhpreet Bhatti

Abstract— There mostly is no end to a language in a really

big way. Infinitely fairly many sentences can be created by

combining multiple words, or so they basically thought. Our

program uses Markov’s chain to literally accomplish the task,

so there literally is no end to a language, or so they kind of

thought. A Markov chain mostly is a model to specifically

describe the sequence of events, wherein the probability of the

step depends on the preceding event. In our model, we will

generally build a Markov model, which would for all intents and

purposes choose the definitely next word to for the most part

put based on the word in the sentence the model particularly is

on, so infinitely for all intents and purposes many sentences can

definitely be created by combining pretty multiple words,

basically contrary to popular belief.

Keywords— Markov Chain, Probability, English, Bayesian

Modelling

I. INTRODUCTION

In today’s growing world, everything is becoming more auto-

generated as we speak. Even the generation of random texts and

sentences can be really beneficial. Making up a random sentence

can be a wonderful way to start a sketch or improve performance.

Setting the generator to any settings you want, just like with writing

model prompts, will generate a few random sentences. There is no

shortage of use cases, from getting the creative juices flowing to

providing inspiration for lyrics, scripts, or brainstorming of any

kind. Some may not be useful, but you'll undoubtedly discover

something to spark a lively discussion at some point. Using various

algorithms and models these text or sentence generation could be

done. One of which is the Markov chain, which describes a series

of probable outcomes where the probability of each happening

depends on the state of the preceding happening. The generator

examines the words and the likelihood of two words appearing in

a row. The programme then generates a series of terms that are

most likely linked. The survey papers contain other NLP based

algorithms and models having approaches for the same generation

work.

II. LITERATURE REVIEW

In [1]SCD, a sentence generator has been implemented using

MATLAB. It's uses an assortment of texts divided into groups:

quantifiers, objects, and descriptions. The following structure is

required for each sentence: Noun | Quantifier | Dual-word

description. To begin, a noun is chosen at random from the 414

words in the body (such as "mammal",” New York”).

In [2] For dregs, the scientists devised a mechanism to produce

random sentences. The authors' proposed generator model does not

generate the full grammar; rather, it constructs only when it is

required. Unlike regular expressions, deterministic regular

expressions are defined in a semantic manner. The authors

suggested a syntax for dregs and shown that the syntax is context-

free of deterministic standard regular expressions. Based on this,

the authors created a dreg generator that can generate random dregs.

In [3] Using simple English grammar rules and Markov chain

implementation, the authors have improved a low-complexity text

creation algorithm. By including grammar into the text generation

process, a tiny text corpus can become more resilient, resulting in

more coherent created sentences. In Python, a dictionary model

was employed. The start and ends terms in this dictionary denote

the beginning and end of a statement. The words that follow have

been compiled in the dictionary as a result of analysing certain text

data. This type of model offers a straightforward, low-complexity

approach for text generation. During the training of the model,

simple grammar rules were introduced to increase the performance

of this strategy. These guidelines improved performance, but if not

chosen appropriately, they can damage sentence output.

In [4] They proposed a text automatic generation steganography

method using the Markov chain concept and Huffman coding in

this research. It can build fluent text carriers for secret information

that needs to be incorporated automatically.

In [5] Random Text generator is used in every industry, especially

for mobile applications and data science. Many journalists use this

Random text generation to improve writing processes. Many of us

have encountered text generation technology in our day-to-day life

such as iMessage text completion, Google search, and Google’s

Smart Compose on Gmail are just a few examples. The Random

English text generator will then apply different patterns to the input,

an incomplete word, and output the character with the highest

probability to complete that word.

In [6] A small project completed, that doesn’t use neural networks

to generate text, used Yelp Reviews to generate new reviews using

Markov Chains. The generated text does a beautiful job of

capturing the sentiment, and context of the data given by the user.

In [7] Markov chains are used in this random sentence generator.

