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Abstract—This study presents a parallelized multi-mode ensemble 

learning framework to optimize computational efficiency, speed and 

model accuracy, which is a novel framework for optimizing machine 

learning ensemble multi-model selection using parallelized, execution 

and voting mechanisms, using a proposed theory, ‘Optimized 

Parallelized Ensemble Learning’ (OPEL), for optimized voting. By 

formulating theoretical mathematical models to guide model selection, 

weighting, and parallel execution strategies and utilizing performance 

metrics like the Matthews correlation coefficient to select top-

performing models, with parallel processing incorporated to enhance 

efficiency, experimental simulations were conducted on real-world 

datasets using high-performance computing platform. Coupled with 

comparative analysis with traditional methods, reveals improved 

computation speed and accuracy under varying conditions. This paper 

henceforth introduced key innovations, which include the Parallelized 

Model Execution (PME) approach, Consensus-Based Model Selection 

(CMS), and Optimized Parallel Voting Mechanism (OPVM), each 

contributing to reduced computational time and improved model 

performance. The study demonstrates significant gains in 

computational speed and accuracy through parallelization and 

advanced voting techniques, with a time complexity reduction as 

defined by Amdahl's Law. The proposed ensemble learning framework 

is validated as both computationally efficient and robust in diverse, 

large-scale AI applications. 

Keywords— Ensemble; Parallelization, Optimization; 

Efficiency;  Voting; Accuracy  

I.  INTRODUCTION 

Despite the traditional ensemble methods being powerful, 
they often suffer with scalability and efficiency, especially in 
large-scale, heterogeneous settings and when coupled with fast-
changing data, which is usually small data. The proposed 
framework in this study addresses these challenges by 
introducing a multi-model selection mechanism that identifies 
the best-performing models within a given set of classical 
machine learning models and ensemble learning models alike, 
coupled with parallel processing techniques to expedite the 
computation processes. An optimized weighting algorithm is 

employed to ensure that models contributing most effectively 
to the task at hand are prioritized, thereby improving the 
robustness of the final decision. Experimental evaluations 
demonstrate that the proposed method outperforms 
conventional ensemble approaches in terms of both speed and 
accuracy, particularly in distributed computing environments. 
This work contributes to the growing body of research on 
scalable machine learning and offers a practical solution for 
real-world applications where computational resources are 
limited for big data. This theory advances the field of machine 
learning and artificial intelligence by providing a scalable, 
efficient, and robust alternative to traditional ensemble 
methods, making it particularly well-suited for modern 
distributed computing challenges. 

Currently, it’s difficult to efficiently combine multiple 
machine learning models to improve decision-making accuracy 
and performance in scenarios where data is distributed or 
computational resources are limited, in a timely efficient 
manner. Traditional ensemble methods like Random Forests or 
Ada Boosting rely on training and aggregating multiple models, 
which can be computationally expensive and difficult to scale 
in distributed systems or with large datasets. Furthermore, 
existing methods often lack robustness in selecting the best-
performing models in heterogeneous environments, where 
different models may excel in different aspects of the task.  

This paper proposes a theory, to develop a novel ensemble 
framework that leverages model selection and parallel 
processing techniques to optimize decision-making in 
distributed and resource-constrained environments. This 
framework seeks to minimize computational overhead while 
maximizing the accuracy and robustness of the ensemble 
model, by formulating an efficient method for selecting the 
best-performing models from a pool of candidate models based 
on their performance metrics. Followed by integrating parallel 
computing strategies to distribute the computational load across 
multiple processors, thereby reducing the time required to train 
and evaluate the ensembles. All that will be done, following an 
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algorithm that assigns appropriate weights to models in the 
ensemble based on their performance, ensuring that the most 
reliable models have a greater influence on the final decision. 
The study will also conduct a comprehensive evaluation by 
comparing the proposed framework with traditional methods to 
demonstrate its advantages in terms of scalability, efficiency, 
and accuracy. Finally, testing the proposed ensemble 
framework by measuring its performance in terms of accuracy, 
speed, and market user satisfaction. 

II. HYPOTHESES 

• Null hypothesis 1: The time (T) complexity T(n, P) for 
model execution increases with an increase in the 
number of processing units P when the problem size is 
n as when using an optimized parallelled voting 
mechanism (OPVM), compared to serial voting 
mechanisms [2]. 

• Null hypothesis 2: Models selected using an optimized 
parallel voting mechanism (OPVM) will not have a 
statistically significant higher Matthews correlation 
coefficient (MCC) compared to traditional static 
models preselected voting mechanisms [3] given 
varying sample sizes. 

III. RELATED WORKS 

Amdahl's work is critical for this current work, particularly 
Amdahl's Law (1967), which provides a fundamental 
understanding of the limitations of parallel processing by 
quantifying the maximum speedup achievable when only part 
of a task is parallelized while considering that some parts of the 
task must remain serial. This law underscores the inherent 
limitations in achieving significant performance gains through 
parallelization, particularly when a substantial portion of a task 
cannot be parallelized has to parallel model aggregation in 
machine learning apply these scalability principles to enhance 
model performance, particularly in handling large datasets and 
complex models [4][5][6]. Amdahl's law is critical in 
understanding the limits of parallelization although it does not 
extend to machine learning, it still provides critical insights into 
the limits of parallel computation. This study extends those 
principles by applying Amdahl's law to the specific context of 
machine learning model selection and weighted voting 
mechanisms. 

