
EasyChair Preprint
№ 15362

Enhancing Machine Learning Through Advanced
Optimized Parallelized Model Aggregation: a
Novel Theory of Optimized Parallelized Ensemble
Learning (OPEL)

Jephter Pelekamoyo, Libati Hastings M. and Derrick Ntalasha

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 4, 2024

Enhancing Machine Learning through Advanced Optimized Parallelized Model

Aggregation:

A novel theory of Optimized Parallelized Ensemble

Learning (OPEL)

Jephter Kapika Pelekamoyo

Department of Information and Communication

Technology, The Copperbelt University Kitwe,

jephkapi@outlook.com

Department of Information and Communication

Technology, Kapasa Makasa University, Zambia,

Jephter.pelekamoyo@kmu.ac.zm

Hastings M Libati
Department of Information and Communication

Technology, The Copperbelt University Kitwe, Zambia,

libati@cbu.ac.zm

Derrick Ntalasha

Department of Information and Communication

Technology, The Copperbelt University Kitwe, Zambia,

derick.ntalasha@cbu.ac.zm

Abstract—This study presents a parallelized multi-mode ensemble

learning framework to optimize computational efficiency, speed and

model accuracy, which is a novel framework for optimizing machine

learning ensemble multi-model selection using parallelized, execution

and voting mechanisms, using a proposed theory, ‘Optimized

Parallelized Ensemble Learning’ (OPEL), for optimized voting. By

formulating theoretical mathematical models to guide model selection,

weighting, and parallel execution strategies and utilizing performance

metrics like the Matthews correlation coefficient to select top-

performing models, with parallel processing incorporated to enhance

efficiency, experimental simulations were conducted on real-world

datasets using high-performance computing platform. Coupled with

comparative analysis with traditional methods, reveals improved

computation speed and accuracy under varying conditions. This paper

henceforth introduced key innovations, which include the Parallelized

Model Execution (PME) approach, Consensus-Based Model Selection

(CMS), and Optimized Parallel Voting Mechanism (OPVM), each

contributing to reduced computational time and improved model

performance. The study demonstrates significant gains in

computational speed and accuracy through parallelization and

advanced voting techniques, with a time complexity reduction as

defined by Amdahl's Law. The proposed ensemble learning framework

is validated as both computationally efficient and robust in diverse,

large-scale AI applications.

Keywords— Ensemble; Parallelization, Optimization;

Efficiency; Voting; Accuracy

I. INTRODUCTION

Despite the traditional ensemble methods being powerful,
they often suffer with scalability and efficiency, especially in
large-scale, heterogeneous settings and when coupled with fast-
changing data, which is usually small data. The proposed
framework in this study addresses these challenges by
introducing a multi-model selection mechanism that identifies
the best-performing models within a given set of classical
machine learning models and ensemble learning models alike,
coupled with parallel processing techniques to expedite the
computation processes. An optimized weighting algorithm is

employed to ensure that models contributing most effectively
to the task at hand are prioritized, thereby improving the
robustness of the final decision. Experimental evaluations
demonstrate that the proposed method outperforms
conventional ensemble approaches in terms of both speed and
accuracy, particularly in distributed computing environments.
This work contributes to the growing body of research on
scalable machine learning and offers a practical solution for
real-world applications where computational resources are
limited for big data. This theory advances the field of machine
learning and artificial intelligence by providing a scalable,
efficient, and robust alternative to traditional ensemble
methods, making it particularly well-suited for modern
distributed computing challenges.

Currently, it’s difficult to efficiently combine multiple
machine learning models to improve decision-making accuracy
and performance in scenarios where data is distributed or
computational resources are limited, in a timely efficient
manner. Traditional ensemble methods like Random Forests or
Ada Boosting rely on training and aggregating multiple models,
which can be computationally expensive and difficult to scale
in distributed systems or with large datasets. Furthermore,
existing methods often lack robustness in selecting the best-
performing models in heterogeneous environments, where
different models may excel in different aspects of the task.

This paper proposes a theory, to develop a novel ensemble
framework that leverages model selection and parallel
processing techniques to optimize decision-making in
distributed and resource-constrained environments. This
framework seeks to minimize computational overhead while
maximizing the accuracy and robustness of the ensemble
model, by formulating an efficient method for selecting the
best-performing models from a pool of candidate models based
on their performance metrics. Followed by integrating parallel
computing strategies to distribute the computational load across
multiple processors, thereby reducing the time required to train
and evaluate the ensembles. All that will be done, following an

mailto:jephkapi@outlook.com
mailto:Jephter.pelekamoyo@kmu.ac.zm
mailto:libati@cbu.ac.zm
mailto:derick.ntalasha@cbu.ac.zm

algorithm that assigns appropriate weights to models in the
ensemble based on their performance, ensuring that the most
reliable models have a greater influence on the final decision.
The study will also conduct a comprehensive evaluation by
comparing the proposed framework with traditional methods to
demonstrate its advantages in terms of scalability, efficiency,
and accuracy. Finally, testing the proposed ensemble
framework by measuring its performance in terms of accuracy,
speed, and market user satisfaction.

II. HYPOTHESES

• Null hypothesis 1: The time (T) complexity T(n, P) for
model execution increases with an increase in the
number of processing units P when the problem size is
n as when using an optimized parallelled voting
mechanism (OPVM), compared to serial voting
mechanisms [2].

• Null hypothesis 2: Models selected using an optimized
parallel voting mechanism (OPVM) will not have a
statistically significant higher Matthews correlation
coefficient (MCC) compared to traditional static
models preselected voting mechanisms [3] given
varying sample sizes.

III. RELATED WORKS

Amdahl's work is critical for this current work, particularly
Amdahl's Law (1967), which provides a fundamental
understanding of the limitations of parallel processing by
quantifying the maximum speedup achievable when only part
of a task is parallelized while considering that some parts of the
task must remain serial. This law underscores the inherent
limitations in achieving significant performance gains through
parallelization, particularly when a substantial portion of a task
cannot be parallelized has to parallel model aggregation in
machine learning apply these scalability principles to enhance
model performance, particularly in handling large datasets and
complex models [4][5][6]. Amdahl's law is critical in
understanding the limits of parallelization although it does not
extend to machine learning, it still provides critical insights into
the limits of parallel computation. This study extends those
principles by applying Amdahl's law to the specific context of
machine learning model selection and weighted voting
mechanisms.

