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Abstract
We present a large language model-based learning platform
that lets students automatically generate mobile applications
for smartphones and tablets from natural language descrip-
tions. Furthermore, we show that the user-generated apps
can be optimized with simple modifications to the generative
model’s input (“prompts”). This paper explores three differ-
ent methods of modifying the prompt: 1) changing the se-
lection mechanism of example pairs, 2) varying the number
of example pairs, and 3) altering how the pairs are ordered
within the prompt. Prompts are constructed from a set of ex-
ample pairs (a textual description of an example app and its
corresponding code) along with the description of the desired
app. We evaluated the model’s performance with 18 possi-
ble candidate mobile apps, ranging from simple to complex,
and used the BLEU score to compare the model’s outputs
to manually created apps. Our results show that appropriate
example pair selection and variation of the number of exam-
ple pairs make a difference in the quality of the generated
apps, but alteration of example pair ordering does not. We
conclude with a discussion about the potential implications
for CS education in light of generative models for code.

Introduction
In this paper, we present a large language model-based
learning platform that lets students automatically generate
mobile applications for smartphones and tablets from natu-
ral language descriptions. The needs and benefits for teach-
ing and learning how to create one’s own mobile apps has
led many educators to design curriculum targeting that pur-
pose (Hsu and Ching 2013). Nonetheless, many students are
discouraged from creating their own app because the task
of learning the necessary programming expertise appears
daunting (HT Tech 2011). As a result, there has been a con-
tinuous drive to tackle these barriers within the scientific
and industrial computer science community to reduce the
amount of coding needed through techniques such as drag-
and-drop functionality and block coding (Figure 1). Several
learning platforms, such as Scratch (Resnick et al. 2009),
attempt to make the learning curve less steep and encour-
age students to build their own apps. Our research aims to
take this simplification of app creation one step further. Our
platform requires no user interface learning so students can
focus on generating and describing their unique ideas.

Large language models (LLMs), such as GPT-3, have
demonstrated that they can perform a wide range of text-
based tasks through carefully crafted model input (Brown
et al. 2020). The input of LLMs are often referred to

Figure 1: Example of a block code

as prompts (Reynolds and McDonell 2021; Oppenlaender
2022). A number of compelling GPT-3 demos demonstrate
that prompts can be written to customize a single model to
perform a wide range of tasks, such as creating an image out
of textual instruction (Ramesh et al. 2021, 2022). One way
of crafting a prompt is by providing a small number of ex-
amples of solved tasks as part of the input to the trained
model, which is referred to as few-shot prompts (Brown
et al. 2020). For instance, if we want the model to perform
English to French translation, we provide a few translated
examples before the desired sentence to be translated. The
common interpretation of the few-shot prompt format is that
the model is “learning” the task during runtime from few-
shot examples.

We used OpenAI Codex (Chen et al. 2021) as the large
language model. Codex is a descendant of GPT-3; its train-
ing data contains both natural language and billions of lines
of source code from publicly available sources. Codex is
proficient in many programming languages, but it is most
capable in Python. We designed the prompt so that Codex
would produce Aptly-Script, an intermediate Python-like
language that can be converted into MIT App Inventor
block codes (Turbak et al. 2012). Aptly-Script was designed
so that the functions and classes have a one-to-one corre-
spondence with App Inventor components. For example, a
Text-to-Speech component in block-coding would have the
same callable methods in Aptly-Script. Once the block code
is created, we can use the MIT App Inventor platform to
create the desired application. For example, the user can re-
quest the following translation application:

“Create an app called HelloPurr with a picture of a kitty



Figure 2: A fully functional application with a picture of a
kitty that, when clicked, plays a meow sound.

that, when clicked, plays a meow sound”,

We will then automatically synthesize a prompt by first con-
catenating a number of example pairs, where each example
pair consists of a textual description of an application along
with the corresponding Aptly-Script, such as the following
<< d1, c1 >><< d2, c2 >> ... << dk, ck >>, where di
is the description of application i, and ci is the Aptly-Script
of application i. Then we follow the example pairs with the
requested textual description of the translator app to com-
plete the prompt. We feed this prompt into Codex which
will generate the Aptly-Script for the Hello Kitty applica-
tion. We can then convert the generated Aptly-Script into
App Inventor blocks to generate a fully functional applica-
tion (Figure 2).