Agarwal and Chowdary (2021), proposed an ensemble 
learning-based adaptive model for automatic hate speech 
detection that aims to improve cross-dataset generalization and 
their expert model addressed the strong user bias present in their 
annotated datasets. The experiments they conducted 
demonstrated the effectiveness of the usage of their proposed 
model on recent topics such as COVID-19 and the US 
presidential elections. Their model used ensemble-based 
adaptive classifier, A-Stacking, utilizes multiple base classifiers 
in combination with a meta-classifier, employing Support 
Vector Machine Classifier (SVM), Gradient Boosting Decision 
Trees (GBDT), Multi-Layer Perceptron Classifier (MLP), 
kNeighbors Classifier, ELM classifier15, along with Logistic 
Regression for the meta-classifier and to perform clustering, 

they utilized the SimpleKMeans clustering algorithm with 
varying values [7].  

Agarwal et al. (2023), accelerate the automatic detection of 
hate speech on social media platforms (SMPs), by 
implementing parallelizing bagging, A-stacking, and random 
sub-space algorithms. They evaluated the serial and parallel 
versions of the machine learning models on standard high-
dimensional hate speech datasets and the parallel models 
demonstrated a substantial increase in speed with remarkable 
efficiency, affirming that the proposed models are well-suited 
for this particular application. They observed that parallelizing 
the algorithms does not compromise the accuracy compared to 
running machine learning ensemble algorithms sequentially on 
a single machine [8] 

Aldjanabi et al. (2021), covered the development of a 
classification system that identified offensive and hate speech 
using a multi-task learning (MTL) model built on a pre-trained 
Arabic language model. Through training the MTL model on 
the same task using different cross-corpora representing 
variations in offensive and hate context. The results indicated 
that the developed MTL model exhibited significant 
performance improvements compared to existing models in the 
literature, outperforming them on three out of four evaluated 
datasets for Arabic offensive and hate speech detection tasks. 
The findings demonstrate the superior classification 
performance of the developed MTL model in comparison to 
previously proposed models [9]. 

Kapil and Ekbal (2020), introduced a deep multi-task 
learning (MTL) framework, which aimed at enhancing the 
performance of individual classification tasks by leveraging 
valuable information from multiple related tasks. The proposed 
MTL model adopted a shared-private scheme, where shared and 
private layers were assigned to capture shared features and task-
specific features from five classification tasks. Through 
experiments conducted on five datasets, the Shared-Private 
Multi-Task Learning (SP-MTL) framework leveraged the 
benefits of multiple related tasks and demonstrated promising 
results in terms of macro-F1 and weighted-F1 performance 
metrics [10]. 

Dietterich and Thomas (2000) provide an overview of 
ensemble learning and bagging predictors methods in the paper 
titled ‘Ensemble Methods in Machine Learning’. They 
emphasized how combining multiple models can improve 
overall prediction accuracy. The paper discusses various 
ensemble techniques, including bagging, boosting, and stacking 
[3]. Similar principles were proposed by Breiman (1996), 
where the author introduced the concept of bagging (Bootstrap 
Aggregating), where multiple versions of a predictor are trained 
on different subsets of the data, and their predictions are 
averaged to improve robustness [11]. Dietterich (2000), 
describes the Bagging (Bootstrap Aggregating) method, where 
multiple versions of a predictor are trained on different samples 
of the training set and combined by averaging their predictions 
[3].  

While Hansen and Salamon (1990), proposed creating 
ensembles of neural networks to improve generalization by 
averaging predictions from multiple independently trained 
networks [12]. Neural network ensembles are well known for 



significantly improving model accuracy and reducing 
overfitting, particularly in complex tasks like image 
recognition. However, as the proposed method involves 
training multiple neural networks independently, this increases 
computational costs and may require substantial computational 
resources, particularly for deep networks. 

AdaBoost Algorithm is among the other models used 
among the multiple models, which Freund and Schapire (1997), 
studied. In their work, they introduced the AdaBoost algorithm, 
which improves weak learners by focusing on the instances that 
previous models struggled to classify. The emphasis was on 
iteratively adjusting weights to improve overall accuracy [13] 
AdaBoost is an ensemble technique that combines weak 
classifiers to create a strong classifier by iteratively adjusting 
the weights of incorrectly classified examples, thereby reducing 
bias and variance, and significantly improving the performance 
of weak classifiers [13].  

Breiman (2001), introduced Random Forests, an ensemble 
learning method that builds multiple decision trees and merges 
them to get a more accurate and stable prediction (Breiman 
2001). His work is similar to the one proposed in this paper, as 
it merges multiple decision trees for more stable predictions. 
Unlike Breiman’s Random Forest algorithm, which involves 
creating an ensemble of decision trees, each trained on a 
random subset of the data, with the final prediction based on the 
majority vote of the trees [14] it does not incorporate parallel 
computation efficiency nor incorporate a weighted voting 
system that is optimized for parallel computation.  

Teh et al., (2006), introduce hierarchical models that allow 
for sharing statistical strength across different groups of data. 
The authors leverage Bayesian nonparametrics to build a 
flexible model that can be parallelized across clusters [15]. The 
method allowed for a more nuanced model that could capture 
complex dependencies within the data, and parallelization 
improves scalability. 