Agarwal and Chowdary (2021), proposed an ensemble
learning-based adaptive model for automatic hate speech
detection that aims to improve cross-dataset generalization and
their expert model addressed the strong user bias present in their
annotated datasets. The experiments they conducted
demonstrated the effectiveness of the usage of their proposed
model on recent topics such as COVID-19 and the US
presidential elections. Their model used ensemble-based
adaptive classifier, A-Stacking, utilizes multiple base classifiers
in combination with a meta-classifier, employing Support
Vector Machine Classifier (SVM), Gradient Boosting Decision
Trees (GBDT), Multi-Layer Perceptron Classifier (MLP),
kNeighbors Classifier, ELM classifier15, along with Logistic
Regression for the meta-classifier and to perform clustering,

they utilized the SimpleKMeans clustering algorithm with
varying values [7].

Agarwal et al. (2023), accelerate the automatic detection of
hate speech on social media platforms (SMPs), by
implementing parallelizing bagging, A-stacking, and random
sub-space algorithms. They evaluated the serial and parallel
versions of the machine learning models on standard high-
dimensional hate speech datasets and the parallel models
demonstrated a substantial increase in speed with remarkable
efficiency, affirming that the proposed models are well-suited
for this particular application. They observed that parallelizing
the algorithms does not compromise the accuracy compared to
running machine learning ensemble algorithms sequentially on
a single machine [8]

Aldjanabi et al. (2021), covered the development of a
classification system that identified offensive and hate speech
using a multi-task learning (MTL) model built on a pre-trained
Arabic language model. Through training the MTL model on
the same task using different cross-corpora representing
variations in offensive and hate context. The results indicated
that the developed MTL model exhibited significant
performance improvements compared to existing models in the
literature, outperforming them on three out of four evaluated
datasets for Arabic offensive and hate speech detection tasks.
The findings demonstrate the superior classification
performance of the developed MTL model in comparison to
previously proposed models [9].

Kapil and Ekbal (2020), introduced a deep multi-task
learning (MTL) framework, which aimed at enhancing the
performance of individual classification tasks by leveraging
valuable information from multiple related tasks. The proposed
MTL model adopted a shared-private scheme, where shared and
private layers were assigned to capture shared features and task-
specific features from five classification tasks. Through
experiments conducted on five datasets, the Shared-Private
Multi-Task Learning (SP-MTL) framework leveraged the
benefits of multiple related tasks and demonstrated promising
results in terms of macro-F1 and weighted-F1 performance
metrics [10].

Dietterich and Thomas (2000) provide an overview of
ensemble learning and bagging predictors methods in the paper
titled ‘Ensemble Methods in Machine Learning’. They
emphasized how combining multiple models can improve
overall prediction accuracy. The paper discusses various
ensemble techniques, including bagging, boosting, and stacking
[3]. Similar principles were proposed by Breiman (1996),
where the author introduced the concept of bagging (Bootstrap
Aggregating), where multiple versions of a predictor are trained
on different subsets of the data, and their predictions are
averaged to improve robustness [11]. Dietterich (2000),
describes the Bagging (Bootstrap Aggregating) method, where
multiple versions of a predictor are trained on different samples
of the training set and combined by averaging their predictions
[3].

While Hansen and Salamon (1990), proposed creating
ensembles of neural networks to improve generalization by
averaging predictions from multiple independently trained
networks [12]. Neural network ensembles are well known for

significantly improving model accuracy and reducing
overfitting, particularly in complex tasks like image
recognition. However, as the proposed method involves
training multiple neural networks independently, this increases
computational costs and may require substantial computational
resources, particularly for deep networks.

AdaBoost Algorithm is among the other models used
among the multiple models, which Freund and Schapire (1997),
studied. In their work, they introduced the AdaBoost algorithm,
which improves weak learners by focusing on the instances that
previous models struggled to classify. The emphasis was on
iteratively adjusting weights to improve overall accuracy [13]
AdaBoost is an ensemble technique that combines weak
classifiers to create a strong classifier by iteratively adjusting
the weights of incorrectly classified examples, thereby reducing
bias and variance, and significantly improving the performance
of weak classifiers [13].

Breiman (2001), introduced Random Forests, an ensemble
learning method that builds multiple decision trees and merges
them to get a more accurate and stable prediction (Breiman
2001). His work is similar to the one proposed in this paper, as
it merges multiple decision trees for more stable predictions.
Unlike Breiman’s Random Forest algorithm, which involves
creating an ensemble of decision trees, each trained on a
random subset of the data, with the final prediction based on the
majority vote of the trees [14] it does not incorporate parallel
computation efficiency nor incorporate a weighted voting
system that is optimized for parallel computation.

Teh et al., (2006), introduce hierarchical models that allow
for sharing statistical strength across different groups of data.
The authors leverage Bayesian nonparametrics to build a
flexible model that can be parallelized across clusters [15]. The
method allowed for a more nuanced model that could capture
complex dependencies within the data, and parallelization
improves scalability.

Cortes and Vapnik (1995), developed Support Vector
Machines (SVMs) as a method for finding the optimal
hyperplane that separates data into different classes,
maximizing the margin between classes [16]. Zanghirati and
Zanni (2003), explore the parallelization of SVM training using
quadratic programming, significantly reducing the
computational time for large datasets[17] [18]. The study used
a parallel decomposition technique to solve the quadratic
programming problem in SVM training, distributing the
workload across multiple processors[17]. Their technique
significantly reduced training time for large datasets by
parallelizing the optimization process. Their working principle
is similar to the one proposed in this paper. But instead of
parallelizing SVMs alone, the current method integrates a
voting mechanism and equally focuses on a more generalized
framework applicable across different models.

Dean et al. (2012) present a method for distributed training
of deep neural networks through model parallelism, where
different segments of a neural network are distributed across
multiple machines. This approach enables the handling of
extremely large datasets and models, facilitating the training of
deep networks with billions of parameters. Their study

demonstrated the scalability of deep learning systems and laid
the groundwork for practica[19].

