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Abstract: : In this paper we have accessed the ecological changes of resources through time. A brief concept of time series and a case study of the 
observation of dragon flies in Kerala region have been studied. A machine learning approach of processing the time series data, some forecasting results 
like migration location, population growth, future presence on a particular dragonfly species and the prediction approach is highlighted in this paper. 

 

1. Introduction 

People are very much interested in the questions like what will happen 
with our metrics in the next day, month, year or decade. Suppose what 
will be the sale of Hyundai cars in the next quarter of the year,  how much 
bird migration will be from Siberia next year, how many people will 
suffer from dengue or encephalitis next year etc. Underlying principle of 
time series prediction lies in the estimation of unknown value of unknown 
variable. Data recorded periodically at certain interval of time is known as 
time series. If we technically talk about Time series we have time(t) as an 
independent variable and a (yt) as dependent variable. The output of a 
time series model is the prediction of the value of y at a time t(ŷt). 
Prediction is just a specific value such as rainfall of the month of June, 
2021, whether a party will come to power or not in the next election, kind 
of insects that can be found inside deep Amazon forest etc. Forecast is a 
prediction which has some statistical measure with a confidence level of 
certainty which can be defined in percentage. 
 

Nomenclature 

Biodiversity  
Biodiversity time series 
Dragonfly distribution 
Dragonfly migration 
Discrete transitive auto-regressive model 
Discrete functional variability time series 
Irregular time series 
LSTM encoder-decoder-predictor 
Open data 
Entomology 
Conservation 
Public participation in scientific research, Kerala, India 

2. Biodiversity and Time Series 

A key scientific challenge is to quantify and forecast temporal change 
in biodiversity attributable to both natural and anthropogenic causes[2]. 

Forecasting biodiversity change is essential for developing successful 
policies to mitigate biodiversity loss and for addressing basic ecological 
issues, such as the relationship between diversity and ecosystem function, 
the linkage between diversity and stability and the detection of ecological 
tipping points relation to the existence of alternative stable states[2]. 
Because most biodiversity studies are observational rather than 
experimental—particularly at large scales, we argue that temporal 
relationships between biodiversity, ecosystem services and hypothesized 
driver variables are among the strongest possible evidence for causal 
links. Moreover, temporal studies of biodiversity are essential for 
forecasting future change in community structure and ecosystem 
function[2]. 

3. Scientific approach 

Time series bio diversity data may have the following patterns:- 
Trend: Trends can be linear or non-linear component. Trends exhibits 
either increasing behaviour or decreasing behaviour with respect to time 
Seasonal: Seasonal pattern is either linear or non-linear pattern that 
repeats at particular intervals of time. 
Cyclic: Cyclic pattern persists for a longer period of time and have a wave 
form. 
Random/Noise: A component or a phenomenon that does not follow any 
specific pattern is a noise. 

3.1. Stationarity 

In time series analysis stationarity means constant statistical properties 
like mean, variances, co-variance et. over a period of time. We can say 
that the measurement of y of those values remains same at a time p(yt) and 
also at other point in time. To perform time series analysis the dataset 
should be stationary to get a good analytical result. 

3.2. Auto-Regressive model 

Auto regressive or AR model suggests that the value of the variable y in 
y-axis at time t depends on the value of y at time t-1 i.e. it depends on the 
previous value. If y depends on more than one previous values then it is 
denoted by p parameters[3] 
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     (1) 
 
where p is the number of past values. 
 
We can write the above expression as[3], 

           (2) 
 

Again there can be a variability in the functional dependency between past 
r variables in bio diversity time series data. We can mention it as discrete 
variability of transitive dependency or discrete transitive auto-regressive 
model, denoted by ARTransitive(p),which can be expressed as, 
 

       (3) 
Again if the time series is an irregular time series i.e. there is no fixed 
interval between observations and assuming that it is a collection of some 
continuous time series with variable set of data and also the previous time 
series affects the next one in different ways(i.e. with different 
functionalities) then we can mention it as discrete functional variability 
time series and can express as, 

      (4) 
where p is the number of past values to consider. 