Cortes and Vapnik (1995), developed Support Vector 
Machines (SVMs) as a method for finding the optimal 
hyperplane that separates data into different classes, 
maximizing the margin between classes [16]. Zanghirati and 
Zanni (2003), explore the parallelization of SVM training using 
quadratic programming, significantly reducing the 
computational time for large datasets[17] [18]. The study used 
a parallel decomposition technique to solve the quadratic 
programming problem in SVM training, distributing the 
workload across multiple processors[17]. Their technique 
significantly reduced training time for large datasets by 
parallelizing the optimization process. Their working principle 
is similar to the one proposed in this paper. But instead of 
parallelizing SVMs alone, the current method integrates a 
voting mechanism and equally focuses on a more generalized 
framework applicable across different models. 

Dean et al. (2012) present a method for distributed training 
of deep neural networks through model parallelism, where 
different segments of a neural network are distributed across 
multiple machines. This approach enables the handling of 
extremely large datasets and models, facilitating the training of 
deep networks with billions of parameters. Their study 

demonstrated the scalability of deep learning systems and laid 
the groundwork for practica[19]. 

Chu et al. (2006), introduced the MapReduce framework, 
using parameter server architecture to efficiently scale 
distributed machine learning models across multiple servers, 
optimizing both storage and computation, allowing for large-
scale machine learning tasks to be handled more effectively in 
a distributed environment. Their framework utilized data 
distribution and parallel computation, making it a foundational 
method for processing vast datasets in a distributed manner 
[20]. Similarly, Li et al (2014), used parameter server 
architecture to efficiently scale distributed machine learning 
models across multiple servers, optimizing both storage and 
computation. This facilitated the parallel training of machine 
learning models [1]. This approach significantly improves the 
scalability of machine learning training by efficiently handling 
parameter updates across distributed systems but introduces 
latency and synchronization issues, particularly in highly 
distributed systems with non-uniform communication speeds. 

Cole and Vishkin (1986), proposed a ‘Theoretical Parallel 
Model’, the development of deterministic algorithms for 
parallel computation, including techniques for reducing 
contention and improving efficiency [21]. Cole and Vishkin 
(1986) developed deterministic algorithms for parallel 
computation, emphasizing techniques to reduce contention 
among processors and enhance overall computational 
efficiency. Their work is instrumental in the creation of parallel 
algorithms that operate under strict deterministic conditions, 
ensuring consistent and predictable performance across 
different computational tasks [21]. While Cole and Vishkin 
(1986), provided essential insights into the development of 
deterministic parallel algorithms, it does not extend these 
principles to machine learning or model aggregation.  

Graham (1966), worked on load-balancing issues in parallel 
computation, addressing the inefficiencies that arise when tasks 
are not evenly distributed across processors. The primary focus 
is on ensuring that each processor in a parallel computing 
environment is utilized effectively to avoid bottlenecks that can 
occur when tasks are not evenly distributed [22]. His work was 
further amplified by Brent (1974),  who offered a fundamental 
analysis of the efficiency of parallel algorithms, concentrating 
on minimizing communication overhead and ensuring effective 
load balancing across processors, and established key principles 
for optimizing parallel computation, particularly by reducing 
the time complexity of parallel algorithms and ensuring that 
tasks are distributed in a manner that maximizes processor 
utilization [23]. Karp and Ramachandran (1990), further 
comprehensively examined parallel algorithms, particularly 
within the context of shared-memory architecture[24]. 

Shalev-Shwartz et al. (2011), introduced the Pegasos 
algorithm, a stochastic sub-gradient descent method for 
efficiently training support vector machines (SVMs). The 
algorithm was particularly notable for its scalability, making it 
well-suited for handling large datasets. The Pegasos algorithm 
significantly reduces the computational complexity of SVM 
training, providing a more practical solution for real-world, 
large-scale machine-learning tasks [5] 



Zhang et al. (2013), proposed a divide-and-conquer 
approach for scaling kernel ridge regression on large datasets 
by splitting data into smaller subsets and processing subsets 
independently in parallel before combining the results solving 
the problem on each subset, and then combining the results 
[25]. According to Zhang et al. (2013), for finite-rank kernels 
and Gaussian kernels, their theory ensured that the number of 
processors, denoted as m, can increase almost linearly, for 
Sobolev spaces, the number of processors can grow 
polynomially with N. The partitioning led to a substantial 
reduction in computation time and cost [25]. 

Elkan (1997), study titled "Boosting and Naive Bayesian 
Learning" challenges the assumption that boosting, a technique 
primarily known for improving decision tree models, can 
indeed enhance the performance of Naive Bayes by focusing on 
difficult-to-classify instances, leading to improved overall 
accuracy. Elkan (1997), argues that boosting applied to naive 
Bayesian classifiers yields combination classifiers that are 
representationally equivalent to standard feedforward 
multilayer perceptrons. However, this study did not explore 
boosting in a distributed or parallel computing context, focusing 
instead on the theoretical and practical implications within a 
single-machine environment [26]. 

