
EasyChair Preprint
№ 12664

”Like a Nesting Doll”: Analyzing Recursion
Analogies Generated by CS Students Using Large
Language Models

Seth Bernstein, Paul Denny, Juho Leinonen, Lauren Kan,
Arto Hellas, Matt Littlefield, Sami Sarsa and Stephen MacNeil

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

March 21, 2024

“Like a Nesting Doll”: Analyzing Recursion Analogies Generated
by CS Students using Large Language Models

Seth Bernstein
Temple University

Philadelphia, PA, United States
seth.bernstein@temple.edu

Paul Denny
University of Auckland
Auckland, New Zealand
paul@cs.auckland.ac.nz

Juho Leinonen
University of Auckland
Auckland, New Zealand

juho.leinonen@auckland.ac.nz

Lauren Kan
Temple University
Philadelphia, PA, US

lauren.kan@temple.edu

Arto Hellas
Aalto University
Espoo, Finland

arto.hellas@aalto.fi

Matt Littlefield
Temple University
Philadelphia, PA, US

matt.littlefield@temple.edu

Sami Sarsa
Aalto University
Espoo, Finland

sami.sarsa@aalto.fi

Stephen MacNeil
Temple University
Philadelphia, PA, US

stephen.macneil@temple.edu

ABSTRACT

Grasping complex computing concepts often poses a challenge for

students who struggle to anchor these new ideas to familiar ex-

periences and understandings. To help with this, a good analogy

can bridge the gap between unfamiliar concepts and familiar ones,

providing an engaging way to aid understanding. However, creat-

ing effective educational analogies is difficult even for experienced

instructors. We investigate to what extent large language models

(LLMs), specifically ChatGPT, can provide access to personally rel-

evant analogies on demand. Focusing on recursion, a challenging

threshold concept, we analyzed the analogies generated by 385

first-year computing students. They were provided with a code

snippet and tasked to generate their own recursion-based analo-

gies using ChatGPT, optionally including personally relevant top-

ics in their prompts. We observed a great deal of diversity in the

analogies produced with student-prescribed topics, in contrast to

the otherwise generic analogies, highlighting the value of student

creativity when working with LLMs. Not only did students enjoy

the activity and report an improved understanding of recursion,

but they described more easily remembering analogies that were

personally and culturally relevant.

CCS CONCEPTS

• Social and professional topics→ Computing education.

KEYWORDS

analogies, large language models, computing education

ACM Reference Format:

Seth Bernstein, Paul Denny, Juho Leinonen, Lauren Kan, Arto Hellas, Matt

Littlefield, Sami Sarsa, and Stephen MacNeil. . “Like a Nesting Doll”: An-

alyzing Recursion Analogies Generated by CS Students using Large Lan-

guage Models. In Proceedings of Proceedings of the 2024 ACM Conference

ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy

©
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

on Innovation and Technology in Computer Science Education (ITiCSE ’24).

ACM, New York, NY, USA, 7 pages.

1 INTRODUCTION

Learning to program is challenging because students may strug-

gle to connect unfamiliar terms and concepts to existing knowl-

edge and to their everyday lived experiences. Especially for dif-

ficult threshold concepts [4, 37], like recursion, students benefit

from high-quality explanations or visual representations such as

visualizations and conceptmaps [37]. Analogies andmetaphors are

another useful pedagogical technique which connect unfamiliar

concepts to ideas that students already intuitively understand [8,

14, 21, 39]. Analogies and metaphors have been previously studied

in computing education contexts [1–3, 7, 11, 13, 16, 24]. However, it

has been shown that students struggle to craft high-quality analo-

gies and that they could benefit from additional scaffolding [17].

Large language models (LLMs) have recently been shown to

generate high-quality explanations [25, 28]. Students even prefer

explanations generated by an LLM to ones generated by their peers [25].

Consequently, LLMs may be useful tools for scaffolding students

trying to craft analogies. However, although there is some evidence

that LLMs can generate analogies [9, 30], there has not yet been

any systematic investigation into how students might use LLMs to

generate their own analogies. Given this gap in the literature, we

investigated the following research questions:

RQ1 What types of analogies do students generate to explain re-

cursion when given access to an LLM?

RQ2 What do students think about using LLMs to generate their

own analogies?

In this paper, we conducted a study with a sample size of over 350

students at a large public research university. As part of their lab

on recursion, a well-known threshold concept that is challenging

for many students [4, 37], students were asked to use ChatGPT to

craft their own analogies to explain recursion using any personally

relevant topic as a theme.We collected student responses to survey

ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy Anon, et al.

questions and analyzed their generated analogies and correspond-

ing prompts. Our results show that when students explicitly spec-

ified the topic of the analogy in their prompt, the resulting analo-

gies were more diverse, featuring a different distribution of topics

compared to those produced by the LLMwhen topics were not pre-

scribed. This suggests that involving students in crafting analogies

with ChatGPT leads to more creative and relevant analogies com-

pared to relying solely on the model. Students expressed positive

sentiments about the activity, noting instances where the model-

generated analogies aided their understanding and retentionPrevi-

ous studies have established the effectiveness of analogies in com-

puting education [1–3, 7, 13, 16], which is not the focus of this

paper. Instead, this study focuses on what analogies students pro-

duce and their potential for engagement. Future work will focus

on systematically investigating the impact on student learning.