We also show we can further improve the performance of
our platform with some prompt engineering tricks. For in-
stance, we can intuitively expect that the content of example
pairs would affect the performance of app creation. When a
user asks for an application that translates English to Span-
ish, the provision of example pairs that showcase how to use
the “translation component” could help the model complete
the user request. Another intuitive expectation we can have
is that the more example pairs we provide, the more the
model can learn. Thus, the amount of example pairs will
affect the app creation process. Finally, past studies have
observed that the placement of an example in a prompt has
been found to potentially change the emphasis Codex places
on the example within its few-shot learning process; a study
about GPT-3, found that examples placed closer to the end
had a greater impact on the generated results (Zhao et al.
2021). With all these possibilities in mind we explore differ-

ent prompt engineering techniques to improve the model’s
output for a given description of an application. Specifi-
cally, we focus on three characteristics of the prompt:
RQ1 Does the quality of code generation differ based on

how example pairs are chosen?
RQ2 Does increasing the number of example pairs used in

the prompt improve the quality of code generation?
RQ3 Can we improve the quality of code generation by

ordering the example pairs differently?

Methods
For the set of example pairs, a database of 85 unique app
examples was compiled by the team from apps created
on the App Inventor platform. The app examples were se-
lected to cover a wide range of the functionality within the
App Inventor platform. These apps were converted from a
block-coding-based expression to Aptly-Script. Each exam-
ple pair is represented in the following order: its textual de-
scription, ‘START’ word before the start of the code, The
Aptly-Script, and a ‘STOP’ word at the end of the code. A
sample example pair is the following:

Create an app called HelloPurr with a
picture of a kitty that, when clicked,
plays a meow sound.

START
Screen1 = Screen(AppName="HelloPurr")
Cat = Button(Screen1, Image="kitty.png")
Meow = Sound(Screen1, Source="meow.mp3")

when Cat.Click():
call Meow.Play()

STOP

As mentioned before, when a user requests a certain ap-
plication, we automatically select a certain number of ex-
ample pairs and synthesize a prompt. Descriptions of the
code are enclosed within “% %” delimiters to indicate that
they are not part of the code to Codex. At the end of the
prompt we concatenate the user query to the prompt. The
synthesized prompt is sent as an input to the Davinci Code
version 2 Codex model (Chen et al. 2021), and its hyper-
parameters are set as the following: temperature = 0.5,
max tokens = 2000, best of = 10. The output of the model
can be converted into a fully functional mobile application
(Figure 3).

We validated the model with 18 descriptions of candidate
mobile applications that served as plausible student app re-
quests. Within these candidates we included simple appli-
cations, such as “Make a game that has a button in the mid-
dle of the screen. The button has a picture of a cookie on
it. When user clicks the button, increment the score by 1.”
This app can be assembled by first creating a button, mak-
ing that button into a cookie, and incrementing the score by
1 when the cookie is pressed. We also included complex ap-
plications such as “Make a creature that the user can feed,
wash, and cuddle with buttons. Each time the user performs
an action, increase the creature’s happiness by 20. If the
user doesn’t perform an action in 30 seconds, decrease the
creature’s happiness by 50 and make the creature say ‘stop
neglecting me!’ ”



…
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Translator
Make an app with a text box, 
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Screen1 = Screen()
TextBox1 = TextBox(Screen1, Hint = "Enter text here")
LanguageList = ListView(Screen1, ElementsFromString
"English,Spanish,French,German,Italian,Japanese")

…

Figure 3: An overview of the whole process. When the user requests an application with its textual description, we automat-
ically synthesize the prompt by adding several example pairs along with the desired application’s textual description. This
constructed prompt is fed into OpenAI Codex model as an input, which outputs code that can be converted into a fully func-
tional mobile application

In comparison to the previous app, there are multiple but-
tons to create and each button has a different functionality.
On top of that, a timer component is necessary to enable the
app to say “stop neglecting me” after a certain time.

We created 36 manual solutions to the app tasks, 2 per
problem. The solutions for the same problem are designed
to be as different as possible from each other and cover
different interpretations of the same app description. For
example, if the description includes “say: ‘Your order is
ready!’ ”, we may implement either a text-to-speech, or a
text label that “say” that ‘Your order is ready!’ When evalu-
ating the output we compute the BLEU score, or the Bilin-
gual Evaluation Understudy (Papineni et al. 2002), between
the two reference solutions manually crafted by MIT App
Inventor and the generated Codex output. BLEU’s output is
always a number between 0 and 1. This value indicates how
similar the candidate text is to the reference texts, with val-
ues closer to 1 representing more similar texts. The central
idea behind using BLEU is “The closer a machine gener-
ated code is to a professional human code, the better it is”.
We use the nltk Python library to compute the BLEU score.