Chu et al. (2006), introduced the MapReduce framework,
using parameter server architecture to efficiently scale
distributed machine learning models across multiple servers,
optimizing both storage and computation, allowing for large-
scale machine learning tasks to be handled more effectively in
a distributed environment. Their framework utilized data
distribution and parallel computation, making it a foundational
method for processing vast datasets in a distributed manner
[20]. Similarly, Li et al (2014), used parameter server
architecture to efficiently scale distributed machine learning
models across multiple servers, optimizing both storage and
computation. This facilitated the parallel training of machine
learning models [1]. This approach significantly improves the
scalability of machine learning training by efficiently handling
parameter updates across distributed systems but introduces
latency and synchronization issues, particularly in highly
distributed systems with non-uniform communication speeds.

Cole and Vishkin (1986), proposed a ‘Theoretical Parallel
Model’, the development of deterministic algorithms for
parallel computation, including techniques for reducing
contention and improving efficiency [21]. Cole and Vishkin
(1986) developed deterministic algorithms for parallel
computation, emphasizing techniques to reduce contention
among processors and enhance overall computational
efficiency. Their work is instrumental in the creation of parallel
algorithms that operate under strict deterministic conditions,
ensuring consistent and predictable performance across
different computational tasks [21]. While Cole and Vishkin
(1986), provided essential insights into the development of
deterministic parallel algorithms, it does not extend these
principles to machine learning or model aggregation.

Graham (1966), worked on load-balancing issues in parallel
computation, addressing the inefficiencies that arise when tasks
are not evenly distributed across processors. The primary focus
is on ensuring that each processor in a parallel computing
environment is utilized effectively to avoid bottlenecks that can
occur when tasks are not evenly distributed [22]. His work was
further amplified by Brent (1974), who offered a fundamental
analysis of the efficiency of parallel algorithms, concentrating
on minimizing communication overhead and ensuring effective
load balancing across processors, and established key principles
for optimizing parallel computation, particularly by reducing
the time complexity of parallel algorithms and ensuring that
tasks are distributed in a manner that maximizes processor
utilization [23]. Karp and Ramachandran (1990), further
comprehensively examined parallel algorithms, particularly
within the context of shared-memory architecture[24].

Shalev-Shwartz et al. (2011), introduced the Pegasos
algorithm, a stochastic sub-gradient descent method for
efficiently training support vector machines (SVMs). The
algorithm was particularly notable for its scalability, making it
well-suited for handling large datasets. The Pegasos algorithm
significantly reduces the computational complexity of SVM
training, providing a more practical solution for real-world,
large-scale machine-learning tasks [5]

Zhang et al. (2013), proposed a divide-and-conquer
approach for scaling kernel ridge regression on large datasets
by splitting data into smaller subsets and processing subsets
independently in parallel before combining the results solving
the problem on each subset, and then combining the results
[25]. According to Zhang et al. (2013), for finite-rank kernels
and Gaussian kernels, their theory ensured that the number of
processors, denoted as m, can increase almost linearly, for
Sobolev spaces, the number of processors can grow
polynomially with N. The partitioning led to a substantial
reduction in computation time and cost [25].

Elkan (1997), study titled "Boosting and Naive Bayesian
Learning" challenges the assumption that boosting, a technique
primarily known for improving decision tree models, can
indeed enhance the performance of Naive Bayes by focusing on
difficult-to-classify instances, leading to improved overall
accuracy. Elkan (1997), argues that boosting applied to naive
Bayesian classifiers yields combination classifiers that are
representationally equivalent to standard feedforward
multilayer perceptrons. However, this study did not explore
boosting in a distributed or parallel computing context, focusing
instead on the theoretical and practical implications within a
single-machine environment [26].

Kumar and Gupta's (1994) study provides a comprehensive
analysis of the scalability of parallel algorithms across various
computing architectures, focusing on shared memory,
distributed memory, and hybrid systems. Their work
emphasizes the importance of load balancing and minimizing
communication overhead to optimize scalability, offering a
strong theoretical foundation for parallel computation.
However, the study lacks a focus on machine learning-specific
applications, such as model selection and ensemble voting, and
some of the discussed architectures are now outdated. In
contrast, modern approaches to parallel model aggregation in
machine learning apply these scalability principles to enhance
model performance, particularly in handling large datasets and
complex models [4]. While Kumar and Gupta’s work is
foundational, contemporary methods extend these concepts to
address the unique challenges of machine learning in
distributed environments.

The proposed theory diverges from existing works in its
approach to various model integration, optimization, and
parallelization. Traditional ensemble methods use fixed voting
schemes, while the proposed framework introduces a dynamic
weighted voting mechanism based on real-time model
performance metrics. This allows for adaptation to changing
data distributions and resource availability, improving
robustness and performance. The framework also leverages
parallel and distributed computing to optimize the integration
and combination of multiple models, minimizing
communication overhead and ensuring load balancing. Most
related works focus on either ensemble learning or parallel
computing separately, while the proposed framework uniquely
integrates a weighted voting mechanism into a parallel
computing context. It offers a generalized framework
applicable to many machine learning models, utilizing both
parallel processing and ensemble techniques. The papers also
draw on established theories like Amdahl's Law and Brent's
theorem to provide new insights into the trade-offs between

processor count, overhead, and model accuracy in parallel
environments.

IV. METHODOLOGY

The study employs a combination of theoretical modelling,
experimental simulations, and comparative analysis to develop
and validate the proposed parallelized multi-mode ensemble
learning framework.

A. Theoretical Modeling

The initial phase of the study involves developing the
theoretical underpinnings of the parallelized ensemble
framework. This includes formulating mathematical models to
describe the selection and weighting of models within the
ensemble, as well as the parallel processing strategies.

B. Algorithm Development

Based on the theoretical models, algorithms are developed
for model selection, weighting, and parallel processing. The
model selection algorithm identifies the top-performing models
from a pool of candidates using metrics such as accuracy,
precision, recall, the Matthews correlation coefficient also
known as the phi coefficient and the confusion matrix. The
weighting algorithm then assigns a rank to each selected model
based on its relative performance. Parallel processing
techniques are incorporated to optimize the computational
efficiency of the framework at every relevant stage and process.