Kumar and Gupta's (1994) study provides a comprehensive 
analysis of the scalability of parallel algorithms across various 
computing architectures, focusing on shared memory, 
distributed memory, and hybrid systems. Their work 
emphasizes the importance of load balancing and minimizing 
communication overhead to optimize scalability, offering a 
strong theoretical foundation for parallel computation. 
However, the study lacks a focus on machine learning-specific 
applications, such as model selection and ensemble voting, and 
some of the discussed architectures are now outdated. In 
contrast, modern approaches to parallel model aggregation in 
machine learning apply these scalability principles to enhance 
model performance, particularly in handling large datasets and 
complex models [4]. While Kumar and Gupta’s work is 
foundational, contemporary methods extend these concepts to 
address the unique challenges of machine learning in 
distributed environments. 

The proposed theory diverges from existing works in its 
approach to various model integration, optimization, and 
parallelization. Traditional ensemble methods use fixed voting 
schemes, while the proposed framework introduces a dynamic 
weighted voting mechanism based on real-time model 
performance metrics. This allows for adaptation to changing 
data distributions and resource availability, improving 
robustness and performance. The framework also leverages 
parallel and distributed computing to optimize the integration 
and combination of multiple models, minimizing 
communication overhead and ensuring load balancing. Most 
related works focus on either ensemble learning or parallel 
computing separately, while the proposed framework uniquely 
integrates a weighted voting mechanism into a parallel 
computing context. It offers a generalized framework 
applicable to many machine learning models, utilizing both 
parallel processing and ensemble techniques. The papers also 
draw on established theories like Amdahl's Law and Brent's 
theorem to provide new insights into the trade-offs between 

processor count, overhead, and model accuracy in parallel 
environments. 

IV. METHODOLOGY 

The study employs a combination of theoretical modelling, 
experimental simulations, and comparative analysis to develop 
and validate the proposed parallelized multi-mode ensemble 
learning framework. 

A. Theoretical Modeling 

The initial phase of the study involves developing the 
theoretical underpinnings of the parallelized ensemble 
framework. This includes formulating mathematical models to 
describe the selection and weighting of models within the 
ensemble, as well as the parallel processing strategies. 

B. Algorithm Development 

Based on the theoretical models, algorithms are developed 
for model selection, weighting, and parallel processing. The 
model selection algorithm identifies the top-performing models 
from a pool of candidates using metrics such as accuracy, 
precision, recall, the Matthews correlation coefficient also 
known as the phi coefficient and the confusion matrix. The 
weighting algorithm then assigns a rank to each selected model 
based on its relative performance. Parallel processing 
techniques are incorporated to optimize the computational 
efficiency of the framework at every relevant stage and process. 

C. Experimental Simulations 

The The algorithms developed were implemented in a 
simulation environment to evaluate their performance. The 
simulations were run on real-world datasets. Metrics such as 
computation time and accuracy wre recorded. The experiments 
wre conducted using a high-performance computing platform 
with a memory of 32 gigabytes and an Intel Core i9-10980HK 
processor, leveraging parallel functions from the 
‘System.Threading.Tasks’ library. Datasets used for 
simulations included real-world datasets collected from the 
market used in [27], [28], and also [28]. 

D. Comparative Analysis 

The results from the experimental simulations are compared 
with the performance of traditional methods and traditional 
ensembles using iterations of from 100 and tolerances of 1e-4, 
and with varying training sample sizes. The models used 
include the probabilistic coordinate descent, sequential minimal 
optimization with polynomial kernel, iterative reweighted least 
squares with logistic regression method FanChenLin support 
vector regression with Gaussian kernel, linear regression 
newton method, AdaBoost with decision stump and threshold 
learning method, AdaBoost with logistic regression methods 
and iterative reweighted least squares with logistic regression 
method, and AdaBoost with Decision Tree with C45 learning. 
Key performance indicators (KPIs) like accuracy and 
processing time are compared across different methods. 



E. Statistical Validation 

In this study, a dataset which was collected through a survey 
to evaluate the performance of a developed tool using the 
proposed framework was used, to assess the effectiveness of the 
application. The dataset included historical weather data, 
encompassing low and high temperatures, alongside local 
market inventory levels, supply records, and sales records [27], 
[28] for supply chain resilience binary decision making, 
together with the ‘hotel booking cancellation prediction dataset 
[18], consisted of a total of 35000 samples. With the statistical 
t-tests, the researchers could determine the significance of key 
performance indicators associated with the proposed 
framework. The tests provided statistical evidence to support or 
refute the impact of the framework on supply chain resilience. 
The weather and supply chain dataset consisted of 293 
stakeholders. 

V. METHODOLOGY 

A. Parallelized Model Execution (PME) 

This PME is a computational approach where multiple machine 

learning models are trained and evaluated concurrently on 

separate processing units on the same dataset or input to obtain 

results in parallel rather than sequentially. This parallelisation 

reduces the overall computational time while maintaining or 

improving model performance. Parallel execution concepts are 

rooted in the broader field of parallel computing [2], [29]. 

Given 𝑀 models {𝑀1, 𝑀2, … , 𝑀𝑛} and 𝑃 processing units 

{𝑃1, 𝑃2, … , 𝑃𝑛}, PME distributes the computation of each 

model across the processors. The time complexity 𝑇(𝑛, 𝑃) for 

training and evaluation is reduced from 𝑇(𝑛) (sequential 

execution) to: 

𝑇(𝑛, 𝑃) =
𝑇(𝑛)

𝑃
+ 𝑂(

𝑛

𝑃
. log 𝑃) 

where 𝑂(
𝑛

𝑃
. log 𝑃) represents the overhead of parallelisation, 

including communication and synchronization costs [29], [30]. 