2 RELATED WORK

2.1 Analogies to Explain Computing Concepts

Explanations are critical for helping students understand complex

topics. Over two decades of computing education research has demon-

strated how practicing ‘explain in plain English’ questions [43] and

self-explanations [33, 41, 42] can provide students with short-term

and long-term benefits. More recently, computing education re-

searchers have begun investigating the use of analogies to make

unfamiliar concepts more approachable for students. Often, analo-

gies are carefully developed by instructors to convey complex con-

cepts such as parallel programming [2, 3, 13], introductory com-

puting [7, 17, 19], and algorithms and data structures [11].

Analogies are a pedagogical tool that equates two disparate con-

cepts based on their similarities in at least one aspect. In comput-

ing education, where many unfamiliar terms and concepts may

seem completely disconnected from previously learned concepts

and lived experiences, analogies have the ability to connect these

complex concepts to ones that are more familiar to the learner.

For example, an algorithm is like a recipe, a bitwise operator is

like a light switch, and a memory address is like a house num-

ber. Analogies do not need to perfectly describe the concept to

be useful. Analogies help to provide an intuition for the concept

which may help students get passed an initial hurdle in under-

standing. In recent work, Harper et al. investigated the potential

of student-generated analogies in computing education, particu-

larly in fostering comprehension of abstract computing concepts

like variable scope [17]. Their work showed that students faced

challenges in achieving complete and precise structural alignment,

along with maintaining an appropriate level of abstraction across

their analogy mappings. Bettin et al. showed that when provid-

ing students with analogies, preferences about the analogies varied

across students and students did not always use a given analogy

in the same way [2, 3]. These prior studies suggest that students

benefit from analogies but that analogies are ideally personalized

based on each students needs and experiences. Additionally, stu-

dents could greatly benefit from targeted scaffolding to address

these challenges and enhance their ability to generate effective

analogies.

2.2 Generating Learning Materials with LLMs

Large languagemodels (LLMs) provide opportunities for educators

to generate many high-quality learning materials at scale [10, 25,

28–30]. Finnie-Ansley et al. demonstrated that Codex could pro-

duce programming assignments that were useful as a first draft for

educators [10]. Since then, LLMs have been used to generate expla-

nations [25–28, 30], programming assignments [38, 40], and to re-

spond to students’ help requests [20, 22].More recentwork has pro-

vided empirical evidence that students are legitimately relying on

Generative AI as a source of help when they get stuck [22, 34, 44].

Several papers have recently explored the potential of LLMs to

enhance code comprehension, with a particular focus on their abil-

ity explain code to students. In an initial study byMacNeil et al., the

researchers demonstrated that LLMs were able to trace code execu-

tion, articulate the high-level purpose, and offer analogies for pro-

gramming concepts [30]. This initial investigation focused on the

capabilities but not on the associated quality of the explanations

and analogies. MacNeil et al. later extended their investigating by

studying students’ preferences and engagement with explanations

generated by LLMs, considering variations in the types of expla-

nation provided [28]. Leinonen et al. demonstrated that the expla-

nations produced by LLMs were preferred by students when com-

pared to explanations generated by their peers [25]. Despite the

considerable attention LLM-generated explanations have received,

there remains a gap in the literature regarding a systematic study

of analogies generated by students with the assistance of LLMs.

3 METHOD

3.1 Study Context

The data for this study were collected from an introductory pro-

gramming course taught in Spring 2023 at the University of Auck-

land, a large public research University in New Zealand. The 12-

week course used C as the programming language and is a required

course for students in the first year of the Engineering program.

These students specialize in their second year based on GPA, and

thus students in the course have an incentive to perform well in all

of their first-year courses, even if they do not intend to specialize

in computing topics.

When our data were collected, 889 students were enrolled in the

course and we collected 841 responses (95% of enrolled students).

The course featured weekly lab sessions that generally included

programming exercises that are automatically graded. Ethics ap-

proval was granted by the institution (UAHPEC25279).

3.1.1 Recursion: The topic of recursion is introduced in the penul-

timate week of the course, and is the focus of the final lab in Week

12. As a threshold concept [37], recursion is considered a difficult

topic for many students. This is supported by the literature [15, 35],

as well as comments submitted by students on the end-of-semester

teaching evaluations (examples from 2022 included: “spend some

more time on recursion because I feel like it’s quite a difficult topic

to get on top of” and “I found the visual representation of recursion

and memory quite hard to get my head around”). Furthermore, un-

derstanding recursion goes beyond memorizing definitions; it en-

compasses the ability to apply, test, and utilize the concept in real-

world scenarios, thereby opening up new avenues for mental mod-

els and program design. The intricacies of recursion include both

“Like a Nesting Doll”: Analyzing Recursion Analogies Generated by CS Students using Large Language Models ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy

theoretical significance and substantial practical application, mak-

ing it a transformative element of computing education [23].

3.2 Materials

In addition to the standard lecture materials used in the course

for teaching recursion, which included recursive images (i.e. the

Droste effect1), visualizations of stack frames during recursive calls,

and common but simplistic text-book examples (such as factorial

and Fibonacci), students were also provided with an example of an

analogy as part of the preparation materials for the Week 12 lab.

This example was prefaced by the statement: “Analogies can be use-

ful for teaching difficult concepts because they relate unfamiliar ideas

to something already known, making the new information easier to

understand. For instance, an analogy often used in physics textbooks

compares electrical circuits to hydraulic circuits”, and then demon-

strated the output from ChatGPT when asked to “use an analogy to

explain how electrical circuits work”. The output compared electri-

cal circuits to a plumbing system, drawing comparisons between

voltage/pressure, current/flow rate, and resistance/constriction.

