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Abstract— The automated defect detection system 

on industrial manufacturing lines in today's diverse 

world of consumer goods is a necessary requirement. 

Quality control is performed at various stages of a 

large-scale production process, including raw 

material and pre-production material inspections, in-

process quality checks during production, and 

quality control of packaging, labeling before market 

releasing. 

In many industries, such as the garment industry, 

the quality of input materials significantly influences 

product quality, material utilization ratios, and 

ultimately the profitability of manufacturers. Fabric 

is one of the most critical input materials in the 

garment industry. However, during fabric 

production processes such as weaving, dyeing, and 

packaging, numerous factors can affect the quality of 

the raw fabric. Various fabric surface defects may 

occur, including yarn loss, yarn breakage, single yarn 

or area shrinkage, uneven dyeing, inconsistent color 

distribution, mold spots, and fabric thread breakage. 

These defects directly impact the final product and 

need to be eliminated during the classification 

process before entering production. 

Using manual labor to inspect each fabric roll with 

high accuracy becomes impractical in many cases due 

to several factors: experience, visual acuity, fabric 

roll speed, and psychological factors affecting 

operators' mental health from observing a 

monotonous surface for an extended period. 

All of these factors lead to the necessity of an error 

detection system on surfaces such as fabric. In this 

research, we introduce an approach to an optical 

system aimed at observing and detecting deviations 

in the fiber structure using images captured from a 

 
. 

monochrome camera and a lighting system designed 

based on the actual structure of several types of 

fabrics used as research objects. 

Index Terms — Automatic Optical Inspection, 

Computer Vision, Illumination, Machine Vision, 

Optics. 

 

1 INTRODUCTION 

N the textile industry, product quality control is 

one of the most important requirements since 

textile is the material used in not only clothing but 

also in vehicle industry, filters in environment 

applications, construction… Each application gets 

their own quality requirements such as: color, 

surface defect or textile structure defects.  

Numerous factors contribute to the occurrence 

of defects in textiles, including processes such as 

weaving, dyeing, and cutting. Additionally, defects 

can arise during storage due to conditions such as 

high humidity leading to mold growth or oil 

leakage from machinery components. That means 

in the realm of textile industry, fabric defects can 

manifest as regions exhibiting differential 

coloration on the fabric's surface or structural 

irregularities within the woven yarns, such as yarn 

misalignment, yarn breakage, or other forms of 

damage like tears, fiber protrusions, or surface 

abrasions. These imperfections can vary in size, 
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ranging from a few millimeters to several hundred 

millimeters, contingent upon the specific scenario 

[1-3]. 

Detecting small-sized defects within large field 

of view (Fig. 1) is quite challenging when dealing 

with the high-speed continuous rolling of fabric. In 

the case of larger defects, there are instances where 

even modest color contrast can impede ease of 

detection during visual inspection or examination 

with the naked eye within the production process. 

This challenge arises due to the substantial size of 

the observation area on each fabric roll, extending 

both horizontally and vertically. Furthermore, the 

human eye's capacity for sustained concentration is 

limited and is significantly influenced by the color 

characteristics of the object (Fig 2) [4]. 

Over the past several decades, automatic 

inspection systems have witnessed widespread 

adoption within mass production lines, employing 

a diverse array of techniques encompassing 

sensors, cameras, laser scanning, and more. 

Machine vision systems employing digital 

cameras have seen widespread integration across 

multiple facets of modern production facilities. 

This technological advancement has ushered in a 

myriad of transformative capabilities, offering not 

only enhanced accuracy but also long-term 

stability to various inspection techniques [5-12]. 

Within this context, it is crucial to emphasize the 

paramount importance of meticulously managing 

the quality of input images, as this critical element 

plays an indispensable role in ensuring the 

reliability and efficacy of the entire inspection 

process [13-16]. 

However, the successful operation of these 

systems is contingent upon a fundamental 

prerequisite: the quality of input images. In 

essence, the efficacy of machine vision inspection 

hinges on the clarity, resolution, and reliability of 

the visual data it receives. Poorly captured or 

distorted images can lead to false positives or 

negatives, compromising the overall accuracy of 

the inspection process. Therefore, it's crucial to pay 

careful attention to optimizing the conditions under 

which images are captured, including lighting, 

focus, and camera calibration [17-20].   