3.3. Moving Average Model 

In case of moving average model considers white noise error terms. It can 
be expressed as[3]. 

      (5) 
Where, εt, εt-1, εt-2 etc. are white noise error terms. 

3.4. ARMA 

Auto regressive moving average model is a combination of the 
autoregressive model and the moving average model which uses both the 
past and the white errors and predicts the future time series. Mathematical 
expression of ARMA is as follows[3], 

      (6) 

3.5. ARIMA 

Autoregressive Integrated Moving Average model is most popularly used 
in Time series forecasting. In this model we try to achieve stationarity. It 

is a generalization of ARMA. The ARIMA model considers the following 
3 parameters, 
p: No. of previous orders that should be allowed 
d: differentiation degree to be considered 
q: Moving average order 

4. A case study 

Dataset: The dataset which is considered here is the time series 
observation of dragonflies from in and around Thumboor, observed by 
Rison Thumboor. This dataset is uploaded to Indian Biodiversity Portal. 
Most of the knowledge produced on biodiversity remains fragmented and 
is not available in any standardized structure impeding for instance, our 
ability to perform robust analyses on species distribution patterns[1]. 
However, generating accurate data on biodiversity over large spatial and 
temporal scales is an extremely difficult challenge to meet without a 
multi-institution and/or multi-actor collaborative schemes[1]. Dataset 
contains scientific name of the dragonfly species whose photo is captured, 
it's sex, date of capture, capture location in latitude and longitude. It is an 
irregular time series data. Since the dataset contains the name of the 
dragonfly species, it's captured photo, date of the photos in a discrete 
interval of time, it's location etc. One analysis that can be possible is the 
count of dragonfly monthly or daily or yearly basis. Again the same can 
be done for a particular dragonfly species also and put those data to design 
an ARMA model. Location data like latitude and longitude gives a precise 
presence of the species and its aggregation from the dataset gives us a 
population idea. Although this aggregation data can be taken as a sample 
to predict the actual population. From the photographer's enthusiasm and 
the quantity of data recorded we can have an idea of the presence of a 
particular species at different locations. Data recorded by an enthusiastic 
photographer continuously engaged in the job without lapse can provide 
us a good platform for prediction of species migration.  

A particular dragonfly species record needs to be aggregated first for 
processing based on the number of observations monthly or yearly. But 
aggregating records monthly or even yearly results in irregularly spaced 
observations  in time as shown in the following two tables for two 
dragonfly species "Acisoma panorpoides" and "Brachythemis contaminata". 
Table 1 lists the actual time series data.  
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4.1. Tables 

Table 1- Dragonfly species and it's date of observation 

Dragonfly species Observation date 

Acisoma panorpoides 
2014-08-16 

2014-08-20 

2015-07-30 

2015-08-09 

2017-11-21 

2018-01-23 

2018-10-25 

2016-10-26 

2017-09-10 
2017-11-12 

2017-12-04 

2017-12-08 

2017-12-19 

2017-12-24 

2018-10-07 

Brachythemis contaminata 
2012-01-25 

2014-08-16 

2015-08-09 

2015-08-13 

2018-01-02 

2015-10-24 

2015-11-06 
2015-11-22 

2016-03-01 

2016-12-18 

2017-04-02 

2017-04-09 

2017-10-23 

2017-11-12 

2017-12-08 

2017-12-18 

2018-09-15 

2018-09-16 

2018-10-07 
2018-10-27 

 

Table 2-Aggregation of dragonfly observations year and monthwise 

Dragonfly species  Year Month Count 

Acisoma panorpoides 2014 8 2 

2015 7 1 

8 1 

2016 10 1 

2017 9 1 

11 2 

12 4 

2018 1 1 

10 2 

Brachythemis contaminata 2012 1 1 

2014 8 1 

2015 8 2 

10 1 

11 2 

2016 3 1 

12 1 

2017 4 2 

10 1 

11 1 

12 2 

2018 1 1 

9 2 

10 2 

 