The first exercise in the lab asked students to generate an anal-

ogy using ChatGPT to explain a recursive function that appeared

in the course textbook. The function prints a string in reverse, and

is shown in Figure 1. The instructions given to students for this

exercise are shown in Figure 2. We assumed that many (but not

all) students had OpenAI accounts for ChatGPT access. To ensure

all students had access, we also provided a clone that we had built

which served as an interface to ChatGPT but did not require a lo-

gin.

void PrintReverse(char *word)

{

if (*word == '\0') {

return;

} else {

PrintReverse(word +1);

printf("%c", *word);

}

}

Figure 1: Function to print a string in reverse, for which stu-

dents were asked to generate an analogy.

3.3 Data Collection and Analysis

The analogies that students created could connect to any topic

or theme of their choosing (see the relevant instructions under

‘Themes’ in Figure 2). Based on the 841 responses, we observed 456

instances (54.2%) where students did not include the prompt they

used to generate the analogy, even though they were instructed to

do so. That data was discarded from this analysis.

3.3.1 Stratifying the Analogies by Prompt Topic. Using the remain-

ing 385 analogies which contained an analogy and a prompt, we

stratified the data based onwhether the prompt explicitly specified

a topic. This sample sized was used for all analysis, for example,

one student used the prompt: “Can you make an analogy to do with

1https://en.wikipedia.org/wiki/Droste_effect

Try using ChatGPT to create a few analogies to help explain how the

PrintReverse() function uses recursion to print a string in reverse. Your

first one might not be that good so try different prompts. Here are some

tips:

Clarity. The prompt should clearly define what you want the model to

do. Avoid ambiguity. For instance, instead of "Tell me about dogs," use

"Provide a detailed description of the characteristics, behavior, and care

required for domestic dogs."

Context. ChatGPT responds to the immediate context of the prompt. So,

establishing a clear context is crucial. For example, the prompt "Translate

the following English text to French: ’Hello, how are you?’" provides clear

context and instructions.

Themes. Analogies are most effective when they use themes that you

are familiar with or interested in. Consider choosing a theme (like sport,

books, or anything else you are interested in) to help generate an inter-

esting analogy.

Precision. Precise prompts yield precise responses. For example, if you

want a list, specifically ask for it: "List the top 10most populous countries

in the world."

Choose your favorite analogy and submit it in the space below, along

with the prompt (you provided to ChatGPT) used to create it. Please also

describe what you like about the analogy you created and why you think

it would be helpful to understand the provided code.

Figure 2: Instructions provided to students for Exercise 1.

Pokemon for this code: <code>”. The student explicitly specified the

topic (Student-Selected) to be ‘Pokemon’. An example where the

student did not include a topic in their prompt is “provide me with

a detailed and concise analogy of the code provided below to explain

how the function uses recursion to print a string in reverse”. In the

absence of a student-prescribed topic, ChatGPT will produce an

analogy using a topic it selects (GPT-Selected), which in this case

of this example, was about a labyrinth.

3.3.2 Identifying the Topics and Themes of the Analogies. Each of

the 385 analogieswere coded based on their topic, with the prompts

hidden to avoid bias. Each analogy could only be coded with one

topic. Next, these topics were grouped thematically into 29 themes,

with researchers mediating disagreements as needed. To enhance

reliability, the researchers independently recoded all analogies us-

ing these themes. A subset of 150 randomly selected rowswas used

to compute inter-rater reliability using Cohen’s Kappa, resulting

in 0.83 for GPT-generated topics and 0.84 for student-generated

analogies. Subsequent sections refer to these topics and themes.

3.3.3 Assessing the Diversity of the Analogy Topics. We measured

the diversity of analogy topics generated by ChatGPT by comput-

ing the number of distinct topics for the Student-Selected and GPT-

Selected analogies. This number of distinct topics was divided by

the number of total topics. This calculation resulted in a value be-

tween 0 and 1 where a higher number indicates greater diversity

of topics across the set.

3.3.4 Exemplar Analogies. To exemplify the types of analogies pro-

duced by ChatGPT, we chose three exemplar analogies. Our selec-

tion process was subjective with the goal to identify analogies that

are particularly engaging and insightful. This process involved re-

viewing a large randomly sampled subset of the analogies.We only

https://en.wikipedia.org/wiki/Droste_effect

ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy Anon, et al.

reviewed analogies with associated student comments to report on

students’ perspectives about the chosen analogies.

3.3.5 Thematic Analysis of Students’ Survey Responses. We ana-

lyzed students’ open-responses using a reflexive thematic analysis

method [5, 6]. This process is ‘reflexive’ because it acknowledges

that the researcher plays an active role in identifying the themes.

We followed the six phases which include familiarizing yourself

with the data, generating initial codes, searching for themes, re-

viewing themes, and defining and naming the themes. At each

phase, team members discussed the themes to mitigate interpre-

tation biases.

4 RESULTS

4.1 RQ1: Analyzing the Generated Analogies

We found that only 226 prompts (63.1%) contained an explicitly

specified analogy topic (Student-Selected). The average word count

for analogies where the topic was not specified (GPT-Selected) was

179.2 words. When students specified the topic, the average word

count increased to 235.5 (a 31.4% increase). This suggests that student-

specified topics may yield more detailed analogies. In this section,

we present examples of analogies generated by students alongwith

their reflections on the analogies. We also compare and contrast

analogies in terms of the topic distribution and diversity.