The results are given as: 

{𝑅1, 𝑅2, … , 𝑅𝑛}
= 𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙. 𝐼𝑛𝑣𝑜𝑘𝑒(𝑓1(𝑡), 𝑓2(𝑡), … , 𝑓𝑛(𝑡)) 

Where 𝑅𝑖  represents the result of the models 𝑓𝑖  applied to input 

t. 

The equation herein 

𝑇(𝑛, 𝑃) =
𝑇(𝑛)

𝑃
+ 𝑂(

𝑛

𝑃
. log 𝑃) 

is used to describe the parallel running time of an algorithm 

when executed on P processors [31]. 

Components of the Equation: 

i.  𝑇(𝑛, 𝑃), represents the total time required to run 

an algorithm on P processors when the problem 

size is n. 

ii. 
𝑇(𝑛)

𝑃
: 𝑇(𝑛) is the time it takes to run the 

algorithm sequentially (on a single processor) for 

a problem size n. Dividing 𝑇(𝑛) by P suggests 

that the algorithm can be broken down into P 

parallel tasks, each of which takes the same ratio 

of the divided amount of time as compared to the 

sequential algorithm. However, this assumes ideal 

conditions, such as perfect parallelism without 

any overhead. 

iii. 𝑂(
𝑛

𝑃
. log 𝑃): represents the overhead associated 

with parallelism. It accounts for factors like 

communication between processors, 

synchronization, and load balancing. 

iv. 
𝑛

𝑃
 : indicates that the problem is being divided 

across P processors, and each processor handles a 

portion 
𝑛

𝑃
 of the workload [31]. 

log 𝑃: comes from the communication cost, as in many parallel 

algorithms, communication overhead increases logarithmically 

with the number of processors. 

B. Consensus-Based Model Selection (CMS) 

After executing models in parallel, the Theory of Parallelized 

Model Voting and Selection proposes selecting the top-

performing models based on a voting mechanism where the 

results are evaluated for consistency and accuracy. CMS is an 

ensemble learning technique that selects the best-top-

performing models given by the formula below, based on a 

voting mechanism. 

𝑀𝑏𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒(𝑅1, 𝑅2, … , 𝑅𝑛) 

The selection process considers not only the individual 

performance metrics but also the agreement among models. 

Where, 𝑀𝑏𝑒𝑠𝑡  represents the most frequently best-performing 

models, as determined by a voting mechanism across all 

parallel executions.[3] 

Let 𝑀𝑖  be the 𝑖 − 𝑡ℎ model with a performance metric 𝜃𝑖 . The 

final decision 𝐷 is made by considering the consensus among 

the models: 

𝐷 = argmaxi∈{1,…,n} ∑(𝑤𝑗 . δ(𝑀𝑖 , 𝑀𝑗))

𝑚

𝑗=1

 

where 𝑤𝑗  is the weight of the 𝑗 − 𝑡ℎ model, and δ(𝑀𝑖 , 𝑀𝑗)is 

a similarity function between models 𝑀𝑖  and 𝑀𝑗  [3], [32]. 

Argmax [33]: This function returns the index 𝑖 of the model 

𝑀𝑖  that maximizes the expression that follows it. In other 

words, it finds the model 𝑀𝑖  for which the sum of  

∑ (𝑤𝑗 . δ(𝑀𝑖 , 𝑀𝑗))
𝑚

𝑗=1
 is the largest and 𝒊 ∈ {𝟏, … , 𝒏}. 

The model selection is done from a set of 𝑛 models, where 𝑖 

ranges from 1 to n. 

i. ∑𝑚
𝑗=1 : The summation is over m models that 

are considered for consensus. The summation 

aggregates the weighted similarity between the 

model 𝑀𝑖  and each other model 𝑀𝑗 . 



ii. 𝑊𝑗: represents the weight assigned to the j-th 

model. This weight could be based on the model’s 

performance, reliability, or another criterion. 

iii. δ(𝑀𝑖 , 𝑀𝑗): is a similarity function that measures 

how similar the models 𝑀𝑖  and 𝑀𝑗 are. It could 

be based on performance metrics, predictions, or 

any other feature that can quantify similarity. 

The equation is used to select the best model 𝑀𝑖  from a set of 

n models by evaluating which models has the highest total 

weighted similarity with the other models in the set. Essentially, 

it finds the models that are most in agreement with the others 

(according to the similarity function δ), weighted by the 

importance of each model. And D is the decision, the selected 

model indexes. The models with the highest cumulative 

weighted similarity across all other models is chosen as the best 

or most representative model. 

With several machine learning models predicting the same 

outcome. Each has a different performance, even though they 

may produce similar results. The equation helps determine 

which models are the most "trusted" based on how its 

predictions align with the other models, considering the 

reliability (weights) of each model's performance, to be selected 

as the final model. This is particularly useful in ensemble 

learning, where combining the outputs of multiple models often 

leads to better performance than using a single model. 