C. Experimental Simulations

The The algorithms developed were implemented in a
simulation environment to evaluate their performance. The
simulations were run on real-world datasets. Metrics such as
computation time and accuracy wre recorded. The experiments
wre conducted using a high-performance computing platform
with a memory of 32 gigabytes and an Intel Core i9-10980HK
processor, leveraging parallel functions from the
‘System.Threading.Tasks’ library. Datasets used for
simulations included real-world datasets collected from the
market used in [27], [28], and also [28].

D. Comparative Analysis

The results from the experimental simulations are compared
with the performance of traditional methods and traditional
ensembles using iterations of from 100 and tolerances of 1e-4,
and with varying training sample sizes. The models used
include the probabilistic coordinate descent, sequential minimal
optimization with polynomial kernel, iterative reweighted least
squares with logistic regression method FanChenLin support
vector regression with Gaussian kernel, linear regression
newton method, AdaBoost with decision stump and threshold
learning method, AdaBoost with logistic regression methods
and iterative reweighted least squares with logistic regression
method, and AdaBoost with Decision Tree with C45 learning.
Key performance indicators (KPIs) like accuracy and
processing time are compared across different methods.

E. Statistical Validation

In this study, a dataset which was collected through a survey
to evaluate the performance of a developed tool using the
proposed framework was used, to assess the effectiveness of the
application. The dataset included historical weather data,
encompassing low and high temperatures, alongside local
market inventory levels, supply records, and sales records [27],
[28] for supply chain resilience binary decision making,
together with the ‘hotel booking cancellation prediction dataset
[18], consisted of a total of 35000 samples. With the statistical
t-tests, the researchers could determine the significance of key
performance indicators associated with the proposed
framework. The tests provided statistical evidence to support or
refute the impact of the framework on supply chain resilience.
The weather and supply chain dataset consisted of 293
stakeholders.

V. METHODOLOGY

A. Parallelized Model Execution (PME)

This PME is a computational approach where multiple machine

learning models are trained and evaluated concurrently on

separate processing units on the same dataset or input to obtain

results in parallel rather than sequentially. This parallelisation

reduces the overall computational time while maintaining or

improving model performance. Parallel execution concepts are

rooted in the broader field of parallel computing [2], [29].

Given 𝑀 models {𝑀1, 𝑀2, … , 𝑀𝑛} and 𝑃 processing units

{𝑃1, 𝑃2, … , 𝑃𝑛}, PME distributes the computation of each

model across the processors. The time complexity 𝑇(𝑛, 𝑃) for

training and evaluation is reduced from 𝑇(𝑛) (sequential

execution) to:

𝑇(𝑛, 𝑃) =
𝑇(𝑛)

𝑃
+ 𝑂(

𝑛

𝑃
. log 𝑃)

where 𝑂(
𝑛

𝑃
. log 𝑃) represents the overhead of parallelisation,

including communication and synchronization costs [29], [30].

The results are given as:

{𝑅1, 𝑅2, … , 𝑅𝑛}
= 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙. 𝐼𝑛𝑣𝑜𝑘𝑒(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑛(𝑡))

Where 𝑅𝑖 represents the result of the models 𝑓𝑖 applied to input

t.

The equation herein

𝑇(𝑛, 𝑃) =
𝑇(𝑛)

𝑃
+ 𝑂(

𝑛

𝑃
. log 𝑃)

is used to describe the parallel running time of an algorithm

when executed on P processors [31].

Components of the Equation:

i. 𝑇(𝑛, 𝑃), represents the total time required to run

an algorithm on P processors when the problem

size is n.

ii.
𝑇(𝑛)

𝑃
: 𝑇(𝑛) is the time it takes to run the

algorithm sequentially (on a single processor) for

a problem size n. Dividing 𝑇(𝑛) by P suggests

that the algorithm can be broken down into P

parallel tasks, each of which takes the same ratio

of the divided amount of time as compared to the

sequential algorithm. However, this assumes ideal

conditions, such as perfect parallelism without

any overhead.

iii. 𝑂(
𝑛

𝑃
. log 𝑃): represents the overhead associated

with parallelism. It accounts for factors like

communication between processors,

synchronization, and load balancing.

iv.
𝑛

𝑃
 : indicates that the problem is being divided

across P processors, and each processor handles a

portion
𝑛

𝑃
 of the workload [31].

log 𝑃: comes from the communication cost, as in many parallel

algorithms, communication overhead increases logarithmically

with the number of processors.

B. Consensus-Based Model Selection (CMS)

After executing models in parallel, the Theory of Parallelized

Model Voting and Selection proposes selecting the top-

performing models based on a voting mechanism where the

results are evaluated for consistency and accuracy. CMS is an

ensemble learning technique that selects the best-top-

performing models given by the formula below, based on a

voting mechanism.

𝑀𝑏𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒(𝑅1, 𝑅2, … , 𝑅𝑛)

The selection process considers not only the individual

performance metrics but also the agreement among models.

Where, 𝑀𝑏𝑒𝑠𝑡 represents the most frequently best-performing

models, as determined by a voting mechanism across all

parallel executions.[3]

Let 𝑀𝑖 be the 𝑖 − 𝑡ℎ model with a performance metric 𝜃𝑖 . The

final decision 𝐷 is made by considering the consensus among

the models:

𝐷 = argmaxi∈{1,…,n} ∑(𝑤𝑗 . δ(𝑀𝑖 , 𝑀𝑗))

𝑚

𝑗=1

where 𝑤𝑗 is the weight of the 𝑗 − 𝑡ℎ model, and δ(𝑀𝑖 , 𝑀𝑗)is

a similarity function between models 𝑀𝑖 and 𝑀𝑗 [3], [32].

Argmax [33]: This function returns the index 𝑖 of the model

𝑀𝑖 that maximizes the expression that follows it. In other

words, it finds the model 𝑀𝑖 for which the sum of

∑ (𝑤𝑗 . δ(𝑀𝑖 , 𝑀𝑗))
𝑚

𝑗=1
 is the largest and 𝒊 ∈ {𝟏, … , 𝒏}.

The model selection is done from a set of 𝑛 models, where 𝑖

ranges from 1 to n.

i. ∑𝑚
𝑗=1 : The summation is over m models that

are considered for consensus. The summation

aggregates the weighted similarity between the

model 𝑀𝑖 and each other model 𝑀𝑗 .

ii. 𝑊𝑗: represents the weight assigned to the j-th

model. This weight could be based on the model’s

performance, reliability, or another criterion.

iii. δ(𝑀𝑖 , 𝑀𝑗): is a similarity function that measures

how similar the models 𝑀𝑖 and 𝑀𝑗 are. It could

be based on performance metrics, predictions, or

any other feature that can quantify similarity.