Imagine you’re a Pokémon Trainer on an adventure, and you’ve encountered a
special ability called ’Reverse.’

You have a friendly Pikachu by your side. Now, you come across a series of
Poké Balls with letters inside them instead of Pokémon. As you walk through the
tall grass, you find these letter-filled Poké Balls one by one. You pick up each Poké
Ball, and Pikachu helps you examine its content. Instead of revealing the letters
immediately, Pikachu tells you to keep it in your backpack for now. You continue
to explore, collecting more letter-filled Poké Balls as you go. After a while, you
decide to take a break, and Pikachu suggests you start from the last Poké Ball
you picked up. You retrieve the last Poké Ball from your backpack and examine
it. Inside, you find a letter. You show it to Pikachu, and Pikachu says, ’This letter
comes from the last Poké Ball we picked up. Let’s keep it.’

You repeat this process, one Poké Ball at a time, starting from the last one
you picked up and working your way back through your collection. Pikachu helps
you reveal and remember the letters from each Poké Ball.

In the code, your ’PrintReverse’ function is like Pikachu’s assistance. It pro-
cesses each character in the string (each Poké Ball), keeps it in memory, and then
starts revealing the characters in reverse order, just like you go through your
collection of Poké Balls in reverse order, revealing and remembering the letters
one by one." ==== PROMPT 2: Can you summarise that into steps?

• STEP 1: You are a Pokémon Trainer on an adventure with your Pikachu,
and you come across letter-filled Poké Balls.

• STEP 2: You collect these Poké Balls one by one and store them in your
backpack without revealing the letters inside.

• STEP 3: As you continue collecting, Pikachu suggests you start from the
last Poké Ball you picked up.

• STEP 4: You retrieve the last Poké Ball from your backpack, reveal a letter,
and Pikachu notes that this letter comes from the last Poké Ball collected.

• STEP 5: You repeat this process for each Poké Ball, always starting from
the last one and working your way back through your collection.

• STEP 6: Pikachu helps you reveal and remember the letters from each Poké
Ball.

In the code, your ’PrintReverse’ function follows a similar pattern. It processes each
character in the string, keeps it in memory, and then starts revealing the characters
in reverse order. Just like in the Pokémon analogy, you work your way backward
through your collection of letters, revealing and remembering them one by one.

Figure 3: An Example Analogy Generated by P242

4.1.1 Example Analogies. In this section, we present three person-

alized analogies generated by ChatGPT in response to prompts

that specified a topic. Each analogy aligned with the student’s in-

terests and is accompanied by comments from the respective stu-

dent.

Pokémon Trainer. In this analogy, shown in Figure 3, the student

imagines themselves as a Pokémon Trainer with a Pikachu, col-

lecting letter-filled Poké Balls. The analogy provides a step-by-step

process for ‘collecting’ all of the letters and then printing them in

reverse order. This scenario is analogous to manipulating a string

array where each Poké Ball corresponds to a character variable in

a string array. The student (P242) who generated this analogy com-

mented about how LLMs give students the freedom to personalize

the analogy topic, which increased their engagement:

“I like it because its simple, and also fits within the

Pokemon world (apart from the talking Pikachu part).

Even though its not the most detailed, it gives you a

good general idea of what it is. The freedom of what

theme of analogy you can ask... greatly increases

the engagement/interest.” (P242)

Harry Po�er and the Chamber of Secrets. This analogy focused on

the journey of Harry Potter through the Chamber of Secrets as

an analogy for the traversing character pointers in code. The re-

cursive exploration and revelation in the story are analogous to

processing and reversing characters in a string. This student com-

mented on the cultural relevance of this topic for them and other

Gen Z students:

“Using Harry Potter as an example for the analogy for

Recursion fits well because Harry Po�er has a cult

following and is widely popular amongst Gen Z...

it allows students to understand how recursion works

given a familiar context... associating the code with a

story like the Chamber of Secrets, the concept of recur-

sion can provide a sense of engagement, which makes

the recursion; a difficult concept can be grasped easier

than other potential analogies.” (P277)

Russian Nesting Dolls. This last analogy was one of the most pop-

ular analogy topics. It uses the analogy of Russian nesting dolls to

illustrate recursion. The base case is compared to the smallest doll,

with each recursive call opening a larger doll, ultimately leading

to the reversal of the order as the process completes. This student

talked about how this connected to fond memories as a child and

their personal connection to the topic:

“The reason why I love this analogy so much is it use

the concept of unwrapping Russian Doll, which was one

of my favourite toys and cartoon when I was young. In

fact that when I heard {Anonymized Instructor}

talked about recursion, I immediately remember

the Russian Dolls. The AI successfully utilise that

concept and clearly explain how the code use recursion

to work which make me understand it without much

problem.” (P163)

4.1.2 Comparing theDiversity andDistribution of Topics. As shown

in Table 1, when students provided a specific topic for their prompts,

the resulting analogies covered a much broader range of topics

“Like a Nesting Doll”: Analyzing Recursion Analogies Generated by CS Students using Large Language Models ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy

Table 1: The top ten analogy themes and diversity of topics

for analogies where the topic was specified in the analogy

(student-generated) or not specified (GPT-generated).