Results
Does the quality of code generation differ based on
how example pairs are chosen?
In order to address the first research question, we exam-
ined the relationship between different example pair selec-
tion mechanisms and their performance in terms of BLEU
score. More specifically, we fix the maximum upper bound

length of the prompt to 1000 tokens (will further explain
later) and pick the example pairs in order. From that, we
tested four different selection mechanisms we explain be-
low.

Method I: Random selection This method randomly se-
lect a number of example pairs within the database. For
each execution, it will select a different group of example
pairs. This selection mechanism will serve as the baseline
for our comparison.

Method II: Sort code by token length Here we sort the
example pairs in the database based on code length in as-
cending manner, then select example pairs starting from the
least code length until it reaches the token cap. This option
has the advantage of sending in the most example pairs for
Codex to learn from. However, the selected example pairs
may not reflect what is the most relevant to the requested
description.

Method III: Select based on relevance We rank the ex-
amples based on how semantically relevant they are to the
user’s requested application. We do so by generating em-
beddings for each app example and the user description.
Embeddings are numerical representations of concepts con-
verted to number sequences. In our scenario, an embedding
represents the semantic meaning of a natural language de-
scription or code (Neelakantan et al. 2022). Embeddings
that are numerically similar are also semantically similar.
For example, the embedding vector of a natural language
description “Create an app called HelloPurr with a picture
of a kitty that, when clicked, plays a meow sound.” will be



Figure 4: Results for different selection methods. The different methods are listed along the abscissa. Each bar indicates the
mean Bleu score across test data; error bars reflect ±1 standard-error of the mean, corrected to remove variance due to the
random factor (Masson and Loftus 2003).

similar to the embedding vector of a code where an app
shows an image of some animal and when clicked plays the
sound the animal makes. To compare the similarity of two
separate embeddings, you compute the cosine between the
embedding vectors. The result is a “similarity score”, some-
times called “cosine similarity”, a score between –1 and 1,
where a higher number indicates higher semantic similarity.
Codex’s Babbage engine was used to generate code embed-
dings for each example app in the database and the users’
textual description (Neelakantan et al. 2022).

Method IV: Revised Maximum Relevancy Mini-
mum Redundancy We rank the examples using a revised
version of Minimum Redundancy Maximum Relevance
(mRMR) (Radovic et al. 2017). mRMR is currently used in
machine learning (Zhao, Anand, and Wang 2019) as a rela-
tively efficient way to select a subset of features having the
most correlation with a class (relevance) and the least corre-
lation between themselves (redundancy). Simply speaking,
the goal is to find the “minimal optimal” set of variables
to predict the dependent variable. Relevance can be calcu-
lated by using the F-statistic (for continuous features) or
mutual information (for discrete features) and redundancy
can be calculated by using Pearson correlation coefficient
(for continuous features) or mutual information (for discrete
features) (Radovic et al. 2017). Since none of this informa-
tion is obtainable for our case, we adapt mRMR by defining
relevance as the cosine distance between the embedding of
the candidate code and user text description, and defining
redundancy as the cosine distance between the embedding
of the candidate code and a code in the set of already se-
lected example pair group. We use the following formula to
select the next example pair j:

max
cj∈C−Sn−1

I(cj ;D)− 1

n− 1

∑
ci∈Sn−1

I(cj ; ci)


where ck is the kth code example, D is the user requested
app description, Sn−1 is the set of example pairs already
selected, and I(x; y) is the mutual information (i.e. the co-

sine similarity) between x and y. Intuitively, this formula
rewards example pairs that maximize the information be-
tween itself and the user description while it penalizes ex-
ample pairs with a high mutual information with the already
selected set of example pairs.

Figure 4 shows the results of different selection meth-
ods. For each selection method, we ran the OpenAI Codex
model five times for each test sample to address the ran-
domness Codex generates. This results in five BLEU scores
for each test sample, which we averaged, resulting in a sin-
gle performance metric per test sample. We then report the
mean and standard-error across test samples. We further our
investigation by sorting a subset of the test samples into
two groups of nine based on their complexity. Complexity
was calculated by counting the number of compound state-
ments (e.g., number of if, number of for). We discovered
several interesting trends within our examination. We ob-
serve that overall, selecting the most relevant example pairs
using embeddings or mRMR turns out to have a marginal
advantage. For complex apps, that trend seems to be more
apparent as mRMR has the upper hand and improves the
performance from random baseline by 55% (0.10 increase
in BLEU score). For simple apps, relevance-based selection
methods improve the performance by 25% (0.07 increase
in BLEU score). However, a simple algorithm to select as
many example pairs as possible is comparable to more ad-
vanced methods for simple apps. These results indicate that
while the model can learn to create simple applications by
merely providing an abundant number of example pairs,
the relevance of example pairs to the user’s description be-
comes crucial when generating the code for more compli-
cated applications.