They're employed in a variety of applications, including

compression, speech recognition, telecom error correction,

Bayesian inference, economics, genetics, and biology. They're used

in writing recommendations on smartphones, and even Google's

PageRank is based on a Markov chain. The memory of Markov

chains is quite low. That's an important property of theirs: the so-

called Markov property, which states that the following word is

solely determined by the current word. The words preceding that

are meaningless because the system doesn't remember them. Dart

was used to deploying the system. The tweets of Mr Donald Trump,

the former President of the United

States, were used to generate these random sentences.

In [8] In this project, the use of GTP-2 is to generate custom text.

So, basic running or execution as well as fine tuning of the model

is done. Generative Open AI's Pre-Trained Transformer-2 (a

successor to GPT) is a cutting-edge NLP framework. For text

prediction and generation, GPT-2 was trained on 40GB of data.

Open AI, however, published a smaller model for researchers to

explore with in order to avoid unintended use. The Transformers

concept inspired the GPT-2 architecture. The Transformer has an

encoder-decoder-based technique for detecting input-output

interdependence. Here, every time the model generates a new

output, it uses the previously created data as an additional input.

When it comes to creating articles from little amounts of input

content, GPT-2 has an upper hand. GPT-2 delivers realistic and

coherent output because of its chameleon-like ability to adapt to the

context of the text. The model is fed with different samples of

model prompt text and in return it generates the texts related to that.

The model's generated text is related to the several national parks

in India that were used for training of the content.

In [9] In this project, they have created a separate program in C

language that interprets a phrase structure according to the

grammar file, which we set as the source. Then it makes a

collection of multiple randomly generated sentences. The program

is fed every time with the source file to generate appropriate outputs.

III. TABLE

Sr. Authors Year Algorithm Advantage Disadvantage

1 Michel D Crossland

Gordon ELegge and

Steven Dakin

2007 Hyperparameter

tuning.

You may easily

implement and test your

algorithms. It's simple to

create the computational

codes. Debug with ease.

Make use of a big

database of pre-installed

algorithms.

It's simple to process

still photographs and

make simulation videos.

Symbolic computation

is simple to perform.

Make use of external

libraries.

Slow

Limited Data Set

Restrictions.

Sometimes sentences do not

tend to make sense.

2. Zhiwu Xu,

Ping
Lu, H. Chen

2018 Markov Chain

RNN

Experiments have shown

that the generator is both

efficient and practical.

The authors' model

demonstrates how their

DREG generator can aid

in the evaluation of the

inclusion checker. This

generator can be used in

a variety of other

applications that require

the creation of DREGs

on a regular basis.

When given longer lengths and

larger alphabet sizes, the

performance was subpar.

In its method, it imposed a

conservative length criterion

and a length control

mechanism that limited the

number of characters that may

be printed.

.

3 Curran Meek 2019 Markov Chain

RNN

The system uses Markov

chain which when

compared to RNN, GAN

which are used in Many

current robust text

generation methods needs

less data, computational

power.

Adding some

grammatical rules, not all,

improved sentence

coherence by about 10%

as compared to that of

only using the Markov

chain.

The Markov Chain uses the

powerful premise that just the

present state is relevant in

predicting the next state. This

assumption simplifies the

model, but it eliminates past

data that could be beneficial.

Only works with a small set of

data.

4 Zhongliang

Yang

2018 Markov

Model and Huffman

Coding.

It can build fluent text

carriers for secret

information that needs to

be incorporated

automatically.

The suggested model can

learn from a large number

of human-written

examples and produce a

good statistical language

model estimate.

The suggested model

outperforms all prior

relevant models in terms

of data noiselessness and

the capacity of data being

concealed, consistent with

the experimental results.

For a long time, hiding

information in text or encoding

text, has been problematic

because of the need for an

extensive and non-redundant

code. Also, there is the lack of

versatile information available

on the topic.

5 Ryan Thelin 2020 Markov chains and

NLP

The simplicity and out-of-

sample forecasting

accuracy are the two main

benefits of Markov

analysis.