Student-Generated GPT-Generated

Count Theme Count Theme

27 Food/Cooking 53 Russian Nesting Dolls

23 Russian Nesting Dolls 37 Food/Cooking

14 Books 31 Books

13 Sports 22 Cards

9 Miscellaneous 9 Miscellaneous

6 Animals 5 Dominoes

4 Blocks/Legos 4 Mazes

3 Video Games 3 Transportation

3 Dominoes 2 Sports

3 Board games 2 Animals

Distinct Topics: 169 Distinct Topics: 48

Total Topics: 226 Total Topics: 169

Diversity of Topics: 0.747 Diversity of Topics: 0.284

(0.747) than when no prompt topic was provided (0.284). Addition-

ally, there were differences in theme popularity based on the pres-

ence or absence of a specified topic in the prompt. This suggests

that the default topics that ChatGPT generates when not explicitly

directed, do not fully align with the types of topics that students

generate. This misalignment in interests suggests that there might

be a disconnect between the natural inclinations of ChatGPT and

the specific preferences or expectations of students. It raises ques-

tions about the effectiveness of default topic generation in meeting

user needs, particularly in educational contexts where alignment

with students’ preferences aids meaningful engagement. Examples

of particularly creative topics specified within students’ prompts

included these from P27, P136, P229, P511, and P18:

• “modern-day NSSL phase two launch vehicles”

• “a magic worm that eats the words”

• “Detective Recursive Rex”

• “A grand book that contains the entire history of everything”

• “Conveyor belt of sandwiches”

4.2 RQ2: Analyzing Student Reflections

To understand students’ experiences with the analogy generation

activity, we conducted a thematic analysis of post-lab survey re-

sponses about the learning activity along with comments about

the analogies that students generated. The analysis revealed key

themes related to educational value and personal relevance.

4.2.1 Educational Value. When learning complex concepts like re-

cursion, students can often encounter a significant barrier. Despite

lectures and coding assignments designed to aid comprehension,

many students described a crucial turning point in their under-

standing frequently emerged through the use of analogies. As P705

describes it, they did not get a ‘real’ understanding of recursion un-

til after the analogies:

“It was initially difficult to wrapmy head around recur-

sive functions, and initially, the code I submitted was

actually not recursive. It wasmostly a�er the analo-

gies that I got a real understanding of what re-

cursive functions were. I feel, that the concepts could

be explained a bit more in the lectures.”

This feedback is further exemplified by another student’s reflec-

tion where they detailed the limited effectiveness of coding tasks

alone in grasping complex concepts like recursion. In their expe-

rience, simply following procedural instructions was not enough

to foster a deep understanding. The student’s revelation occurred

while engaging with a multiple analogies:

“I did the coding tasks first, and I didn’t really under-

stand recursion. I was just simply following the prepa-

ration document (which was very helpful for this lab).

However, doing the analogy section helpedme under-

stand recursion a lot be�er a�er reading somany

analogies lol.” (P584)

The emphasis on ‘so many’ analogies reflects the extensive ex-

ploration required to grasp a challenging concept, like recursion,

and it also implies that it may be valuable to engage with multiple

analogies. These responses highlighted the role that analogies can

play in complementing traditional teachingmethods. They suggest

that the analogies filled students’ knowledge gaps whichmight not

have been fully addressed through conventional teaching methods.

4.2.2 Personal Relevance. Many students described iterating to find

the right analogy. For example, 515 tried creating multiple:

“I tried creating few analogies based on different top-

ics (eg. photo and school) before creating this analogy

about dogs. However, I think this analogy based on

dogswasmost interesting compared to other analo-

gies and if this analogy is provided to a person who is

interested in pets, this analogy will be a very effective

analogy for them to understand how the ‘PrintReverse’

function works. Moreover, this analogy thoroughly ex-

plains how recursion works in this function as well.”

Other students shared this opinion. For example, P310 described

strugglingwith an initial analogy because they did not have enough

familiarity, but later found an analogy that resonated with them:

“I found this particular response from [ChatGPT] to be

the most effective at helping me visualise the recursion

process. I initially asked it to provide a response on

the topic of sports but its analogy, based around

relay running,was fairly confusing. Hence, I asked

[ChatGPT] to provide a response based on the theme

of history. I found this response to be more engag-

ing as the reference to scrolls helped me further under-

stand how recursion ’unravels’ itself once the base case

is reached.” (P310)

This ability to rapidly create and engage with analogies is a

promising benefit of LLMs. Many students described generating

multiple analogies and talked about how somemade sense to them

while others did not.

ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy Anon, et al.

4.2.3 Overall Student Sentiment. Overall, studentswere extremely

positive about the activity. Based on manually coding the senti-

ment of 150 randomly selected student reflections about the analo-

gies, we observed only 8 instances (5.3%) contained a negative sen-

timent, with 7 of those instances also containing positive senti-

ments. P24 is the only instance that contained purely negative sen-

timent:

“This response took quite a number of attempts to pro-

duce, because to start the responses were much too

long. This one seems to have enough detail to get

an understanding of the topic, but not too much

that it becomes boring.”

However, with over 90% of the responses containing positive

sentiments, it is clear that the analogies were useful for students. In

fact, students even described wanting to continue to use ChatGPT

to generate analogies in the future. For example, P57 said:

“Very nice lab on recursion, also the idea of being able

to use chatGPT to create analogies is quite a nice thing

to think about and I’ll definitely will be using this

analogy part of chat in the future.”