The quality of input images depends on the 

camera, optical lens, and the lighting system. The 

better the lighting system used, the more 

effectively it can highlight defects. This, in turn, 

improves the detection algorithms. Sometimes, 

issues like reflections from ambient light, uneven 

 
Figure 1.  Real horizontal size of roll of fabric (1560 mm). 

 

 
Figure 2.  Real surface of roll of fabric. 
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lighting across images, and the similarity between 

defects and normal areas can lead to errors. There 

are two types of mistakes that can occur: 'underkill' 

and 'overkill' [1, 6, 11, 15].  

'Underkill' is when the system misses real 

defects, which can allow faulty products to be sold. 

'Overkill' happens when the system wrongly 

identifies good products as faulty. Usually, 

factories want to avoid 'underkill' as much as 

possible, even if it means having some 'overkill.' 

That's why it's essential to design vision systems 

that can highlight unusual areas on objects [18-20]. 

For an optimized vision system design, 

engineers must acknowledge that a one-size-fits-all 

approach is not applicable. Factors such as the size, 

structural characteristics, material, and color of the 

object or the area to be inspected on the object must 

be taken into account and factored into the design 

calculations. In this research article, we have 

chosen fabric as the subject of our study. 

Typically, a roll of fabric can have a total length 

ranging from 60 to 300 meters and a width that 

varies from 1400 to 1800 millimeters, depending 

on the supplier and the specific requirements of 

clothing companies. Therefore, the inspection area 

must cover the entire width of the fabric roll, and 

the inspection process occurs continuously along 

the length of the fabric roll as it unwinds onto 

standard rolls, preparing it for the cutting and 

subsequent stages in the production line. 

Fabrics are usually rolled at speeds of 

approximately 10 to 30 meters per minute, with 

workers or automatic inspection system directly 

observing the fabric's surface to identify defects 

and their corresponding locations. Whether the 

fabric continues through the production process or 

not upon the detection of defects depends on the 

specific requirements of each case. 

With the goal of detecting small defects 

ranging from a few millimeters to several 

centimeters in size, we propose a system using two 

cameras simultaneously. Each camera covers 

slightly more than half of the fabric's width. For 

fabric samples with a width of 1400 mm, we 

selected optical lenses and distances to the fabric 

surface to ensure that the observed area across the 

width is approximately 800 mm, as shown in 

Figure 3. 

Nevertheless, it's worth emphasizing that this 

lighting system has been customized to meet the 

 

 

 
Figure 3.  Real system and FOV of camera. 
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needs of simulating inspections within a controlled 

production line environment. In a real-world 

production line scenario, certain modifications and 

adaptations will be necessary to ensure that the 

system functions optimally under the conditions of 

the actual working environment. These 

adjustments might encompass changes to the 

configuration, intensity, or placement of the 

lighting, as well as potential additional equipment 

or technology integration. The goal is to seamlessly 

integrate this system into the practical processes 

and challenges of a real production line, 

maximizing its efficiency and effectiveness in 

enhancing quality control and inspection 

procedures. 

2 OBJECTS, SYSTEM AND METHODOLOGY 

2.1 Objects 

The optical system in this study was designed 

based on the analysis of the research objects, which 

consisted of dyed fabric samples prepared for the 

cutting stage and subsequent processes. With 91 

fabric samples made from various materials such 

as cotton, elastic, and synthetic fabrics, and 

featuring a range of colors including black, navy 

blue, yellow, red, and white, the objective was to 

design an optical system capable of being used in a 

real production line.  

Due to space limitations in the experimental 

conditions, we did not use fabric samples with a 

full width of 1400 mm. Instead, we designed a 

system with a field of view (FOV) just wide 

enough to observe more than half the width of the 

actual fabric (approximately 808 mm). To adapt it 

for use on a real production line, only an additional 

camera of the same type and a matching lighting 

system will be required to extend the observation 

area beyond 1400 mm in width, as illustrated in 

Figure 3. 

 Our inspection checklist includes defects such 

as weaving issues, dyeing problems, cutting 

errors, mold growth, oil leakage, misaligned 

yarn, broken yarn, tears, protruding fibers, 

snagged yarn, and surface abrasions. 

2.2 System 

Camera and lens. The image acquisition 

system in this article is taken using a 12M 

resolution digital mono camera (4024 x 3036 

pixels) and a C-Mount 8mm lens with working 

distance 808 mm. The physical size of each pixel 

in digital camera using is 1.85 x 1.85 µm, the main 

field of view (FOV) for each camera in this system 

is 150 x 750 mm that can cover a haft of roll size. 

