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ABSTRACT 

Quantum Generators is a means of achieving mass food production with 
short production cycles and when and where required by means of 
machines rather than land based farming which has serious limitations. 
The process for agricultural practices for plant growth in different stages 
is simulated in a machine with a capacity to produce multiple seeds from 
one seed input using computational models of multiplication (generating 
multiple copies of kernel in repetition). Biological systems contain 
complex metabolic pathways with many synergies that make them 
difficult to predict from first principles and Protein synthesis is an 
example of such a pathway. Here we show how protein synthesis may 
be improved through a design of simulator for automated synthesizer 
with a series of iterated high-throughput experiments guided by a 
machine-learning algorithm implementing a form of optimization of 
experiments. The algorithm predicts fruitful experiments from statistical 
models of the previous experimental results, combined with stochastic 
exploration of the experimental space and with synthesis abstraction in-
built into the experimental space. The desired experimental response, or 
optimized fitness, was defined as the yield of the target product, and 
new experimental conditions were synergistically combined with 
automation in CellSynputer (where the unit level computer creates low-
level instructions for the hardware taking interface representation of the 
platform and abstraction representing cell synthesis ) and discovered to 
have improved yield when graphically interpreted. In this way, it is 
possible to script and run desired synthesis for assessing outcome for 
multiple crop tissues simultaneously. Although the platform model given 
us a method of automating cellular assemblies in an intelligent 
framework embodied in multi-unit system however, this need to be 
tested using natural crop cells and it could be promising for us in 
achieving quantum generation.  



 

INTRODUCTION 

A Quantum (plural quanta) is the minimum amount of any physical entity 
(physical property) involved in an interaction. On the other hand, 
Generators don't actually create anything instead, they generate 
quantity prescribed by physical property through multiplication to 
produce high quality products on a mass scale. The aim of Quantum 
Generators is to produce multiple seeds from one seed at high seed rate 
to produce a particular class of food grains from specific class of seed 
on mass scale by means of machine rather than land farming. 

The process for agricultural practices include preparation of soil, seed 
sowing, watering, adding manure and fertilizers, irrigation and 
harvesting. However, if we create same conditions as soil germination, 
special watering, fertilizers addition and plant growth in different stages 
in a machine with a capacity to produce multiple seeds from one seed 
input  using computational models of multiplication( generating multiple 
copies of kernel in repetition ) then we will be closure to achieving mass 
food production by means of quantum generators( machine generated ) 
rather than traditional land based farming which has very serious 
limitations such as large space requirements, uncontrolled 
contaminants, etc. The development of Quantum Generators requires 
specialized knowledge in many and initially they may be big occupying 
significantly large space and subsequently small enough to be placed on 
roof-tops. 

The Quantum Generators help world meet the food needs of a growing 
population while simultaneously providing opportunities and revenue 
streams for farmers. This is crucial in order to grow enough food for 
growing populations without needing to expand farmland into wetlands, 
forests, or other important natural ecosystems. The Quantum 
Generators use significantly less space compared to farmland and also 
results in increased yield per square foot with short production cycles, 
reduced cost of cultivation besides easing storage and transportation 
requirements. 

In addition, Quantum Generators Could Eliminate Agricultural Losses 
arising out of  Cyclones, Floods, Insects, Pests, Droughts, Poor Harvest, 
Soil Contamination, Land Degradation, Wild Animals, Hailstorms, etc. 



Quantum generators could be used to produce most important food crop 
like rice, wheat and maize on a mass scale and on-demand when and 
where required. 

Computers and Smartphones have become part of our lives and 
Quantum Generators could also become very much part of our routine 
by generating food on-demand wherever required by bringing critical 
advanced technologies into the farmland practices. 

METHODOLOGY 
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Protein from input seeds is broken down into individual amino acids 
which are reassembled by Quantum Generating ribosomes into proteins 
that Crop cells need to be generated. The information to produce a 
protein is encoded in the cell's DNA. When a protein is produced, a 
copy of the DNA is made (called mRNA) and this copy is transported to 
a ribosome.  
 
Protein synthesis is the process used by the QG( Quantum Generator ) 
to make proteins. The first step of protein synthesis is called 

Proteins Recognition  

& Generation of 

Amino Acids 

Protein Synthesis     

( Crop) As Per Gene 

Expression 

Protein 

Transcription 

Protein Builder of The 

Cell ( Ribosomes, One 

Amino Acid at a Time ) 

Producing Specific 

Amino Acids               

( Synthetic ) 

Extracting Amino 

Acids 

To Generate Next Off-Spring 



Transcription. It occurs in the nucleus. During transcription, mRNA 
transcribes (copies) DNA. 
 