5 DISCUSSION

In this study, over 800 students were asked to generate their own

analogies as part of an introductory programming lab focusing

on recursion. We observed that only 63.1% of the students explic-

itly specified a topic when prompting ChatGPT. This provided us

with the opportunity to stratify the data by the analogies where

the topic was explicitly chosen by students and analogies with a

topic chosen implicitly by ChatGPT. Without stratifying the data,

it would be unclear if students chose the topic. We observed that

students tended to come up with more diverse analogy topics on

average and the prevalence of topics also varied between the two

groups. This disconnect in topical prevalence and diversity sug-

gests that students may benefit from being ‘in-the-loop’ when gen-

erating analogies. This aligns with prior work [1, 18]; specifically

that analogies should be ‘dialectic, not didactic’ where “analogy

use and creation should be guided and discussed, not simply ‘given’

” [1]. So while LLMs can easily generate bespoke analogies at any

time on-demand, the interests, creativity, and culture of students

is necessary to guide the process. In this way, LLMs may provide

new opportunities for students to engagewith computing concepts

in ways that are culturally relevant [12, 31, 32]. Multiple students

commented on how the analogies could be relevant for their gen-

eration, culture, or lived experiences. This new capability for stu-

dents to generate personalized analogies with very little effort un-

dermines debates about which analogy is ‘best’ for teaching a spe-

cific concept [1]. Theoretically, students could continue to generate

analogies until they find one that resonates with them and facili-

tates their understanding. However, this may add fuel to debates

about whether a weak analogy can be misleading or confusing for

students. Prior work has shown that even poor analogies do not

do “more damage” than not having an analogy [1, 36].

Despite overwhelming positive comments and the consistent ad-

vantages highlighted by students, the analysis revealed a surpris-

ing trend. Contrary to our initial expectations, a non-negligible

number of the analogies provided by students were rather con-

ventional, centering around familiar concepts like books and food.

This raises intriguing questions about the prevalence of certain ar-

chetypal analogies in educational settings. One surprising aspect

was the limited incorporation of analogies related to individual-

ized interests or niche hobbies, such as a specific musician’s lyrical

style or references to movies. Further investigation is warranted

to understand this trend better. Potential explanations include stu-

dents’ reluctance to share personally relevant analogies, the per-

ception that niche topics may be more engaging but less informa-

tive, or the possibility that their best analogies, which may not

have been the first or the most “personally relevant”, were not

initially shared. Additionally, analogies are memorable, which is

great, but if they’re inaccurate, this may lead tomemorable mis-

conceptions. Future research should assess analogy accuracy, fo-

cusing on its impact on student trust and the retention of knowl-

edge andmisconceptions. These findings raise questions about how

much scaffolding students should have in crafting analogies. Should

teachers encourage students to generate personally relevant analo-

gies or provide ready-made prompts that allow students to insert

a topic.

5.1 Limitations

This study encountered several limitations. Firstly, a large subset of

students did not include their prompts along with their analogies,

resulting in some data that was not able to be analyzed. While the

large sample size helps mitigate these effects, it remains uncertain

whether some students faced challenges in generating analogies,

and this aspect cannot be examined without the complete dataset.

Another limitation is the absence of information on how many

analogies students produced before selecting their final one. Multi-

ple students explicitly shared in their reflections that they created

analogies for multiple topics. Therefore, the chosen analogy may

not fully represent this diversity. Additionally, since students per-

formed this activity as part of a class assignment, the nature of the

topics selected might differ if students were generating analogies

spontaneously for immediate learning support. Lastly, to stream-

line the study, we provided students with a single programming

problem. It is unclear whether these findings would be replicated

with a different problem, as topic representation may vary.

6 CONCLUSION

Our exploratory study investigated the types of analogies that stu-

dents generated when using large language models (LLMs). Over

350 students generated analogies for a recursive code snippet and

provided the corresponding prompt. One consistent finding was

that students were largely positive about the learning activity. Stu-

dents described the value they received regarding the ability to per-

sonalize the analogies. Participants described being able to easily

remember analogies that were personally and culturally relevant.

They also talked about how seeing multiple analogies provided ad-

ditional value. Despite these benefits, we observed that only half

of the students in this study took advantage of being able to per-

sonalize the analogies by providing an explicit topic in the prompt.

It is possible that some students found sufficient value associated

with generic analogies, but more work is need to understand why

so many students failed to specify the analogy topic.

“Like a Nesting Doll”: Analyzing Recursion Analogies Generated by CS Students using Large Language Models ITiCSE ’24, July 8–10, 2024, Milan, Lombardy, Italy

REFERENCES
[1] Briana Bettin and Linda Ott. 2021. Frozen in the Past: When it Comes to Analogy

Fears, It’s Time For Us to" Let it Go". In Proceedings of the 26th ACM Conference
on Innovation and Technology in Computer Science Education V. 1. 359–365.

[2] Briana Bettin, Linda Ott, and Julia Hiebel. 2022. Semaphore or Metaphor? Ex-
ploring Concurrent Students’ Conceptions of and with Analogy. In Proceedings
of the 27th ACM Conference on on Innovation and Technology in Computer Science
Education Vol. 1. 200–206.

[3] Briana Bettin, Linda Ott, and Julia Hiebel. 2023. More (Sema| Meta) phors: Ad-
ditional Perspectives on Analogy Use from Concurrent Programming Students.
In Proceedings of the 2023 Conference on Innovation and Technology in Computer
Science Education V. 1. 166–172.

[4] Jonas Boustedt, Anna Eckerdal, Robert McCartney, Jan Erik Moström, Mark Rat-
cliffe, Kate Sanders, and Carol Zander. 2007. Threshold concepts in computer
science: do they exist and are they useful? ACM Sigcse Bulletin 39, 1 (2007).