The equation is used to select the best model 𝑀𝑖 from a set of

n models by evaluating which models has the highest total

weighted similarity with the other models in the set. Essentially,

it finds the models that are most in agreement with the others

(according to the similarity function δ), weighted by the

importance of each model. And D is the decision, the selected

model indexes. The models with the highest cumulative

weighted similarity across all other models is chosen as the best

or most representative model.

With several machine learning models predicting the same

outcome. Each has a different performance, even though they

may produce similar results. The equation helps determine

which models are the most "trusted" based on how its

predictions align with the other models, considering the

reliability (weights) of each model's performance, to be selected

as the final model. This is particularly useful in ensemble

learning, where combining the outputs of multiple models often

leads to better performance than using a single model.

C. Optimized Parallel Voting Mechanism (OPVM)

OPVM is an enhancement of traditional voting mechanisms
where the weight of each model's vote is adjusted dynamically
based on its performance and the confidence level of its
predictions. This method of aggregating the outputs of parallel
models to determine the most reliable prediction is based on
majority voting, weighted voting, or other aggregation
techniques.

𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑀𝑎𝑥(∑ 𝑤𝑖 . 𝑅𝑖)

𝑛

𝑖=1

Where 𝑤𝑖 are weights assigned to each model's result based

on prior performance, and 𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 is the optimized prediction

derived from the weighted sum of the models' outputs.

For a set of models 𝑀𝑖 and their predictions 𝑦𝑗 , the

weighted vote 𝑉 is computed as:

𝑉 = ∑(α𝑖 . 𝑦𝑖)

𝑛

𝑖=1

where 𝛼𝑖 is the confidence of model 𝑀𝑖 [12], [34]

D. Time Complexity Reduction via Parallel Execution

(TCRPE)

The theory predicts that the overall time complexity of model
selection can be reduced by executing multiple models in

parallel, as opposed to sequentially, thus achieving faster
convergence to the best model. TCRPE refers to the reduction
in computational time achieved by leveraging parallel
processing in training and evaluating machine learning models.
The theory quantifies the trade-off between the number of
processing units and the speedup in execution, from the
principle of

 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = max (𝑇𝑓1
, 𝑇𝑓2

, … , 𝑇𝑓𝑛
),

where 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 the time taken in parallel execution,

compared to

 𝑇𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 = ∑ 𝑇𝑓𝑖

𝑛
𝑖=1

for sequential execution.

The speedup S achieved by parallel execution is defined as,

 𝑆 =
𝑇(𝑛)

𝑇(𝑛,𝑃)
,

where 𝑇(𝑛) is the time taken in a sequential process and

𝑇(𝑛, 𝑃) is the time taken using 𝑃 processing units. Ideally, 𝑆

approaches 𝑃, but in practice, it is limited by overheads and the

non-parallelizable fraction of the task, as described by Amdahl's
Law:

𝑆 =
1

𝑓+
1−𝑓

𝑃

where 𝑓 is the fraction of the task that is inherently serial

[2], [35].

E. Time Complexity Reduction via Parallel Execution

(TCRPE)

This theory posits that by combining parallelized model
execution with optimized voting mechanisms, it is possible to
achieve superior model selection and prediction accuracy in
ensemble learning. The theory establishes that:

1. The consensus-based selection ensures that the chosen
models are robust and reliable, potentially improving
the overall accuracy of AI systems.

2. By formalizing parallel execution and voting, the
theory leads to significant gains in computational
efficiency, particularly in large-scale AI applications.

3. Effective parallelization of model training and
evaluation significantly reduces computation time,
allowing for the exploration of more complex models
within a feasible timeframe [29], [30].

4. It extends ensemble learning by integrating
parallelism directly into the all phases, allowing for
more efficient and accurate model selection. By
dynamically adjusting the voting mechanism based on
model performance and confidence, the theory ensures
that the ensemble’s decision-making process is not
only faster but also more reliable [12], [34].

5. This theory provides a framework for selecting the
best machine learning models in scenarios where

multiple models need to be evaluated rapidly. A
consensus-based approach, refined by the OPVM,
leads to the selection of the most robust models,
thereby improving the overall accuracy of predictions
[3], [32].

6. The theory is applicable in environments where
computational resources allow for parallel execution,
such as in distributed computing or cloud-based AI
systems.

The theory predicts that model selection through OPEL is
faster, and have higher Matthews Correlation Coefficient
(MCC) and lower error rates as compared to those selection by
traditional ensemble methods.

F. Algorithm Development

1. Initialize Data:

• Prepare input data containing independent
variables

• Prepare output data containing dependent
variables

• Prepare a test set for prediction.

2. Set Parameters:

• Set random generator seed for reproducibility.

• Define convergence parameters like iterations and
tolerance.

3. Model Training:

• Initialize multiple machine learning models with
different learning algorithms

• Train each model using the input data and output
data.

4. Model Evaluation:

• Use each trained model to compute predictions
for the test set.

• Calculate evaluation metrics for each model using
confusion matrices and Matthews Correlation
Coefficients.

5. Determine Top-best Models:

• Identify the top-best models based on the
Matthews Correlation Coefficient.

• Evaluate the performance of the best models by
comparing them against the test set.

6. Output Results:

• Display the results of each model, including the
prediction status, error rate, and correlation
coefficient.

• Identify and display the indices of the best-
performing models.

VI. RESULTS

The training time for the following machine learning
models, Probabilistic Coordinate Descent (PCD), Iterative
Reweighted Least Squares (IRLS), Sequential Minimal
Optimization with Polynomial kennel (SMOP), Threshold
Learning (THL), AdaBoost with Decision Stump (AdBDS),
AdaBoost with Logistic Regression (AdBRL) and AdaBoost
with Decision Tree (AdBDT), and the total training time for the

serial processing given by the formula, 𝑇𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 =
∑ 𝑇𝑓𝑖

𝑛
𝑖=1 and the parallel processing, given by the formula

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = max (𝑇𝑓1
, 𝑇𝑓2

, … , 𝑇𝑓𝑛
), on samples of size

35000 and 32500 is given in Table 1.