C. Optimized Parallel Voting Mechanism (OPVM) 

OPVM is an enhancement of traditional voting mechanisms 
where the weight of each model's vote is adjusted dynamically 
based on its performance and the confidence level of its 
predictions. This method of aggregating the outputs of parallel 
models to determine the most reliable prediction is based on 
majority voting, weighted voting, or other aggregation 
techniques.  

𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙 = 𝑀𝑎𝑥(∑ 𝑤𝑖 . 𝑅𝑖)

𝑛

𝑖=1

 

Where 𝑤𝑖  are weights assigned to each model's result based 

on prior performance, and 𝑃𝑜𝑝𝑡𝑖𝑚𝑎𝑙  is the optimized prediction 

derived from the weighted sum of the models' outputs. 

For a set of models 𝑀𝑖  and their predictions 𝑦𝑗 , the 

weighted vote 𝑉 is computed as: 

𝑉 = ∑(α𝑖 . 𝑦𝑖)

𝑛

𝑖=1

 

where 𝛼𝑖  is the confidence of model 𝑀𝑖  [12], [34] 

 

D. Time Complexity Reduction via Parallel Execution 

(TCRPE) 

The theory predicts that the overall time complexity of model 
selection can be reduced by executing multiple models in 

parallel, as opposed to sequentially, thus achieving faster 
convergence to the best model. TCRPE refers to the reduction 
in computational time achieved by leveraging parallel 
processing in training and evaluating machine learning models. 
The theory quantifies the trade-off between the number of 
processing units and the speedup in execution, from the 
principle of 

 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  =  max (𝑇𝑓1
, 𝑇𝑓2

, … , 𝑇𝑓𝑛
),  

where 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  the time taken in parallel execution, 

compared to 

 𝑇𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 = ∑ 𝑇𝑓𝑖

𝑛
𝑖=1   

for sequential execution. 

The speedup S achieved by parallel execution is defined as, 

 𝑆 =
𝑇(𝑛)

𝑇(𝑛,𝑃)
,  

where 𝑇(𝑛) is the time taken in a sequential process and 

𝑇(𝑛, 𝑃) is the time taken using 𝑃 processing units. Ideally, 𝑆 

approaches 𝑃, but in practice, it is limited by overheads and the 

non-parallelizable fraction of the task, as described by Amdahl's 
Law: 

𝑆 =
1

𝑓+
1−𝑓

𝑃

 

where 𝑓 is the fraction of the task that is inherently serial 

[2], [35]. 

E. Time Complexity Reduction via Parallel Execution 

(TCRPE) 

This theory posits that by combining parallelized model 
execution with optimized voting mechanisms, it is possible to 
achieve superior model selection and prediction accuracy in 
ensemble learning. The theory establishes that: 

1. The consensus-based selection ensures that the chosen 
models are robust and reliable, potentially improving 
the overall accuracy of AI systems. 

2. By formalizing parallel execution and voting, the 
theory leads to significant gains in computational 
efficiency, particularly in large-scale AI applications. 

3. Effective parallelization of model training and 
evaluation significantly reduces computation time, 
allowing for the exploration of more complex models 
within a feasible timeframe [29], [30]. 

4. It extends ensemble learning by integrating 
parallelism directly into the all phases, allowing for 
more efficient and accurate model selection. By 
dynamically adjusting the voting mechanism based on 
model performance and confidence, the theory ensures 
that the ensemble’s decision-making process is not 
only faster but also more reliable [12], [34]. 

5. This theory provides a framework for selecting the 
best machine learning models in scenarios where 



multiple models need to be evaluated rapidly. A 
consensus-based approach, refined by the OPVM, 
leads to the selection of the most robust models, 
thereby improving the overall accuracy of predictions 
[3], [32]. 

6. The theory is applicable in environments where 
computational resources allow for parallel execution, 
such as in distributed computing or cloud-based AI 
systems. 

The theory predicts that model selection through OPEL is 
faster, and have higher Matthews Correlation Coefficient 
(MCC) and lower error rates as compared to those selection by 
traditional ensemble methods. 

F. Algorithm Development 

1. Initialize Data: 

• Prepare input data containing independent 
variables 

• Prepare output data containing dependent 
variables 

• Prepare a test set for prediction. 

2. Set Parameters: 

• Set random generator seed for reproducibility. 

• Define convergence parameters like iterations and 
tolerance. 

3. Model Training: 

• Initialize multiple machine learning models with 
different learning algorithms 

• Train each model using the input data and output 
data. 

4. Model Evaluation: 

• Use each trained model to compute predictions 
for the test set. 

• Calculate evaluation metrics for each model using 
confusion matrices and Matthews Correlation 
Coefficients. 

5. Determine Top-best Models: 

• Identify the top-best models based on the 
Matthews Correlation Coefficient. 

• Evaluate the performance of the best models by 
comparing them against the test set. 

6. Output Results: 

• Display the results of each model, including the 
prediction status, error rate, and correlation 
coefficient. 

• Identify and display the indices of the best-
performing models. 