Body tissues grow by increasing the number of cells that make them up.  
Every cell in the crop body contains protein. The basic structure of 
protein is a chain of amino acids.  
 
The major steps in protein synthesis are: 

 DNA unzips in the nucleus. 
 mRNA nucleotides transcribe the complementary DNA message. 
 mRNA leaves nucleus and goes to ribosome. 
 mRNA attaches to ribosome and first codon is read. 
 tRNA brings in proper amino acid from cytoplasm. 
 a second tRNA brings in new amino acid. 

Protein synthesis is the process in which cells make proteins. It occurs 
in two stages: transcription and translation. Transcription is the transfer 
of genetic instructions in DNA to mRNA in the nucleus. Translation 
occurs at the ribosome, which consists of rRNA and proteins. 
 

Ribosomes are the protein builders or the protein synthesizers of the 
cell. They are like construction guys who connect one amino acid at a 
time and build long chains. Ribosomes are special because they are 
found in both prokaryotes and eukaryotes. 
 

Ribosomes, large complexes of protein and ribonucleic acid (RNA), are 
the cellular organelles responsible for protein synthesis. They receive 
their “orders” for protein synthesis from the nucleus where the DNA is 
transcribed into messenger RNA (mRNA). 
 
Amino acids can be produced by breaking down proteins, known as the 
extraction method. However, the amount of amino acids in the source 
protein limits the amount of amino acids made. Extraction is not good for 
making mass quantities of specific amino acids. So Synthetic Methods of 
making amino acids is necessary in protein synthesis. 

The Quantum Generator contains pre-programmed Protein Synthesizer 
relevant to specific Crop/Tissue which essentially reassembles 
ribosomes  ( Sites in a Cell ) into proteins that your crop cells need. The 
sequence and information to produce a protein is encoded in the 
synthesizer of Quantum Generator. 

Robotics & Machine Learning towards Biological Space Exploration 



Machine learning approaches are fundamental to scientific investigation 
in many disciplines. In biological studies, many of these methods are 
widely applicable and robotics/automation is helping to progress cell 
synthesis through biological space exploration and beyond. Scientists 
have begun to embrace the power of machine learning coupled with 
statistically driven design in their research to predict the performance of 
synthetic reactions. For our study, the yield of a synthetic reaction can 
be predicted machine learning in the multidimensional space obtained 
from robotic automation to map the yield landscape of intricate synthesis 
following synthesis code allowing improved prediction of high-yielding 
conditions and replication mechanisms. Meanwhile, our emphasis is on 
automation of synthesis, which is controlled by robots/computers rather 
than by humans. In addition, the machine learning algorithms explore a 
wider range of biological space that would need to be performed  purely 
automated random search and lead the way forward to fast-track 
synthesis.  
 
In general, this approach allows for faster and more efficient 
retrosynthetic analysis than any other well-known method. Figure 2 
shows a graphical representation of workflow for joining automated 
retrosynthesis with a synthesis robot and reaction optimization. The 
retrosynthetic module will generate a valid synthesis of the target that 
can then be transferred into synthesis code that can be executed in a 
robotic platform. The optimization module can optimize the whole 
sequence, getting the feedback from the robot. 

 

                  

              

 

 

  

 

 

Fig. 2 Architecture of Robotic Synthesis of Crop Cells in a Quantum 

Generator 
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Methodologies for the automation of cell synthesis, optimization, and 
crop yields have not generally been designed for the realities of  crop-
based yields,  instead focussed on engineering solutions to practical 
problems. We argue that the potential of rapidly developing technologies 
(e.g., machine learning and robotics) are more fully realized by operating 
seamlessly with the way that synthetic biologists currently work.  This is 
because the researchers often work by thinking backwards as much as 
they do forwards when planning a synthetic procedure. To reproduce 
this fundamental mode of operation, a new universal approach to the 
automated exploration of cell synthesis space is needed that combines 
an abstraction of cell synthesis with robotic hardware and closed-loop 
programming.  
 