[5] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[6] Virginia Braun and Victoria Clarke. 2021. One size fits all? What counts as qual-
ity practice in (reflexive) thematic analysis? Qualitative research in psychology
18, 3 (2021), 328–352.

[7] Yingjun Cao, Leo Porter, and Daniel Zingaro. 2016. Examining the value of
analogies in introductory computing. In Proceedings of the 2016 ACM Conference
on International computing education research. 231–239.

[8] Richard K Coll, Bev France, and Ian Taylor. 2005. The role of models/and analo-
gies in science education: implications from research. International Journal of
Science Education 27, 2 (2005), 183–198.

[9] Zijian Ding, Arvind Srinivasan, Stephen MacNeil, and Joel Chan. 2023. Fluid
transformers and creative analogies: Exploring large language models’ capacity
for augmenting cross-domain analogical creativity. In Proceedings of the 15th
Conference on Creativity and Cognition. 489–505.

[10] James Finnie-Ansley, Paul Denny, Brett A Becker, Andrew Luxton-Reilly, and
James Prather. 2022. The Robots Are Coming: Exploring the Implications of
OpenAI Codex on Introductory Programming. In Australasian Computing Edu-
cation Conf. 10–19.

[11] Michal Forišek and Monika Steinová. 2012. Metaphors and analogies for teach-
ing algorithms. In Proceedings of the 43rd ACM technical symposium on Computer
Science Education. 15–20.

[12] Diana Franklin, DavidWeintrop, Jennifer Palmer, Merijke Coenraad, Melissa Co-
bian, Kristan Beck, Andrew Rasmussen, Sue Krause, Max White, Marco Anaya,
et al. 2020. Scratch Encore: The design and pilot of a culturally-relevant inter-
mediate Scratch curriculum. In Proceedings of the 51st ACM technical symposium
on computer science education. 794–800.

[13] Nasser Giacaman. 2012. Teaching by example: using analogies and live coding
demonstrations to teach parallel computing concepts to undergraduate students.
In 2012 IEEE 26th International Parallel and Distributed Processing Symposium
Workshops & PhD Forum. IEEE, 1295–1298.

[14] John K Gilbert and Rosária Justi. 2016. Analogies in modelling-based teaching
and learning. Modelling-based teaching in science education (2016), 149–169.

[15] Tina Götschi, Ian Sanders, and Vashti Galpin. 2003. Mental Models of Recursion.
In Proceedings of the 34th SIGCSE Technical Symposium on Computer Science Edu-
cation (SIGCSE ’03). Association for Computing Machinery, New York, NY, USA,
346–350.

[16] Colton Harper. 2022. Developing and Evaluating Scaffolding for Student-
Generated Analogies in CS1. In Proceedings of the 27th ACM Conference on on
Innovation and Technology in Computer Science Education Vol. 2. 656–657.

[17] ColtonHarper, Ryan Bockmon, and Stephen Cooper. 2023. Investigating Themes
of Student-Generated Analogies. In Proceedings of the ACM Conference on Global
Computing Education Vol 1 (CompEd 2023). Association for Computing Machin-
ery, 64–70.

[18] Allan G Harrison and David F Treagust. 2006. Teaching and learning with analo-
gies: Friend or foe? Metaphor and analogy in science education (2006).

[19] Ava Heinonen and Arto Hellas. 2020. Exploring the instructional efficiency of
representation and engagement in online learning materials. In United Kingdom
& Ireland Computing Education Research conference. 38–44.

[20] Arto Hellas, Juho Leinonen, Sami Sarsa, Charles Koutcheme, Lilja Kujanpää, and
Juha Sorva. 2023. Exploring the Responses of Large Language Models to Begin-
ner Programmers’ Help Requests. In Proceedings of the 2023 ACM Conference on
International Computing Education Research V.1. ACM.

[21] Dave Heywood. 2002. The place of analogies in science education. Cambridge
Journal of Education 32, 2 (2002), 233–247.

[22] Irene Hou, Sophia Mettille, Owen Man, Zhuo Li, Cynthia Zastudil, and Stephen
MacNeil. 2024. The Effects of Generative AI on Computing Students’ Help-
Seeking Preferences. In Proceedings of the 26th Australasian Computing Educa-
tion Conference (ACE ’24). Association for Computing Machinery, New York, NY,
USA, 39–48. https://doi-org.libproxy.temple.edu/10.1145/3636243.3636248

[23] Anthony Robins Janet Rountree and Nathan Rountree. 2013. Elaborating on
threshold concepts. Computer Science Education 23, 3 (2013), 265–289.

[24] Andreas Larsson. 2023. Metaphors and Gestures in Programming Education. In
Programming and Computational Thinking in Technology Education. Brill.

[25] Juho Leinonen, Paul Denny, Stephen MacNeil, Sami Sarsa, Seth Bernstein,
Joanne Kim, Andrew Tran, and Arto Hellas. 2023. Comparing Code Expla-
nations Created by Students and Large Language Models. arXiv preprint
arXiv:2304.03938 (2023).

[26] Juho Leinonen, Arto Hellas, Sami Sarsa, Brent Reeves, Paul Denny, James
Prather, and Brett A Becker. 2023. Using large language models to enhance pro-
gramming error messages. In Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1. 563–569.

[27] Stephen MacNeil, Paul Denny, Andrew Tran, Juho Leinonen, Seth Bernstein,
Arto Hellas, Sami Sarsa, and Joanne Kim. 2023. Decoding Logic Errors: A Com-
parative Study on Bug Detection by Students and Large LanguageModels. arXiv
preprint arXiv:2311.16017 (2023).