Table 3-Aggregation of dragonfly observations year wise 

Dragonfly species  Year Count 

Acisoma panorpoides 2014 2 

2015 2 

2016 1 

2017 7 

2018 3 

Brachythemis contaminata 2012 1 

2014 1 

2015 5 

2016 2 

2017 6 

2018 5 
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For the above time series data we can determine dragonfly population 
change or density change with a simple differentiation term, but we must 
make it regular by any method such as interpolation. 

    
 

         (7) 

where, ∂yt = change of total aggregated population count in an irregular 
time series, ∂t = amount of change in time. Note that species and location 
are kept constant and yt is the species presence or density along temporal 
axis. 

Now, let [∂yt/∂L]t=constant be the population of a species w.r.t. location, 
keeping time constant. Let us now obtain this value from different time 
serieses generated for different locations for a particular species, and 
[∂yt/∂t]loc=constant be the change of population w.r.t. time keeping location 
constant from any t-series. The migration between two locations L1 and L2 
can be explained with an differentiation term after subtracting the 
mortality factor [(DL1/PL1×10n+ DL2/PL2×10n) ∂t], 

 

 

   
      (8) 

Where, Dx is the death occurring within a given time period at location 'x', 
Px is the size of population or density within which the death occur at 
location x, 10n is a conversion factor such as 105 means mortality rate per 
100000 dragonflies at a location 'x'. 

4.2. Observations 

The dataset considered in this paper is a sparsely sampled dataset. We can 
observe randomness in the series if we consider the yearly count. There is 
also year gaps as observed in the time series i.e. it is sparsely sampled and 
irregular time series. For our study we can consider a generalizations of 
stochastic process. Let the probability space considered as (ω, ࣛ, ܲ) 
where ω∈Ω the sample space of possible outcomes of an random 
experiment, ࣛ is σ-space or subsets of Ω, ܲ is the probability function or 
probability measure on (ω, ࣛ). An integer valued stochastic process is a 
family of random variables {Xγ,γ∈Γ} defined on Ω × Γ taking values in 
ℤ+ i.e. set of positive integers. Thus the random variables of the family 
(measurable for every γ∈Γ) are functions of  the form, 

  X(γ,ω): Γ × Ω ↦ ℤ+. 

For Γ⊂ℤ+, we have a discrete-time process and for Γ⊂ℝ we have 
continuous time process. Our bio diversity dataset consists an irregular 
time series after month wise or year wise aggregation of observations and 
we can consider it as a discrete time process. We can denote discrete time 
stochastic process as X={Xt,t∈T}, where T is <month, year> touple or 
<year>.We also denote Xt as X(t). For a fixed value of ω, say ῶ we have 
{X(t,ῶ), t∈T} where ῶ can be the event of population count below a 
threshold level. 

To predict population migration as well as future population count the 
data set have to be smoothened first and need to do some preprocessing 
operations. We can use an interpolation technique to smoothen the curve. 
We can take date, month-year or year as independent variable. We can 
estimate/guess observations for any unknown intermediate {date}, 
{month-year} or {year}. Thus we can make the discrete time series to a 
continuous time series. But interpolation is considered as an numerical 
technique to guess the value of any unknown independent variable. 
Estimating the future population or population out of scope of the timeline 
is of course an extrapolation problem. 