Mono image is used to avoid the affect of color of 

textile on contrast of defect in images [17-24]. 

Schematic diagram and real images of the system 

are shown in Figure 3. 

LED and LED Controller. The lighting system 

has been designed using white LEDs with a power 

of 1W/LED (in continuous mode). While it is 

acknowledged that the use of white LEDs may 

introduce certain optical aberrations, notably 

chromatic aberrations at the image border, it's 

essential to weigh this against the practical 

requirements and goals of the current research 

endeavor. The choice of white LEDs is driven by 

the diversity of colors and patterns present in real-

world fabrics used in sewing applications. This 

diversity is the reason why designing a 

monochromatic LED lighting system for fabric 

inspection using a digital camera is not feasible. 

 
Figure 4. Real images of fabric under Back Light (A) and Dark Field (B) lighting system. 

  

A 

B 
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Therefore, the use of white LEDs is the most 

logical and sensible choice for this specific 

application. It is crucial to emphasize that this 

decision aligns with the overarching objectives of 

this research, which is to create a practical and 

efficient fabric inspection system capable of 

accommodating the diverse and complex array of 

textiles found in real-world manufacturing settings. 

To control the lighting, we use a 48V LED 

controller that regulates the current instead of 

voltage. This controller ensures that the lighting 

remains stable during long working periods. It can 

be adjusted for output current, pulse width, and 

trigger delay time as needed. The pulse width 

matches the camera shutter speed, reducing LED 

active time, minimizing heat, and extending the 

LED lifetime. 

2.3 Illumination Lighting Method 

Based on checklist of defects the illumination 

lighting method we consider using is Dark Field 

(DF) and Back Light (BL). 

The Dark Field lighting technique is a method 

used in many observation systems. Light is 

directed towards the observed area at a low angle 

to ensure that the reflected beam of light does not 

travel directly into the observation axis (in the case 

of observing with a camera and lens, the reflected 

beam of light does not enter the optical axis of the 

lens). In this setup, under observation, the observed 

surface appears unilluminated. This means that if 

it's an ideal flat surface, the observed image will 

have an ideal dark area. When the surface has 

irregularities (scratches, dents, punctures, dents, 

etc.), that area becomes a region of scattered light, 

and the scattered light has many directions of 

propagation. Some of it will enter the observation 

 
Figure 5.  DF Image of textile with surface deformation defect (A) and zoom-in defect area (B). 

 
Figure 6.  DF Image of textile surface with color dot defect (due to dying process). 
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area (or enter the optical axis of the lens in the case 

of camera and lens observation) to create an image. 

The brightness of the scattered region on the image 

will vary depending on the specific structure of that 

area. However, when observed against a dark 

background, only a moderate intensity of light is 

needed for that area to stand out prominently and 

be easily observed or detected. However, the 

drawback of this method in quality inspection for 

soft surfaces such as fabric is that wrinkles or 

surface protrusions (which are not defects) will 

also appear in the image with a relatively high 

contrast compared to flat fabric areas. This can 

pose some challenges for the development of 

image processing software to detect defects later on 

(Figure 4A). To avoid this, we propose using a 

second technique, which is backlighting the fabric 

panel from behind (Back Light). 

Backlighting is a lighting technique designed for 

transparent or such material of objects that allow 

some light to pass through. If the observed sample 

has different structures within its composition, 

light absorption will vary in those areas, creating 

contrast in the image between normal and 

abnormal regions. For thin structures like textiles, 

minor wrinkles or non-flat surfaces caused by the 

fabric rolling process typically have minimal 

impact on brightness, ensuring that the observed 

image is not distorted when detecting defects. 

However, the drawback of this method is that 

 

 
Figure 7. Raw BL Image (A), BL after processing (B) and DF Image (C) of textile with structural yarn defect. 
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image details may not be as sharp as with other 

lighting methods because when light passes 

through the fabric surface, it scatters across the 

fabric fibers and different structures, creating 

various directions of light for the observer or 

camera. Nevertheless, significant anomalies within 

the underlying fabric structure will exhibit an 

acceptable level of contrast compared to normal 

regions. This can aid image processing and the 

detection of these abnormal areas without being 

influenced by the flatness of the fabric surface 

(Figure 4B). 