Table 1: Different Model Runtime

Sample (n) 32500 35000

 Serial Parallel Serial Parallel

PCD 142 387 178 268

IRLS 197 495 182 291

SMOP 84759 84638 48374 49070

THL 15 79 17 37

AdBDS 937 1779 411 893

AdBRL 607 1264 627 1151

AdBDT 3176 3867 3572 4009

Total 89833 84638 53361 49070

Achieving the following cumulative total serial and parallel
processing time in milliseconds, taken to run samples of
varying sizes (n) using serial computation and parallel
computation runtime, as shown in Table 2, with their total
speedups.

Table 2: Serial and Parallel Computation Runtime

 Runtime(ms)

Sample (n) Serial Paralleled SpeedUp

35000 60834 55226 1.10155

32500 100880 95243 1.05919

30000 89143 84894 1.05005

27500 56838 55008 1.03327

25000 51494 49402 1.04235

22500 33307 31150 1.06925

20000 32455 29777 1.08994

17500 33776 31685 1.06599

15000 31638 30387 1.04117

12500 14694 13368 1.09919

10000 11410 10345 1.10295

7500 6627 6264 1.05795

5000 4089 3593 1.13805

2500 1678 1212 1.38449

50 341 261 1.30651

Shown graphically in figure 1, with their trend line.

-20000 0 20000 40000 60000 80000 100000 120000

35000

30000

25000

20000

15000

10000

5000

50

Time (milliseconds)

Sa
m

pl
e

(n
)

Runtime in Milliseconds

Paralleled Serial

Linear (Serial) Linear (Paralleled)

Figure 1: Runtime in milliseconds

Following that, was a voting mechanism that selects the top
best-performing models dynamically, given by the formula,

𝑀𝑏𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒(𝑅1, 𝑅2, … , 𝑅𝑛), the final decision 𝐷,

made by considering the consensus among the most performing
models, given by

 𝐷 = argmaxi∈{1,…,n} ∑ (𝑤𝑗 . δ(𝑀𝑖 , 𝑀𝑗))
𝑚

𝑗=1
,

for the selected model indexes, using 𝑊𝑗, which is the

weight assigned to the j-th model based on the model’s
performance, using the performance metrics for getting the

similarity δ(𝑀𝑖 , 𝑀𝑗) of models 𝑀𝑖 and 𝑀𝑗 . The results as

shown in Table 3, of the models dynamic selected using the

index 𝑊𝑗 based on the Matthews Correlation Coefficient

(MCC) and lower error rates, for each varying sample sizes (n).

Table 3: Model Indeces and Performances

Samples Index Model Error Coefficient

35000

7 AdBDT 0.2354 0.42935

0 PCD 0.23828 0.42246

32500

7 AdBDT 0.23529 0.43115

5 AdBDS 0.23942 0.42392

30000

7 AdBDT 0.23517 0.43093

0 PCD 0.23723 0.42608

27500

7 AdBDT 0.23585 0.42975

2 SMOP 0.23484 0.42973

25000

7 AdBDT 0.23516 0.43008

5 AdBDS 0.23784 0.42616

22500

2 SMOP 0.2324 0.43266

7 AdBDT 0.23378 0.43165

20000

7 AdBDT 0.23385 0.43201

5 AdBDS 0.2359 0.42794

17500

7 AdBDT 0.23331 0.43394

5 AdBDS 0.23697 0.42889

15000

7 AdBDT 0.23287 0.43282

2 SMOP 0.23373 0.42867

12500

7 AdBDT 0.23128 0.43657

5 AdBDS 0.23792 0.42459

10000

7 AdBDT 0.2315 0.43644

2 SMOP 0.2314 0.43438

7500

7 AdBDT 0.23093 0.43648

2 SMOP 0.23093 0.43446

5000

7 AdBDT 0.2328 0.42127

0 PCD 0.2354 0.41792

2500

2 SMOP 0.2348 0.42186

7 AdBDT 0.25 0.39789

50

5 AdBDS 0.06 0.85538

7 AdBDT 0.18 0.54554

In Table 3, the acronyms, PCD is Probabilistic Coordinate
Descent, IRLS is Iterative Reweighted Least Squares, SMOP is
Sequential Minimal Optimization with Polynomial kennel,
THL is Threshold Learning, AdBDS is AdaBoost with Decision
Stump, AdBRL is AdaBoost with Logistic Regression and
AdBDT is AdaBoost with Decision Tree, in this context.

For statistical validation of the performance between serial
and parallelised computation runtimes, it was done using a
paired sample t-test, with the results shown in Table 4 and Table
5, using the software Minitab-21.4 for the Serial and Paralleled
Computational runtime with data from Table 2.

Table 4: Descriptive Statistics for the Population of Serial
and Parallel Computation

Descriptive Statistics

Sample N Mean StDev SE Mean

Serial 15 35280 31339 8092

Paralleled 15 33188 29757 7683

Table 5:µ_difference: population mean of (Serial -
Paralleled)

Estimation for Paired Difference Test

Mean StDev
SE
Mean

95% CI for
μ_difference T-Value P-Value

2093 1784 461 (1104, 3081) 4.54 0.000

VII. DISCUSSION

From Table 3, the top-two-performing models selected

using 𝑀𝑏𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒(𝑅1, 𝑅2, … , 𝑅𝑛), varied with

varying sample sizes (n), as the model’s Matthews Correlation
Coefficient (MCC) varied as well, which was used for selecting
the model indexes. This proposed model selection mechanism
effectively identified the top-performing models from a diverse
set of candidates, leading to improved accuracy and robustness
in the ensemble's predictions. The weighting algorithm ensured
that models with higher reliability had a greater influence on the
final decision, further enhancing the overall performance.

The integration of parallel processing techniques reduced
the computation time compared to traditional ensemble
methods. The framework demonstrated marginal performance,
handling larger datasets and more complex models faster,

showing the formula 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = max (𝑇𝑓1
, 𝑇𝑓2

, … , 𝑇𝑓𝑛
),

computes faster than using 𝑇𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 = ∑ 𝑇𝑓𝑖

𝑛
𝑖=1 . This

resulted in speedups, 𝑆 =
𝑇(𝑛)

𝑇(𝑛,𝑃)
, achieved by parallel

execution from serial execution, especially for smaller samples.