5. Machine Learning approach to handle bio-diversity t-
series 

Recurrent Neural Network is a kind of neural network which can predict 
the next item of observations depending upon the previous items observed 
in the sequence. In RNNs the hidden layers acts as an internal storage for 
storing earlier stages of observed sequence .But the drawback of the 
generic RNNs is that these networks remember only a few earlier steps in 
the sequence and thus are not suitable for remembering longer sequences 
of data. This problem is addressed in LSTM(Long Short Term Memory). 
"Memory line" is introduced in LSTM network. Earlier sequence or trend 
or pattern is memorized using some gates along with a memory line 
designed with a typical LSTM. LSTMs are special kind of RNNs with 
additional features to memorize the sequence of data. So, it is one of the 
suitable approaches for analyzing long time-series data by deep learning 
approach. The best idea is to handle a bio-diversity series with 
randomness associated with the observations. Pattern of growth of insect 
species may repeat over a season or month or even over a decade and may 
observe the same random pattern in future with little bit of variation as the 
climate remains little bit same for long duration of time and seasonality 
persists. Although the variation of growth rate as well as the mortality rate 
of insets are very random but their growth rate exhibits almost the same 
pattern seasonally, if no other external factors say like natural calamity 
affects the growth rate. If randomness is associated with a certain process 
and there is also some noise associated and impacting the process then we 
can use a machine learning approach like LSTM autoencoder-decoder to 
get insight detail of the dragonfly time series. One interesting aspect of 
time series of insects is to forecast future population sequence on the 
temporal axis. 
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5.1. Comparison between ARIMA and LSTM in timeseries analysis 

ARIMA model can be chosen if the timeseries data is non-stationary. 
ARIMA is a type of model to capture temporal patterns in a time series 
data. As we know that ARIMA is composed of three key aspects AR(auto 
regressive)- dependencies between an observation and the old 
observations, I (integrated)- making the time series stationary by 
measuring the differences of observations at different time, and 
MA(moving average)- dependency between observations and the residual 
error terms when MA model is used to the old observations: 

A simple AR model of order p, AR(p) is, 

  (9) 

Where, yt is the stationary variable, c is a constant, p is the order of the 
model and each βi are autocorrelation co-efficients at lags of 1,2,3,....p. 
The residuals are Gaussian white noise series with mean zero and variance 
σε

2. Similarly an Moving average model , MA of order q, i.e. MA(q) is, 

   (10) 

where μ is E(yt) i.e. expectation of yt and assumed to be zero, ϕi are the 
weights applied to the current and previous values of a random variable or 
stochastic term and ϕ0=1. And εt is assumed to be Gaussian white noise 
series with mean zero and variance σε

2. We combine equation (9) and (10) 
model to form the ARIMA model of order (p,q) as: 

 (11) 

Where, βi≠0, ϕi≠0, and σε
2>0. ARIMA is capable of dealing with non-

stationary time series data because of its “integrate” step. The “integrate” 
component involves differencing the time series to convert a non-
stationary time series into a stationary. The general form of seasonal 
ARIMA model is ARIMA(p, d, q)×(P,D,Q)S, where p is the non-seasonal 
AR order, d is the non-seasonal differencing, q is the non-seasonal MA 
order, P is the seasonal AR order, D is the seasonal differencing, Q is the 
seasonal MA order, and S is the time span of repeating seasonal pattern, 
respectively.  
There is an alternative approach of using deep learning algorithms for 
processing time series data. LSTM is one among them where we can 
preserve the features of training data for a longer duration of time. Both 
the algorithms are used for time series forecasting and both are based on 
single forecasting technique i.e. to predict the next data point for each 
dataset. The approach is based on  training sets containing one more 
observation then the previous one, i.e. look ahead view of the data. There 
are some variations of this approach: 
a) Estimating single set of training data and then computing one step 
forecasting on the remaining set s. 

b) One step forecasting for the next multiple steps. 

c) Refitting the model at each iteration before each forecasting. 

Our study in this paper is to use LSTM network for irregular times series 
analysis and forecasting. 