3 RESULTS 

The fabric surface is a scattering surface with 

numerous multi-directional structures of fabric 

threads; hence, the obtained images cannot have 

the sharpness and contrast levels seen when 

capturing images on plastic or metal surfaces. 

However, with a design using DF and BL 

techniques, the images obtained in the anomalous 

regions still have enough contrast for use in 

subsequent image processing algorithms. In the 

case of surface defects like deformations (Fig. 5), 

we can see that the DF image clearly shows the 

contrasting abnormal region against the normal 

fabric background after applying a simple contrast 

enhancement algorithm (Fig. 5B). For defects such 

as ink spots or unusual color spots (which may 

result from oil stains or mold), the images also 

exhibit contrast after a preprocessing step (Fig. 6 

A, B). In these cases, when examined in the BL 

image, the difference is sometimes not significant 

because these color spot layers are often very thin, 

and the light absorption in that area may not be 

sufficient to create the necessary contrast for 

algorithms to detect them without being affected by 

image noise.  

In thin and stiff fabric types, structural damage 

is quite challenging to detect in DF (Darkfield) 

images because the light from the DF system 

primarily scatters from the fabric's surface. The 

folds or creases in the fabric roll also pose 

significant difficulties in identifying the 

abnormalities in the fabric fiber structure (Fig 7C). 

However, when using the BL (Brightfield) images, 

these structural abnormalities exhibit a certain 

level of contrast compared to the surrounding 

structures (Fig. 7A), and with a contrast 

enhancement processing step, these irregularities 

 
Figure 9. Pull or Snag defect images on BF and DF lighting 

techniques. 

 
Figure 10. DF image of oil leaking on fabric surface. 

 
Figure 8. Raw BL Image, and DF Image of textile with 

structural yarn defect. 
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become more apparent (Fig. 7B). This contrast 

level varies among different fabric types; therefore, 

assessing the capability to detect this type of defect 

will require more time and a larger sample of 

defective products to evaluate the detection rate for 

this type of defect. 

Other types of fabric structural defects, such as 

missing or misaligned fabric yarns, if large enough 

to appear both inside and on the fabric surface, can 

be easily observed in both lighting techniques (Fig 

8). However, in the case of BL (Brightfield) 

technique, the images exhibit more stable surface 

brightness, making detection quicker and more 

accurate. Nevertheless, for surface imperfections 

like fabric pulls or snags, although their structure is 

still distinguishable in BL images, only in DF 

(Darkfield) images can we conclusively identify 

the specific type of defect (Fig. 9). This is quite 

significant for categorizing and storing defect data, 

as it leads to data analysis and improvement of 

fabric preparation processes at specific stages, 

aiming to minimize the occurrence of defects in the 

production process.  

For defects such as oil leaking or surface stains 

on the fabric, detection is almost exclusively 

achievable through the Darkfield technique (Fig. 

10). This can be attributed to the fact that thin 

layers of dirt or oil, if present, absorb very little 

light from the Brightfield system, making them 

indistinguishable from the surrounding areas. 

However, due to their location on the fabric's 

surface, these areas will scatter light differently 

from the surrounding regions. As a result, in the 

images, these defect’s areas will also appear 

relatively distinct and can be effectively utilized for 

image processing algorithms. 

We conducted an image collection on 91 

samples of various categorized defects grouped 

into 5 main types. The proportion of samples that 

could be highlighted is illustrated in Table 1 

through statistical analysis of the highlighting 

capabilities of both the Brightfield (BL) and 

Darkfield (DF) lighting techniques.  

In the case of abnormal color area defects, the 

proportion of samples with detectable highlights 

was rather low (42.9%), similarly, yarn structure 

defects showed an unfavorable highlighting rate 

with the optical system under design while other 

defect types exhibited highlight rates exceeding 

80%. 