The proposed framework consistently outperformed
traditional ensemble methods in terms of accuracy and
computational efficiency. The statistical validation in table 5,
confirmed that these improvements were significant, from the
paired sample t-test, where the t-value was 4.5 and the p-value
was 0.00 indicate that there is a statistically significant
difference between the paired samples being tested. A t-value
of 4.5 is relatively high, suggesting that the difference between
the means is much larger than what would be expected due to
random variation alone, implying that it is highly unlikely that
this difference occurred by chance. Therefore, there is strong
evidence to suggest that the treatment or condition under
comparison had a meaningful effect.

VIII. CONCLUSION

The Theory of Optimized Parallelized Ensemble Learning
(OPEL) introduces a structured framework to enhance the
efficiency and accuracy of ensemble learning by leveraging
parallelization and optimized dynamic voting. This
comprehensive approach, which integrates theoretical
development with empirical validation, ensures the framework
is both scientifically rigorous and practically relevant,
addressing key challenges in contemporary ensemble learning.
The study demonstrates that the proposed framework—
incorporating dynamic model selection, optimized weighting,
and parallel processing—offers substantial advantages over

traditional methods, particularly in distributed and resource-
constrained environments. The approach improves decision-
making accuracy and enhances computational efficiency,
making it a valuable tool for large-scale machine-learning
applications. It aligns with established principles in parallel
computing and ensemble methods while offering a novel
platform for future research and practical application in
machine learning. Building upon existing work in ensemble
learning, parallel processing, and distributed systems, OPEL
introduces significant innovations in dynamic weighted voting
and real-time performance optimization. These advancements
enable the framework to achieve superior scalability, flexibility,
and robustness compared to traditional approaches.

IX. CONTRIBUTIONS TO THE BODY OF KNOWLEDGE

While the proposed theory shares some foundational ideas
with the reviewed works, it diverges significantly in its
approach to model integration, optimization, and
parallelization. Unlike traditional methods such as Bayesian
Model Averaging (BMA) or ensemble techniques like
AdaBoost and Random Forests, which typically rely on a single
type of base model (e.g., decision trees) and employ static or
probabilistic voting schemes (e.g., majority voting or fixed-
weighted voting), the proposed framework introduces a
dynamic weighted voting mechanism. This mechanism adjusts
weights in real time based on performance metrics such as
accuracy and precision, enabling the system to adapt to
evolving data distributions and resource availability, thereby
enhancing overall robustness and performance.

Additionally, the proposed theory leverages parallel and
distributed computing not only to scale individual models but
also to enhance model training, combination, and voting
mechanisms. It optimizes the integration of multiple models by
minimising communication overhead, dynamically allocating
resources, and ensuring load balancing across different
computational nodes. Unlike most traditional parallel
processing methods, which focus primarily on scaling
individual models (e.g., parallel neural networks or distributed
XGBoost), this framework addresses scalability at a broader
level.

Designed to be highly scalable, the framework can handle large
datasets and complex models across distributed environments.
It is also flexible, allowing for the dynamic addition or removal
of models based on performance metrics and available
computational resources. Unlike existing approaches in
federated learning or distributed deep learning, which often
concentrate on specific scalability challenges related to the
training of individual models, the proposed framework
addresses scalability in both model integration and
optimization. This ensures that the system can efficiently scale
across both data and computational resources.

X. REFERENCES

[1] R. Hoyle and C. St, Handbook of Structural Equation
Modeling. 2012.

[2] D. Bertsekas and J. Tsitsiklis, “Parallel and distributed
computation : numerical methods / Dimitri P.

Bertsekas, John N. Tsitsiklis,” SERBIULA (sistema
Librum 2.0), Jan. 1989.

[3] T. G. Dietterich, “Ensemble Methods in Machine
Learning,” in International Workshop on Multiple
Classifier Systems, Springer, 2000, pp. 1–15. doi:
https://doi.org/10.1007/3-540-45014-9_1.

[4] V. Kumar and A. Gupta, “Analyzing Scalability of
Parallel Algorithms and Architectures,” J Parallel
Distrib Comput, vol. 22, no. 3, pp. 379–391, Sep.
1994, doi: 10.1006/JPDC.1994.1099.

[5] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A.
Cotter, “Pegasos: primal estimated sub-gradient
solver for SVM,” Math Program, vol. 127, no. 1, pp.
3–30, Mar. 2011, doi: 10.1007/s10107-010-0420-4.

[6] G. M. Amdahl, “Validity of the single processor
approach to achieving large scale computing
capabilities,” in Proceedings of the April 18-20, 1967,
spring joint computer conference on - AFIPS ’67
(Spring), New York, New York, USA: ACM Press,
1967, p. 483. doi: 10.1145/1465482.1465560.

[7] S. Agarwal and C. R. Chowdary, “Combating hate
speech using an adaptive ensemble learning model
with a case study on COVID-19,” Expert Syst Appl,
vol. 185, p. 115632, Dec. 2021, doi:
10.1016/J.ESWA.2021.115632.

[8] S. Agarwal, A. Sonawane, and C. R. Chowdary,
“Accelerating automatic hate speech detection using
parallelized ensemble learning models,” Expert Syst
Appl, vol. 230, p. 120564, Nov. 2023, doi:
10.1016/j.eswa.2023.120564.

[9] W. Aldjanabi, A. Dahou, M. A. A. Al-qaness, M. A.
Elaziz, A. M. Helmi, and R. Damaševičius, “Arabic
Offensive and Hate Speech Detection Using a Cross-
Corpora Multi-Task Learning Model,” Informatics,
vol. 8, no. 4, p. 69, Oct. 2021, doi:
10.3390/informatics8040069.

[10] P. Kapil and A. Ekbal, “A deep neural network based
multi-task learning approach to hate speech
detection,” Knowl Based Syst, vol. 210, p. 106458,
Dec. 2020, doi: 10.1016/J.KNOSYS.2020.106458.

[11] L. Breiman, “Bagging predictors,” Mach Learn, vol.
24, no. 2, pp. 123–140, Aug. 1996, doi:
10.1007/BF00058655.