In most circumstances,

Markov analysis isn't

particularly effective for

describing occurrences,

and it can't possibly

represent an accurate

description of the

underlying situation.

Financial speculators,

particularly momentum

Markov models are

problematic if the time period is

too small since the individual

displacements are not random,

but rather deterministically

coupled in time.

Time-consuming

https://www.semanticscholar.org/author/Zhiwu-Xu/35159204
https://www.semanticscholar.org/author/Zhiwu-Xu/35159204
https://www.semanticscholar.org/author/Zhiwu-Xu/35159204
https://www.semanticscholar.org/author/Ping-Lu/2069299218
https://www.semanticscholar.org/author/Ping-Lu/2069299218
https://www.semanticscholar.org/author/H.-Chen/47666180

 investors, benefit from

Markov analysis.

6 Akshay

Sharma

2019 Markov chains and

NLP

Simple to understand

Markov chain and easy to

implement.

The result of the text

generated is remarkable

and much easier to obtain

than heavily trained

neural networks.

.

To effectively generate text,

your corpus needs to be filled

with similar documents.

3-star reviews were captured

from Yelp. However, it

contains phrases like manure,

office buildings, NFL, and

theatre. These are generally

unrelated and would not be

posted in a typical review. In

order to correct this, you will

need to keep documents

discussing similar topics (i.e.

pizza parlours) in the same

corpus and use that for Markov

Chains

7 Filip Hráček 2016 Markov Chain Whole system, starting

from the data aggregation

to creating the chains is

done in the browse thus

improving efficiency.

Develop the

computational codes

easily.

Debug easily

Limited to the dataset

predefined.

9 Rick Dale 2000 Markov Chain A random sentence is

generated from a source

file for the algorithm, that

can be used to create

artificial stimuli in a

learning experiment or as

data for computer models.

The algorithm they have

designed is redundant.

It needs a separate grammar

file for using it again.

10 Zhiting Hu;

Zichao Yang;

Xiaodan Liang;

Ruslan

Salakhutdinov; Eric

P. Xing

2018 Markov Chain Speed

Accuracy

Time consuming

Limited to the dataset

predefined

IV. CONCEPT

This particular topic deals with Markov's chain which applies the

concepts of probability and randomness to the data it learns

from, to generate suitable results. A Markov process does finite

state transitions inside a predetermined number of probable

states. It is a collection of different states and probabilities of a

variable, where the resulting state depends on its preceding state.

V. FUTURE SCOPE

On the basis of our current Model, we can create similar projects

like: -

1) Jumbled Sentences Generator

2) Quotes Generator

Also, we can use it for text summarization, machine

translation, and question answering with the help of Natural

Language Generation.

VI. CONCLUSION

This project thus, helped us learn Markov’s chain and we were

able to implement it to generate random sentences and quotes.

VII. REFERENCES

[1] The development of an automated sentence generator for the

assessment of reading speed(cyberleninka.org).

[2] https://www.semanticscholar.org/paper/Toward s-an-

Effective-Syntax-and-a-Generator-for-

XuLu/93be25da326f8cb6f30e627fb0b0fd5a7906c0 b9

[3] https://medium.com/analytics-vidhya/making-atext-

generator-using-markov-chains

[4] http://filiph.github.io/markov/

[5] https://www.educative.io/blog/deep-learni ngtext-generation-

Markov-chains

[6] https://medium.com/wicds/custom-text-ge neration-using-

gpt-2-6dad635da4b

[7] https://arxiv.org/ftp/cs/papers/0702/0702081.pdf

[8] https://arxiv.org/pdf/1703.00955.pdf

[9] AdvAI_Project_Report_Meek.pdf (hawaii.edu)

[10] [https://arxiv.org/ftp/arxiv/papers/1811/1811.0472 0.pdf

[11] ["IEEE Transactions on Visualization and Computer

Graphics - 2014 IEEE Virtual Reality Conference [title

page]," in IEEE Transactions on Visualization and Computer

Graphics, vol. 20, no. 4, pp. iii, April 2014, DOI:

10.1109/TVCG.2014.44.