Automation Approach 
 

There are different automation approaches for cell synthesis these 
include block based, iterative, multistep however, we considered 
CellSynputer which is integration of abstraction, programming and 
hardware interface, which is given below depicted as in Fig 3. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 Approach – Cell Synthesis Automation 
 
Synthetic biologists already benefit from algorithms in the field of cell 
synthesis and, therefore, automation is one step forward that might help 
biologists and chemists to plan and develop biological space more 
quickly, efficiently, and importantly, CellSynputer is a platform that 
employs a broad range of algorithms interfacing hardware and 
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abstraction to solve synthesis-related problems and surely can very well 
be established for quantum generation. 

Synthesis via Programmable Modular System: ‘The CellSynputer’ 

We presented a modular platform for automating cell synthesis, which 
embodies our synthesis abstraction in „the CellSynputer‟. Our 
abstraction of cell synthesis contains the key four stages of synthetic 
protocols: recognition, gene expression, transcription, and protein 
builder  that can be linked to the physical operations of an automated 
robotic platform. Software control over hardware allowed combination of 
individual unit operations into multistep cell synthesis. A CellSynputer 
was created to program the platform; the system creates low-level 
instructions for the hardware taking graph representation of the platform 
and abstraction representing cell synthesis. In this way, it is possible to 
script and run published syntheses without reconfiguration of the 
platform, providing that necessary modules are present in the system. 
The synthesis of different small crop molecules on the system can be 
successfully scripted and performed automatically with yields 
comparable to traditional methods. 
 

 

           Multistep Cell Synthesis 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. CellSynputer  Operational  Architecture 
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Finally, by combining CellSynputer platform and robotic systems with AI, 
it is possible to build autonomous systems working in closed loop, 
making decisions based on prior experiments and reactive conditions. 
We already presented a flow system for navigating a network of 
synthesis reactions utilizing an infrared spectrometer for on-line analysis 
and as the sensor for data feedback. The system will be able to select 
the most reactive or suitable starting materials autonomously.  

Parallel Synthesizers 

Parallel Synthesizer is a high yielding multiple synthesis systems 
consisting of parallel processing units & multiple synthesizers, in  
parallel. These automated multistep units are used as parallel 
synthesizers for high yield applications. Parallel synthesis with cell 
synthesis processes is a way to use the advantages of combinatorial 
synthesis in a manner that provides a more focused approach to the 
target molecules. This results in a smaller, more concentrated set of 
molecules, making the process of unit level synthesis easier. 

The following are the attributes of parallel synthesizer: 

 Based on multi-unit concept 

 Configurable at unit level 

 High throughput 

 Small scale at unit level 

 Limited to individual synthesis scope 

 Embodies multistep procedure 
We give below automated cell synthesis using parallel synthesizer in 
pictorial format: 

A)                    N-Step Cell Synthesis 
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B)                    Multi-unit Synthesis 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 

C)                    CellSynputer Architecture  
 
 
 
 
 

 

 

Neural Networks in Exploring Synthesis Space 

The automated synthesis could make also use of analysis and 
combination of starting materials for planning the synthesis routes to 
achieve the target molecules. There are many approaches to automated 
cell synthesis, and the one seems to be particularly promising as it 
employs neural networks and AI and  it uses Monte Carlo tree search 
and symbolic AI to discover target molecule via  different synthesis 
routes. The neural networks are required to be  trained on all possible 
reactions in cell synthesis for a particular crop. Figure 5 shows a 
workflow for joining automated synthesis of a target molecule of a 
desired crop with a synthesis robot and reaction optimization. The 
synthetic process module will generate a valid synthesis of the target 
that can then be transferred into synthesis code that can be executed in 
a CellSynputer/robotic platform. The optimization module can optimize 
the whole sequence, getting the feedback from the robot. 
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Figure 5.  Exploring the Synthesis Space of Experiments with Neural Networks. 
 

The platform operates in a closed loop with a machine learning 
algorithm; the machine learning algorithm suggest the most promising 
combinations and reactions that were then conducted and analyzed 
automatically within the platform. The results of each experiment are 
automatically interpreted and the data are then used to update the 
machine learning model. The use of machine learning allows for 
autonomous exploration of synthesis space allowing for discovery of 
new synthesis transformations.  
A standard crop grain composition parameters (like fibre, protein, 
carbohydrates, etc. ) dataset is the first step and the data need to be 
collected from different subjects of variety. 
 