[12] L. K. Hansen and P. Salamon, “Neural network
ensembles,” IEEE Trans Pattern Anal Mach Intell,
vol. 12, no. 10, pp. 993–1001, 1990, doi:
10.1109/34.58871.

[13] Y. Freund and R. E. Schapire, “A Decision-Theoretic
Generalization of On-Line Learning and an
Application to Boosting,” J Comput Syst Sci, vol. 55,
no. 1, pp. 119–139, Aug. 1997, doi:
10.1006/jcss.1997.1504.

[14] L. Breiman, “Random Forests,” Mach Learn, vol. 45,
no. 1, pp. 5–32, 2001, doi:
10.1023/A:1010933404324.

[15] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei,
“Hierarchical Dirichlet Processes,” J Am Stat Assoc,
vol. 101, no. 476, pp. 1566–1581, Dec. 2006, doi:
10.1198/016214506000000302.

[16] C. Cortes and V. Vapnik, “Support-vector networks,”
Mach Learn, vol. 20, no. 3, pp. 273–297, Sep. 1995,
doi: 10.1007/BF00994018.

[17] G. Zanghirati and L. Zanni, “A parallel solver for large
quadratic programs in training support vector
machines,” Parallel Comput, vol. 29, no. 4, pp. 535–
551, Apr. 2003, doi: 10.1016/S0167-8191(03)00021-
8.

[18] Youssef Aboelwafa, “Hotel Booking Cancellation
Prediction,” Kaggle. Accessed: Aug. 10, 2024.
[Online]. Available:
https://www.kaggle.com/datasets/youssefaboelwafa/h
otel-booking-cancellation-prediction

[19] J. Dean et al., “Large Scale Distributed Deep
Networks,” Adv Neural Inf Process Syst, Oct. 2012.

[20] C.-T. Chu et al., “Map-Reduce for Machine Learning
on Multicore.,” Adv Neural Inf Process Syst, vol. 19,
pp. 281–288, Jan. 2006.

[21] R. Cole and U. Vishkin, “Deterministic coin tossing
with applications to optimal parallel list ranking,”
Information and Control, vol. 70, no. 1, pp. 32–53,
Jul. 1986, doi: 10.1016/S0019-9958(86)80023-7.

[22] R. L. Graham, “Bounds for Certain Multiprocessing
Anomalies,” Bell System Technical Journal, vol. 45,
no. 9, pp. 1563–1581, Nov. 1966, doi: 10.1002/j.1538-
7305.1966.tb01709.x.

[23] R. P. Brent, “The Parallel Evaluation of General
Arithmetic Expressions,” Journal of the ACM, vol. 21,
no. 2, pp. 201–206, Apr. 1974, doi:
10.1145/321812.321815.

[24] R. M. KARP and V. RAMACHANDRAN, “Parallel
Algorithms for Shared-Memory Machines,”
Algorithms and Complexity, pp. 869–941, Jan. 1990,
doi: 10.1016/B978-0-444-88071-0.50022-9.

[25] Y. Zhang, J. C. Duchi, and M. J. Wainwright, “Divide
and Conquer Kernel Ridge Regression: A Distributed
Algorithm with Minimax Optimal Rates,” May 2013,
[Online]. Available:
http://arxiv.org/abs/1305.5029[26] C. Elkan,
“Boosting And Naive Bayesian Learning,” Dec. 1997.

[27] J. K. Pelekamoyo and H. M. Libati, “Considerations
of an efficiency-intelligent geo-localised mobile
application for personalised SME market predictions,”
Measurement and Control, Jul. 2023, doi:
10.1177/00202940231186675.

[28] Jephter Kapika Pelekamoyo and Hastings M. Libati,
“Forecasting Market’s Demand And Supply With
Machine Learning And Local Weather,” International
Journal of Scientific & Technology Research, vol. 11,
no. 1, pp. 115–119, Jan. 2022, Accessed: Jun. 23,
2023. [Online]. Available: http://www.ijstr.org/paper-
references.php?ref=IJSTR-0421-45165

[29] A. Grama, G. Karypis, V. Kumar, and A. Gupta,
Introduction to Parallel Computing, Second.
Addison-Wesley, 2003.

[30] A. S. Tanenbaum and M. Van Steen, Distributed
Systems: principles and paradigms. Second Edition.
Pearson Education. Inc, 2007.

[31] V. Singh, V. Kumar, G. Agha, and C. Tomlinson,
“Efficient algorithms for parallel sorting on mesh
multicomputers,” Int J Parallel Program, vol. 20, pp.
95–131, Apr. 1991, doi: 10.1007/BF01407839.

[32] L. I. Kuncheva, Combining Pattern Classifiers:
Methods and Algorithms, Second Edition. Wiley,
2004. doi: 10.1002/0471660264.

[33] M. Jordan, J. Kleinberg, and B. Schölkopf, Pattern
Recognition and Machine Learning. New York, NY:
Springer, 2006. Accessed: Aug. 30, 2024. [Online].
Available:
https://link.springer.com/book/9780387310732

[34] Z.-H. Zhou, J. Wu, and W. Tang, “Ensembling neural
networks: Many could be better than all,” Artif Intell,
vol. 137, no. 1–2, pp. 239–263, May 2002, doi:
10.1016/S0004-3702(02)00190-X.

[35] J. L. Gustafson, “Reevaluating Amdahl’s law,”
Commun ACM, vol. 31, no. 5, pp. 532–533, May
1988, doi: 10.1145/42411.42415.

	I. Introduction
	II. Hypotheses
	III. RELATED WORKS
	IV. METHODOLOGY
	A. Theoretical Modeling
	B. Algorithm Development
	C. Experimental Simulations
	D. Comparative Analysis
	E. Statistical Validation

	V. METHODOLOGY
	A. Parallelized Model Execution (PME)
	B. Consensus-Based Model Selection (CMS)
	C. Optimized Parallel Voting Mechanism (OPVM)
	D. Time Complexity Reduction via Parallel Execution (TCRPE)
	E. Time Complexity Reduction via Parallel Execution (TCRPE)
	F. Algorithm Development

	VI. RESULTS
	VII. DISCUSSION
	VIII. CONCLUSION
	IX. CONTRIBUTIONS TO THE BODY OF KNOWLEDGE
	X. REFERENCES