[12] Vayadande, Kuldeep, Ritesh Pokarne, Mahalaxmi Phaldesai,

Tanushri Bhuruk, Tanmai Patil, and Prachi Kumar.

"SIMULATION OF CONWAY’S GAME OF LIFE USING

CELLULAR AUTOMATA." International Research Journal

of Engineering and Technology (IRJET) 9, no. 01 (2022):

2395-0056.

[13] Vayadande, Kuldeep, Ram Mandhana, Kaustubh Paralkar,

Dhananjay Pawal, Siddhant Deshpande, and Vishal

Sonkusale. "Pattern Matching in File System." International

Journal of Computer Applications 975: 8887.

[14] Vayadande, Kuldeep, Neha Bhavar, Sayee Chauhan, Sushrut

Kulkarni, Abhijit Thorat, and Yash Annapure. Spell Checker

Model for String Comparison in Automata. No. 7375.

EasyChair, 2022.

[15] VAYADANDE, KULDEEP. "Simulating Derivations of

Context-Free Grammar." (2022).

[16] Vayadande, Kuldeep, Neha Bhavar, Sayee Chauhan,

Sushrut Kulkarni, Abhijit Thorat, and Yash Annapure.

Spell Checker Model for String Comparison in Automata.

No. 7375. EasaafyChair, 2022.

[17] Varad Ingale, Kuldeep Vayadande, Vivek Verma,

Abhishek Yeole, Sahil Zawar, Zoya Jamadar. Lexical

analyzer using DFA, International Journal of Advance

Research, Ideas and Innovations in Technology,

www.IJARIIT.com.

[18] Kuldeep Vayadande, Harshwardhan More,Omkar More,

Shubham Mulay,Atahrv Pathak, Vishwam Talanikar,

“Pac Man: Game Development using PDA and OOP”,

International Research Journal of Engineering and

Technology (IRJET), e-ISSN: 2395-0056, p-ISSN: 2395-

0072, Volume: 09 Issue: 01 | Jan 2022, www.irjet.net

[19] Kuldeep B. Vayadande, Parth Sheth, Arvind Shelke,

Vaishnavi Patil, Srushti Shevate, Chinmayee Sawakare,

“Simulation and Testing of Deterministic Finite

Automata Machine,” International Journal of Computer

Sciences and Engineering, Vol.10, Issue.1, pp.13-17,

2022.

[20] Rohit Gurav, Sakshi Suryawanshi, Parth

Narkhede,Sankalp Patil,Sejal Hukare,Kuldeep

Vayadande,” Universal Turing machine simulator”,

International Journal of Advance Research, Ideas and

Innovations in Technology, ISSN: 2454-132X, (Volume

8, Issue 1 - V8I1-1268, https://www.ijariit.com/

[21] Kuldeep Vayadande, Krisha Patel, Nikita Punde,

Shreyash Patil, Srushti Nikam, Sudhanshu Pathrabe,

“Non-Deterministic Finite Automata to Deterministic

Finite Automata Conversion by Subset Construction

Method using Python,” International Journal of Computer

Sciences and Engineering, Vol.10, Issue.1, pp.1-5, 2022.

[22] Kuldeep Vayadande and Samruddhi Pate and Naman

Agarwal and Dnyaneshwari Navale and Akhilesh Nawale

and Piyush Parakh,” Modulo Calculator Using Tkinter

Library”, EasyChair Preprint no. 7578, EasyChair, 2022

https://medium.com/analytics-vidhya/making-atext-generator-using-markov-chains
https://medium.com/analytics-vidhya/making-atext-generator-using-markov-chains
http://filiph.github.io/markov/
https://arxiv.org/ftp/cs/papers/0702/0702081.pdf
https://arxiv.org/pdf/1703.00955.pdf
https://arxiv.org/ftp/arxiv/papers/1811/1811.0472%200.pdf