VI. RESULTS 

The training time for the following machine learning 
models, Probabilistic Coordinate Descent (PCD), Iterative 
Reweighted Least Squares (IRLS), Sequential Minimal 
Optimization with Polynomial kennel (SMOP), Threshold 
Learning (THL), AdaBoost with Decision Stump (AdBDS), 
AdaBoost with Logistic Regression (AdBRL) and AdaBoost 
with Decision Tree (AdBDT), and the total training time for the 

serial processing given by the formula, 𝑇𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 =
∑ 𝑇𝑓𝑖

𝑛
𝑖=1  and the parallel processing, given by the formula 

𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  =  max (𝑇𝑓1
, 𝑇𝑓2

, … , 𝑇𝑓𝑛
), on samples of size 

35000 and 32500 is given in Table 1. 

Table 1: Different Model Runtime 

Sample (n) 32500 35000 

  Serial Parallel Serial Parallel 

PCD 142 387 178 268 

IRLS 197 495 182 291 

SMOP 84759 84638 48374 49070 

THL 15 79 17 37 

AdBDS 937 1779 411 893 

AdBRL 607 1264 627 1151 

AdBDT 3176 3867 3572 4009 

Total 89833 84638 53361 49070 

Achieving the following cumulative total serial and parallel 
processing time in milliseconds, taken to run samples of 
varying sizes (n) using serial computation and  parallel 
computation runtime, as shown in Table 2, with their total 
speedups. 

Table 2: Serial and Parallel Computation Runtime 

  Runtime(ms) 

Sample (n) Serial Paralleled SpeedUp 

35000 60834 55226 1.10155 

32500 100880 95243 1.05919 

30000 89143 84894 1.05005 

27500 56838 55008 1.03327 

25000 51494 49402 1.04235 

22500 33307 31150 1.06925 

20000 32455 29777 1.08994 

17500 33776 31685 1.06599 

15000 31638 30387 1.04117 

12500 14694 13368 1.09919 

10000 11410 10345 1.10295 



7500 6627 6264 1.05795 

5000 4089 3593 1.13805 

2500 1678 1212 1.38449 

50 341 261 1.30651 

Shown graphically in figure 1, with their trend line. 
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Figure 1: Runtime in milliseconds 

Following that, was a voting mechanism that selects the top 
best-performing models dynamically, given by the formula, 

𝑀𝑏𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒(𝑅1, 𝑅2, … , 𝑅𝑛), the final decision 𝐷, 

made by considering the consensus among the most performing 
models, given by 

 𝐷 = argmaxi∈{1,…,n} ∑ (𝑤𝑗 . δ(𝑀𝑖 , 𝑀𝑗))
𝑚

𝑗=1
,  

for the selected model indexes, using 𝑊𝑗, which is the 

weight assigned to the j-th model based on the model’s 
performance, using the performance metrics for getting the 

similarity δ(𝑀𝑖 , 𝑀𝑗) of models 𝑀𝑖  and 𝑀𝑗 . The results as 

shown in Table 3, of the models dynamic selected using the 

index 𝑊𝑗 based on the Matthews Correlation Coefficient 

(MCC) and lower error rates, for each varying sample sizes (n). 

Table 3: Model Indeces and Performances 

Samples Index Model Error Coefficient 

35000 

7 AdBDT 0.2354 0.42935 

0 PCD 0.23828 0.42246 

32500 

7 AdBDT 0.23529 0.43115 

5 AdBDS 0.23942 0.42392 

30000 

7 AdBDT 0.23517 0.43093 

0 PCD 0.23723 0.42608 

27500 

7 AdBDT 0.23585 0.42975 

2 SMOP 0.23484 0.42973 

25000 

7 AdBDT 0.23516 0.43008 

5 AdBDS 0.23784 0.42616 

22500 

2 SMOP 0.2324 0.43266 

7 AdBDT 0.23378 0.43165 

20000 

7 AdBDT 0.23385 0.43201 

5 AdBDS 0.2359 0.42794 

17500 

7 AdBDT 0.23331 0.43394 

5 AdBDS 0.23697 0.42889 

15000 

7 AdBDT 0.23287 0.43282 

2 SMOP 0.23373 0.42867 

12500 

7 AdBDT 0.23128 0.43657 

5 AdBDS 0.23792 0.42459 

10000 

7 AdBDT 0.2315 0.43644 

2 SMOP 0.2314 0.43438 

7500 

7 AdBDT 0.23093 0.43648 

2 SMOP 0.23093 0.43446 

5000 

7 AdBDT 0.2328 0.42127 

0 PCD 0.2354 0.41792 

2500 

2 SMOP 0.2348 0.42186 

7 AdBDT 0.25 0.39789 

50 

5 AdBDS 0.06 0.85538 

7 AdBDT 0.18 0.54554 

In Table 3, the acronyms, PCD is Probabilistic Coordinate 
Descent, IRLS is Iterative Reweighted Least Squares, SMOP is 
Sequential Minimal Optimization with Polynomial kennel, 
THL is Threshold Learning, AdBDS is AdaBoost with Decision 
Stump, AdBRL is AdaBoost with Logistic Regression and 
AdBDT is AdaBoost with Decision Tree, in this context. 

For statistical validation of the performance between serial 
and parallelised computation runtimes, it was done using a 
paired sample t-test, with the results shown in Table 4 and Table 
5, using the software Minitab-21.4 for the Serial and Paralleled 
Computational runtime with data from Table 2. 