4 CONCLUSION 

These results also underscore the current 

limitations of these two techniques in classifying 

and detecting defects in a large field of view, 

influenced by factors such as color or fabric 

structure.  Although 3 out of the 5 main defect 

types exhibit highlighting rates, the results for the 

remaining 2 defect types with excessively low 

highlighting rates pose a significant limitation for 

the practical application of this optical system. To 

meet the real-world requirements of automated 

systems, this optical system will need further 

refinement and improvement in future research 

endeavors. 
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Defect type Qty Highlighted  Percentage (%) 

Dot defects (color, oil leak, dirty) 19 16 84.2 

Yarn defect (snag, pull) 25 22 88.0 

Yarn structural defect 19 12 63.2 

Abnormal color area 7 3 42.9 

Tears, cut, dent appear on surface 21 17 80.9 

    

Table 1: Result of defect highlight on optical system. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-

CLICK HERE TO EDIT) < 

 

9 

AUTHOR CONTRIBUTIONS: 

 Sy Hieu Dau, Le Nguyen An Khang and Tran 

Minh Thuan contributed to the optical system 

design and image data collection of the specimen. 

Dang Thi Phuc contributed to image processing 

and verification. 
 

[1] P. Bandara, T. Bandara, T. Ranatunga, V. 

Vimarshana, S. Sooriyaarachchi and C. D. 

Silva, "Automated Fabric Defect 

Detection," 2018 18th International 

Conference on Advances in ICT for 

Emerging Regions (ICTer), Colombo, Sri 

Lanka, 2018, pp. 119-125, doi: 

10.1109/ICTER.2018.8615491.  

[2] Daniel Yapi, Marouene Mejri, Mohand 

Saïd Allili, Nadia Baaziz, "A Learning-

Based Approach for Automatic Defect 

Detection in Textile Images", IFAC-

PapersOnLine, Vol. 48, Issue 3, 2015, 

Pages 2423-2428, ISSN 2405-8963, 

https://doi.org/10.1016/j.ifacol.2015.06.45

1. 

[3] Cho,C.,Chung,B., andPark,M.(2005). 

"Developmentofreal-timevision-

basedfabricinspectionsystem".IEEETrans.

onIndustrialElectronics,52(4),1073–1079.  

[4] J. Wu, J. Le, Z. Xiao, F. Zhang, L. Geng, Y. 

Liu, and W. Wang, "Automatic fabric 

defect detection using a wide-and-light 

network", Int. J. Speech Technol., vol. 51, 

no. 7, pp. 4945–4961, Jul. 2021. 

[5] Md. Tarek Habib, Shaon Bhatta Shuvo, 

Mohammad Shorif Uddin, Farruk Ahmed, 

"Automated textile defect classification by 

Bayesian classifier based on statistical 

features", 2016 International Workshop on 

Computational Intelligence (IWCI), 

pp.101-105, 2016. 

[6] Md. Mozaharul Mottalib, M. 

Rokonuzzaman, Md. Tarek Habib, Farruk 

Ahmed, "Fabric defect classification with 

geometric features using Bayesian 

classifier", 2015 International Conference 

on Advances in Electrical Engineering 

(ICAEE), pp.137-140, 2015. 

[7] Marcin Kopaczka, Marco Saggiomo, 

Moritz Güttler, Kevin Kielholz, Dorit 

Merhof, "Pattern Recognition Applications 

and Methods", vol.11351, pp.141, 2019. 

[8] Mokhlesur Rahman, Tarek Habib, "A 

Preprocessed Counterpropagation Neural 

Network Classifier for Automated Textile 

Defect Classification", Journal of Industrial 

and Intelligent Information, 2016. 

[9] X. Yang, G. Pang, N. Yung, "Robust fabric 

defect detection and classification using 

multiple adaptive wavelets", IEE 

Proceedings - Vision, Image and Signal 

Processing, vol.152, no.6, pp.715-723, 

2005. 

[10] R M. Haralick, "Statistical and structural 

approaches to texture [J]", Proceedings of 

the IEEE, vol. 67, no. 5, pp. 786-804, 2005. 

[11] Y. L. Xi, Y. N. Zhang, and S. T. Ding, 

"Visual question answering model based on 

visual relationship detection", Signal 

Process., Image Commun., vol. 80, pp. 

115648-1–115648-14, Feb. 2020. 

[12] J. F. Jing, H. Ma, and H. H. Zhang, 

"Automatic fabric defect detection using a 

deep convolutional neural network", 

Coloration Technol., vol. 135, no. 3, pp. 

213–223, Mar. 2019. 

[13] Q. U. Bo, L. U. Zhaoyang, L. I. Jing, L. 

Cui, and F. Zhou, An improved 

multichannel Gabor filter algorithm for 

fabric defect detection, J. Textile Res., vol. 

30, pp. 37–40. 