5.2. Autoencoders 

An auto encoder is a neural network model that seeks to learn a 
compressed representation of an input. Auto encoders are basically 
unsupervised machine learning approach as no labeling of input data is 
done by human beings but we can mention it as self supervised learning 
approach. Training is a part of encoder to recreate the input. In auto 
encoder the input and output data are same. In general the first part of an 
autoencoder is the encoder "f" to encode the sequence 'x' of H-
dimensional space to L-dimensional space, where L<H, i.e. e(x)=u. The 
second part is the decoder which attempts  to reconstruct the original input 
sequence of dimension H from the lower dimensional representation L, 
i.e. d(u)=d(e(x))=r(x)≈x. Where r(x) is the reconstruction phase.The 
learning phase of the autoencoder is to how to compress the data to a 
lower dimensional space. Objective of this kind of model is to reconstruct 
the output with minimum amount of information loss. Once it is trained 
we can compress the test data by the encoder part. The vector x is 
replaced with yt in the fig 1. 

 

 

 

 

Fig. 1 - An general auto encoder model for an irregular time series. 

Training an encoder with missing values of an irregular time series:- 

The missing values of an time series is not given to an encoder it is trained 
to reconstruct the uncorrupted parts of the time series only. The corrupted 
or assumed or guessed data can be fed to the network, however, the error 
only for the reconstruction of uncorrupted data points is evaluated and 
used in the backpropagation. This processes works on the assumption that 
missing points have different series distributions. If a node value is not 
used in the backpropagation in the recent iteration then the next set will 
have missing values in different position. Thus weights of the network are 
not updated in the current iteration phase but in the next phase. Binary 
bias is added to monitor the quality of reconstruction. 
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5.3. LSTM Autoencoder on a time series 

The dragonfly observations are not continuous. After aggregation of the 
observations monthly or yearly as shown in table 2 and table 3 we can 
generate a discrete irregular time series of observations yt along temporal 
direction. We can consider irregular time series having random  nature as 
a sequence. Bio diversity sequence prediction is a challenging problem 
because machine learning algorithms and neural networks work with fixed 
length of input. But in real scenario a sequence can vary in length. So, the 
two challenging problem with sequences are: 

a) Sequence data can vary in length. 
b) Temporal ordering of the observations can make it difficult to extract 
the features suitable to use for supervised approach. 

Although we are not adopting the methodology to train an encoder phase 
with missing values but in this paper we will first interpolate the irregular 
time series with nearest neighbor interpolation technique(data smoothing) 
to fill the gaps and then will use an LSTM autoencoder for time series 
generation. We can even skip the interpolation step and directly feed the 
sequence. We are not to going to predict the null values, missing values or 
noises in the sequence here neither going to demonstrate that we can use 
this model to adopt variable length bio diversity time series here. 
Although the bio diversity time series data are ordered in time, our 
objective is not just to compress and regenerate the sequence but to see 
how the model is predicting or regenerating the time series data: 

A flow diagram of time series generation is mentioned in fig 2: 

 

 

 

 

 

Fig. 2 - Time series generation process 

 

 

 

 

 

 

The LSTM auto encoder model is shown in fig 3 below, 

 

 

 

 

 

 

Fig. 3 - LSTM autoencoder model for timeseries generation  

6. Results and Experiments 

The discrete time series data carrying aggregated observations of a 
dragonfly species "Brachythemis contaminata" shown in fig 4.  

 

 

 

 

 

 

 

Fig. 4 - Line graph of dragonfly observations. 

Polynomial interpolation from 2012 to 2018 gives us negative values. 
Which is an invalid number for population count. Therefore this type of 
interpolation methods like spline, polynomial, cubic etc. are not suitable 
for us. The time series graph looks similar to like fig 5 below. The red line 
is the mean axis. 
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Fig. 5 - Polynomial interpolation of dragonfly observations. 

If we go for nearest neighbor interpolation method we can fill up the 
timeline(x-axis) of the timeseries carrying integer value along the y-
axis.The following figure, fig 6 depicts the point, 
 

Fig. 6 -Nearest neighbor interpolation of dragonfly observations 
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