Synthesis Framework 

The exploration of biological space by autonomous platform requires it to 
assess the difference or change of the obtained results in cell space. To 
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achieve this, we proposed a framework for assessing the difference in 
originality and change of the synthesis results as shown in Figure 6. 
First, the synthesis process must be repeatable to be valid and exclude 
any unobserved values in measurement  and by the system. Following 
confirmation of result repeatability, the next step is to check if this result 
has a precedent. This can be achieved simply by querying a given 
database containing knowledge of a given subject in a platform memory. 
If the search confirms that similar observation has been reported, the 
synthesis can be classified as not new, not contributing added 
information to our knowledge base. However, if the result has not been 
observed previously, we need to consider if it could be predicted using 
all the current knowledge. The predictability implies that this result is not 
unusual but new to some extent. Unpredictability implies that result 
obtained is offbeat, for example, a synthesis mechanism that cannot be 
predicted can be classified as unusual, opening a new set of flow 
parameters to execute for the platform. Therefore, this framework will 
enable automatic assessment of the synthesis results by autonomous 
and digitised robotic platform.  
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Figure 6. Synthesis Validity Diagram. 
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Synthesis Simulator 

Based  on  the basic components of our CellSynputer environment, we can 
use them to form a real synthesis simulator. The first thing a synthesis 
simulator needs is actual flow, i.e., amino acids( Synthetic and Extracted 
). Hence, we need to generate this material flow. Once this is done, we 
can run our simulator to see graphically how it performs. 
 
Generating Flow 

We have shown how the CellSynputer platform is defined  as well as the 
dynamics in the CellSynputer. We now need to generate actual flow of 
materials. In other words, we need to define how input  materials arrive 
in the CellSynputer and the attributes of these materials. 

How a material arrives actually refers to when – which time step – and 
where – which inlet – they arrive in the environment. To  do  so, we use a 
new parameter for the CellSynputer, the flow density, denoted τ , that 
serves as the probability, at each time step and for each inlet, that a 
new material is arriving in this inlet. 
This new material‟s attributes, their rate, desired rate and quantity, and 
composition, are chosen randomly. Their pressure and temperature is also 
chosen randomly within a range that depends on the maximum flow rate. 
Note that the initial rate of flow of a material does not depend on the size 
of inlet in which they arrive; we do not make assumptions about materials 
before entering the CellSynputer. 
 
The flow generation process is summarized in below Algorithm. 

Algorithm: Generating Flow 

For all inlet do 

if inlet’s initial position is active then 

if random < τ , with probability τ then 

materials ← randomly initialized   

materials enters CellSynputer 
end 

 end 

       end 



CellSynputer Steps 
 

We  mentioned earlier that the CellSynputer  is updated regularly from the 
sequence of flow. In other words, materials that are already in the 
CellSynputer enable to  make decisions for the materials flow behind 
them. Said decisions can then be observed by the other materials that 
are waiting behind and consequently impact their decisions to flow 
based on instructions from flow control units. To  implement this, we 
divide a CellSynputer time step into two “sub-steps”, that we call the 
observation step where the materials flow observe the environment 
and choose an action, and the update step where we update the 
CellSynputer‟s state by executing the materials‟ flow as per control unit 
actions. During the observation step, the materials choose their flow 
action and accordingly,  their flow lines are turned on. After the 
observation step, all materials flow  have chosen their action, and we can 
now update the CellSynputer: this is the update step, and this is how a 
CellSynputer time step is implemented. 
 

Simulation Parameters 

 

From the above, we can identify the parameters, whether of the 
CellSynputer  or of the materials, that constitute the simulation 
parameters: 

• Number of inlets X > 0,  

• Size of the inlets Y  > 0,  

• Number of outlets E > 0,  

• Size of the outlets Se  > 0,  

• Mix duration Tm > 0,  

• Flow density τ [0, 1] 

• Materials‟ maximum rate vmax  > 0,  

• Materials‟ maximum temperature tmax  > 0,  

• Materials‟ maximum pressure   pmax  > 0 
 

Each of these parameters can be defined arbitrarily. The lower bounds 
on their values guarantee a minimal working environment. There are no 
upper bounds, though we expect the simulator to be used with 
reasonable values. 
 
CellSynputer Performance 

At this point, we  have  defined fully functional synthesis simulator and, 



since we wanted to make a realistic system, we would like to see how well 
it performs and mirrors real-world synthesis. First, we have to define what 
a good performance is; we want to maximize the ratio of amino acids 
that reach their goal and minimize the number of failed synthesises. 
Second, we have to run some simulations and see what happens. It is 
clear that the result of a simulation depends on the chosen parametes. 
Hence, we focus on what we consider to be the most important ones: the 
flow of the materials, as it impacts their merging behavior, and the flow 
density. 