[14] A. Bochkovskiy, C.-Y. Wang, and H.-Y. 

M. Liao, YOLOv4: Optimal speed and 

accuracy of object detection, 2020, 

arXiv:2004.10934. 

[15] Q. Liu, C. Wang, Y. Li, M. Gao and J. Li, 

"A Fabric Defect Detection Method Based 

on Deep Learning," in IEEE Access, vol. 

10, pp. 4284-4296, 2022, doi: 

10.1109/ACCESS.2021.3140118. 

[16] Y. Li and X. Di, "Fabric defect detection 

using wavelet decomposition", 2013 3rd 

International Conference on Consumer 

Electronics, Communications and 

Networks, Xianning, China, 2013, pp. 308-

311, doi: 10.1109/CECNet.2013.6703333. 

[17] C. Zhang, S. Feng, X. Wang and Y. Wang, 

"ZJU-Leaper: A Benchmark Dataset for 

Fabric Defect Detection and a Comparative 

Study," in IEEE Transactions on Artificial 

Intelligence, vol. 1, no. 3, pp. 219-232, Dec. 

2020, doi: 10.1109/TAI.2021.3057027. 

[18] Y. Li, W. Zhao and J. Pan, "Deformable 

patterned fabric defect detection with fisher 

criterion-based deep learning", IEEE Trans. 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-

CLICK HERE TO EDIT) < 

 

10 

Autom. Sci. Eng., vol. 14, no. 2, pp. 1256-

1264, Apr. 2017. 

[19] M. Haselmann, D. P. Gruber and P. 

Tabatabai, "Anomaly detection using deep 

learning based image completion", Proc. 

IEEE Int. Conf. Mach. Learn. Appl., pp. 

1237-1242, 2018. 

[20] K. Yildiz, Ö. Demir and E. E. Ulku, "Fault 

detection of fabrics using image processing 

methods", Pamukkale Univ. J. Eng. Sci., 

vol. 23, pp. 841-844, 2017. 

[21] K. L. Mak and P. Peng, "An automated 

inspection system for textile fabrics based 

on Gabor filters", Robot. Comput.-Integr. 

Manuf., vol. 24, no. 3, pp. 359–369, Jun. 

2008. 

[22] M. K. Ng, H. Y. T. Ngan, X. Yuan, and 

W. Zhang, "Patterned fabric inspection and 

visualization by the method of image 

decomposition", IEEE Trans. Autom. Sci. 

Eng., vol. 11, no. 3, pp. 943–947, Jul. 2014. 

[23] L. Jia, C. Chen, J. Liang, and Z. Hou, 

"Fabric defect inspection based on lattice 

segmentation and Gabor filtering", 

Neurocomputing, vol. 238, pp. 84–102, 

May 2017. 

[24] R. K. R. Ananthavaram, O. S. Rao, and M. 

K. Prasad, "Atomatic defect detection of 

patterned fabric by using RB method and 

independent component analysis", Int. J. 

Comput. Appl., vol. 39, no. 18, pp. 52–56, 

Feb. 2012. 

 
                                    

Dau Sy Hieu received the Specialist degree from 

the Lomonosov Moscow State University, 

Moscow, Russia in 2009. In 2015 he received 

Ph.D. degree in Physical Condensation State from 

Peoples' Friendship University of Russia, Moscow, 

Russia. Since 2009, he is a lecturer Faculty of 

Applied Science, University of Technology - Viet 

Nam National University HCM city, Vietnam. His 

research interests include Condensation State, 

Optical system design, Machine Learning, 

Computer Vision, NLP, Deep Learning.  

Le Nguyen An Khang received the bachelor’s 

degree in 2022 from Faculty of Applied Science, 

University of Technology - Viet Nam National 

University HCM city, Vietnam. 

Dang Thi Phuc. received the Specialist degree from 

the Lomonosov Moscow State University, Moscow, 

Russia in 2008. In 2018 she received Ph.D. degree in 

System analysis, Control and Information Processing 

from Peoples' Friendship University of Russia, Moscow, 

Russia. Since 2018, she is a lecturer of Faculty of 

Information Technology, Industry University of Ho Chi 

Minh City, Vietnam. Her research interests include 

Machine Learning, Computer Vision, NLP, Deep 

Learning, Operator network. Email: phucdt@iuh.edu.vn.  

 

 

 

 

. 

 