[28] Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul
Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code
Explanations Generated by Large Language Models in a Web Software Develop-
ment E-Book. In Proc. SIGCSE’23. ACM, 6 pages.

[29] Stephen MacNeil, Andrew Tran, Juho Leinonen, Paul Denny, Joanne Kim, Arto
Hellas, Seth Bernstein, and Sami Sarsa. 2022. Automatically Generating CS
LearningMaterials with Large LanguageModels. arXiv preprint arXiv:2212.05113
(2022).

[30] Stephen MacNeil, Andrew Tran, Dan Mogil, Seth Bernstein, Erin Ross, and Zi-
heng Huang. 2022. Generating Diverse Code Explanations Using the GPT-3
Large Language Model. In Proc. of the 2022 ACM Conf. on Int. Computing Educa-
tion Research - Volume 2. ACM, 37–39.

[31] Tia C Madkins, Alexis Martin, Jean Ryoo, Kimberly A Scott, Joanna Goode, Alli-
son Scott, and Frieda McAlear. 2019. Culturally relevant computer science ped-
agogy: From theory to practice. In 2019 research on equity and sustained partici-
pation in engineering, computing, and technology (RESPECT). IEEE, 1–4.

[32] Jessica Morales-Chicas, Mauricio Castillo, Ireri Bernal, Paloma Ramos, and
Bianca L Guzman. 2019. Computingwith relevance and purpose: A review of cul-
turally relevant education in computing. International Journal of Multicultural
Education 21, 1 (2019), 125–155.

[33] LaurieMurphy, Sue Fitzgerald, Raymond Lister, and RenéeMcCauley. 2012. Abil-
ity to ’explain in Plain English’ Linked to Proficiency in Computer-Based Pro-
gramming. In Proc. of the Ninth Annual Int. Conf. on Int. Computing Education
Research. ACM, 111–118.

[34] James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, et al. 2023. The robots are here: Navigating the generative ai revolution
in computing education. In Proceedings of the 2023 Working Group Reports on
Innovation and Technology in Computer Science Education. 108–159.

[35] Anthony Robins, Janet Rountree, and Nathan Rountree. 2003. Learning and
teaching programming: A review and discussion. Computer science education
13, 2 (2003), 137–172.

[36] Yam San Chee. 1993. Applying Gentner’s theory of analogy to the teaching
of computer programming. International journal of man-machine studies 38, 3
(1993), 347–368.

[37] Kate Sanders and Robert McCartney. 2016. Threshold concepts in computing:
past, present, and future. In Proceedings of the 16th Koli Calling international
conference on computing education research. 91–100.

[38] Sami Sarsa, Paul Denny, Arto Hellas, and Juho Leinonen. 2022. Automatic Gener-
ation of Programming Exercises and Code Explanations Using Large Language
Models. In Proc. of the 2022 ACM Conf. on Int. Computing Education Research -
Volume 1. ACM, 27–43.

[39] Norbert M Seel. 2017. Model-based learning: A synthesis of theory and research.
Educational Technology Research and Development 65 (2017), 931–966.

[40] Andrew Tran, Linxuan Li, Egi Rama, Kenneth Angelikas, and Stephen Mac-
Neil. 2023. Using Large Language Models to Automatically Identify Pro-
gramming Concepts in Code Snippets. In Proc. of the 2023 ACM Conf.
on Int. Computing Education Research - Volume 2, Vol. 1. ACM, 563–569.
https://doi.org/10.1145/3568812.3603482

[41] Camilo Vieira, Alejandra J Magana, Michael L Falk, and R Edwin Garcia. 2017.
Writing in-code comments to self-explain in computational science and engi-
neering education. ACM Transactions on Computing Education 17, 4 (2017).

[42] Arto Vihavainen, Craig S Miller, and Amber Settle. 2015. Benefits of self-
explanation in introductory programming. In Proc. of the 46th ACM Technical
Symposium on Computer Science Education. 284–289.

[43] Jacqueline L. Whalley, Raymond Lister, Errol Thompson, Tony Clear, Phil Rob-
bins, P. K. Ajith Kumar, and Christine Prasad. 2006. An Australasian Study of
Reading and Comprehension Skills in Novice Programmers, Using the Bloom
and SOLO Taxonomies. In Proc. of the 8th Australasian Conf. on Computing Edu-
cation - Volume 52. Australian Computer Society, Inc., AUS, 243–252.

[44] Cynthia Zastudil, Magdalena Rogalska, Christine Kapp, Jennifer Vaughn, and
Stephen MacNeil. 2023. Generative AI in Computing Education: Perspectives
of Students and Instructors. In 2023 IEEE Frontiers in Education Conference (FIE).
1–9. https://doi.org/10.1109/FIE58773.2023.10343467

https://doi-org.libproxy.temple.edu/10.1145/3636243.3636248
https://doi.org/10.1145/3568812.3603482
https://doi.org/10.1109/FIE58773.2023.10343467

	Abstract
	1 Introduction
	2 Related Work
	2.1 Analogies to Explain Computing Concepts
	2.2 Generating Learning Materials with LLMs

	3 Method
	3.1 Study Context
	3.2 Materials
	3.3 Data Collection and Analysis

	4 Results
	4.1 RQ1: Analyzing the Generated Analogies
	4.2 RQ2: Analyzing Student Reflections

	5 Discussion
	5.1 Limitations

	6 Conclusion
	References