We run a series of  tests to analyze the percentage of each outcome and 
the throughput of our synthesis simulator depending on the  probability of 
the flow of materials and the environment. To do that, we fixed the other 
parameters: 
 

• Number of units = 5 

• Size of the units= 10 

• Number of exits = 5 

• Size of the exits =  10 

• Mixing duration = 10 

• Materials‟ maximum rate of flow = 5 
 

The possible outcomes are called goal if the concatenated materials 
reaches their goal, fail if they missed goal if the flow materials does not 
reach their goal. 

For each  probability between 0 and 0.20 , we run the simulation for 40 
time steps and repeat it 10 times to compute the average. This is done 
for two different flow densities: 0.25, and 0.50. 

Figure 7 shows the percentage of each outcome – goal, fail or missed 
goal – depending on the probability for two flow densities. We can see 
that when the flow density increases, it takes a lower  probability value to 
make the simulator behave poorly. With a lower flow density, there 
should be more time and space between the materials to consolidate and 
they consequently have more room to make failures. 

 

The amount of materials that enter the CellSynputer is obviously higher 
when the flow density is high. However, we can see that when the 
conditional probability increases, this number tends to decrease. 
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Figure 7: Outcome percentage depending on the conditional probability 
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Figure 8: Outcome percentage depending on the conditional probability 
 

 

ALGORITHM ALONG WITH SIMULATOR 

1. Physical Reality Modelling - required information 

- The goal of the units/quantum generator 

- What the synthetic robot sees, Finished & Unfinished Synthesis 

Materials  

- Real Simulation for Synthesis Execution 

2. Task Execution ( Simulation ) 

- Generating actual materials( how materials arrive) 

- Initial setup of the CellSynputer environment ( control units and 

goal ) 

- Synthesis Execution( Simulation Steps ), is updated as the work 

process progresses in line with the simulator 

---   Goal   

----   Missed goal 

 

---   Goal   

----   Missed goal 

 



- Synthesis execution performance, as we have fully functional  

simulator and to make a realistic system, we would like to see 

how well it performs and mirrors real world execution( Artificial 

Intelligence ) 

- Measuring the outcome with optimization steps after integrating 

the real world elements with the simulator data. 

- Implementation of Graphical Version of the Synthesis Execution 

 

          Models for Simulator based  Algorithm 

 

Minimum amount of required information 

- The current state of the CellSynputer and its environment 

- The goal of the synthesis units/quantum generator 

- What the synthesis robot  sees, Synthesized materials( 

Finished & Unfinished) 

 

3. Algorithm( Simulator Guided) 
 

 

For  Generating input materials at time step t do 

        ( # Encoding observation ) 

         If  materials in CellSynputer then 

              Initialize observation 

               If materials in CellSynputer Units then 

                 Mark the location & update control units 

                     If materials in synthesis unit  then 

                        Carry synthesis  as per simulator  process 

                          If carried synthesis is as per the goal  then 

                              Exit 

                          Else  repeat the synthesis task 

                          End 

                     End 

              End 

           End 

        End 

 

 



CONCLUSION 

Quantum Generators (QG) creates new seeds iteratively using the 
single input seed and the process leads to a phenomenon of generating 
multiple copies of kernels in repetition. Biological systems contain 
complex metabolic pathways that make them difficult to predict and 
Protein synthesis is an example of such a pathway. Here we show how 
protein synthesis may be improved through a design of simulator for 
automated synthesizer with a series of iterated high-throughput 
experiments guided by a machine-learning algorithm. The algorithm 
predicts fruitful experiments from statistical models of the previous 
experimental results, combined with stochastic exploration of the 
experimental space and with synthesis abstraction in-built into the 
experimental space. The desired experimental conditions were 
synergistically combined with automation in CellSynputer and 
discovered to have improved yield when graphically interpreted. In this 
way, it is possible to script and run desired syntheses in simulator-driven 
mode where the computer creates low-level instructions for the 
hardware taking interface representation of the platform and abstraction 
representing cell synthesis. Although the platform model given us a 
method of automating cellular assemblies in a framework embodied 
multi-unit & algorithmic simulator driven system however, this need to be 
tested using natural crop cells and it could be promising for us in 
achieving quantum generation.  
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