Table 4: Descriptive Statistics for the Population of Serial 
and Parallel Computation 

Descriptive Statistics 

Sample N Mean StDev SE Mean 

Serial 15 35280 31339 8092 

Paralleled 15 33188 29757 7683 

 



Table 5:µ_difference: population mean of (Serial - 
Paralleled) 

Estimation for Paired Difference Test 

Mean StDev 
SE 
Mean 

95% CI for 
μ_difference T-Value P-Value 

2093 1784 461 (1104, 3081) 4.54 0.000 

 

VII. DISCUSSION 

From Table 3, the top-two-performing models selected 

using  𝑀𝑏𝑒𝑠𝑡 = 𝑀𝑜𝑑𝑒(𝑅1, 𝑅2, … , 𝑅𝑛), varied with 

varying sample sizes (n), as the model’s Matthews Correlation 
Coefficient (MCC) varied as well, which was used for selecting 
the model indexes. This proposed model selection mechanism 
effectively identified the top-performing models from a diverse 
set of candidates, leading to improved accuracy and robustness 
in the ensemble's predictions. The weighting algorithm ensured 
that models with higher reliability had a greater influence on the 
final decision, further enhancing the overall performance. 

The integration of parallel processing techniques reduced 
the computation time compared to traditional ensemble 
methods. The framework demonstrated marginal performance, 
handling larger datasets and more complex models faster, 

showing the formula 𝑇𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙  =  max (𝑇𝑓1
, 𝑇𝑓2

, … , 𝑇𝑓𝑛
), 

computes faster than using 𝑇𝐬𝐞𝐪𝐮𝐞𝐧𝐭𝐢𝐚𝐥 = ∑ 𝑇𝑓𝑖

𝑛
𝑖=1 .  This 

resulted in speedups, 𝑆 =
𝑇(𝑛)

𝑇(𝑛,𝑃)
, achieved by parallel 

execution from serial execution, especially for smaller samples. 

The proposed framework consistently outperformed 
traditional ensemble methods in terms of accuracy and 
computational efficiency. The statistical validation in table 5, 
confirmed that these improvements were significant, from the 
paired sample t-test, where the t-value was 4.5 and the p-value 
was 0.00 indicate that there is a statistically significant 
difference between the paired samples being tested. A t-value 
of 4.5 is relatively high, suggesting that the difference between 
the means is much larger than what would be expected due to 
random variation alone, implying that it is highly unlikely that 
this difference occurred by chance. Therefore, there is strong 
evidence to suggest that the treatment or condition under 
comparison had a meaningful effect. 

VIII. CONCLUSION 

The Theory of Optimized Parallelized Ensemble Learning 
(OPEL) introduces a structured framework to enhance the 
efficiency and accuracy of ensemble learning by leveraging 
parallelization and optimized dynamic voting. This 
comprehensive approach, which integrates theoretical 
development with empirical validation, ensures the framework 
is both scientifically rigorous and practically relevant, 
addressing key challenges in contemporary ensemble learning. 
The study demonstrates that the proposed framework—
incorporating dynamic model selection, optimized weighting, 
and parallel processing—offers substantial advantages over 

traditional methods, particularly in distributed and resource-
constrained environments. The approach improves decision-
making accuracy and enhances computational efficiency, 
making it a valuable tool for large-scale machine-learning 
applications. It aligns with established principles in parallel 
computing and ensemble methods while offering a novel 
platform for future research and practical application in 
machine learning. Building upon existing work in ensemble 
learning, parallel processing, and distributed systems, OPEL 
introduces significant innovations in dynamic weighted voting 
and real-time performance optimization. These advancements 
enable the framework to achieve superior scalability, flexibility, 
and robustness compared to traditional approaches. 

IX. CONTRIBUTIONS TO THE BODY OF KNOWLEDGE 

While the proposed theory shares some foundational ideas 
with the reviewed works, it diverges significantly in its 
approach to model integration, optimization, and 
parallelization. Unlike traditional methods such as Bayesian 
Model Averaging (BMA) or ensemble techniques like 
AdaBoost and Random Forests, which typically rely on a single 
type of base model (e.g., decision trees) and employ static or 
probabilistic voting schemes (e.g., majority voting or fixed-
weighted voting), the proposed framework introduces a 
dynamic weighted voting mechanism. This mechanism adjusts 
weights in real time based on performance metrics such as 
accuracy and precision, enabling the system to adapt to 
evolving data distributions and resource availability, thereby 
enhancing overall robustness and performance. 

Additionally, the proposed theory leverages parallel and 
distributed computing not only to scale individual models but 
also to enhance model training, combination, and voting 
mechanisms. It optimizes the integration of multiple models by 
minimising communication overhead, dynamically allocating 
resources, and ensuring load balancing across different 
computational nodes. Unlike most traditional parallel 
processing methods, which focus primarily on scaling 
individual models (e.g., parallel neural networks or distributed 
XGBoost), this framework addresses scalability at a broader 
level. 

Designed to be highly scalable, the framework can handle large 
datasets and complex models across distributed environments. 
It is also flexible, allowing for the dynamic addition or removal 
of models based on performance metrics and available 
computational resources. Unlike existing approaches in 
federated learning or distributed deep learning, which often 
concentrate on specific scalability challenges related to the 
training of individual models, the proposed framework 
addresses scalability in both model integration and 
optimization. This ensures that the system can efficiently scale 
across both data and computational resources. 
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