Does increasing the number of example pairs used
in the prompt improve the quality of code
generation?
In order to address the second research question, we exam-
ined the relationship between the number of example pairs
selected and their performance in terms of BLEU score.



Figure 5: Results for varying the number of example pairs. The token cap values are listed along the abscissa. The plots have
identical layout as those in Figure 4. See the caption of Figure 4 for details.

Here we fix the selection mechanism as the revised mRMR
(Method IV) and pick the example pairs in the ranked order.

The Codex model processes text using tokens, which are
common sequences of characters found in text or can be
simply thought of as pieces of words. We varied the upper-
bound on the number of tokens for the entire prompt (ex-
amples, their descriptions, user query), which consequently
controls the number of example pairs being added to the
prompt. The number of tokens in a prompt was approxi-
mated using the Hugging Face GPT-2 Tokenizer (Wolf et al.
2019) . We chose the following cap for tokens τ : 300, 600,
9000, 1200, 1800, 2100. We added the example with the
highest embedding score and computed the total length in
tokens of the example and user query. We continuously se-
lected the next most relevant example pair that, once added
to the prompt, would keep the prompt within the token cap

Our results displayed in Figure 5 show that overall differ-
ence of performance seems to be random. However, when
we separate complex applications and simple applications
we see some patterns. For simple apps the optimal upper
limit for tokens is apparent around the 1200 mark. However,
for complex apps, the quality of produced output across dif-
ferent prompt token caps appears to be minimal. Based on
our results, there seems to exist a “sweet spot” for simple
apps in terms of number of example pairs but for complex
apps the quality of examples rather than quantity appears to
be more important.

Can we improve the quality of code generation by
ordering the example pairs differently?
In order to address the third research question, we ex-
amined the relationship between the ordering of example
pairs selected and their performance in terms of BLEU
score. Here we fix the selection mechanism as the revised
mRMR (Method IV) and the token cap as 1000. Consider
a case where the following k example pairs are selected,
<< d1, c1 >><< d2, c2 >> ... << dk, ck >>. where
<< d1, c1 >> is the most relevant example pair to the
user description and << dk, ck >> the least. There are
three ways to order the example pairs within the prompt.

First, we can randomly order them (which we refer to as
“random”). Second, we can order them from highest rank-
ing to lowest ranking (which we refer to as “top”), which
is basically feeding the examples pairs in ranked order:
<< d1, c1 >><< d2, c2 >> ... << dk, ck >>. Finally,
we can order them lowest ranking to highest ranking (which
we dub “bottom”), which is feeding the examples pairs in
reversed ranked order: << dk, ck >><< dk−1, ck−1 >>
... << d1, c1 >>.

Based on our results on Figure 6, both ’top’ and ’bottom’
have a marginal advantage over ’random’ ordering. How-
ever, it seems that in general the orderings of the example
pairs do not affect the performance of generating code. It
is not certain what may be the reason for this. However,
considering that we cap the tokens to 1000 and the average
number of tokens for example pairs is 268, which results in
an average of 3 or 4 example pairs in each prompt, it may be
possible that the distance between example pairs is not far
enough to make much of a difference. When we add more
example pairs, the ordering may make more of a difference.

Summary & Conclusion
In summary, we explored three different characteristics of
choosing few-shot examples for the generative model to
learn from a given user app description: how examples are
chosen, the number of tokens in the prompt, and how the
examples are ordered within the prompt. For each charac-
teristic we obtained several key results, including: (1) se-
lecting more appropriate example pairs affects performance
especially for more complex applications; (2) for simple
apps there exists an optimal number of example pairs to im-
prove the generative performance, while for complex apps
the number of example pairs have marginal to none effect
(3) The orderings of the example pairs had no effect on
the performance. Our results suggest that crafting a suitable
prompt is crucial for generating the correct mobile applica-
tion. Without theoretical justification for the representation
which yielded the best performance, we improved the per-
formance for complex apps by 55% (0.10 increase in BLEU
score) and 43% (0.13) for simple apps using example selec-



Figure 6: Results for altering the order of example pairs. The orderings are listed along the abscissa. The plots have identical
layout as those in Figure 4. See the caption of Figure 4 for details.

tion mechanisms. Our research is important and novel in
that as far as we know this is the first attempt to investigate
prompt engineering in terms of mobile app creation.

However, our research has several potential limitations.
To start with, due to limited resources we were not able
to experiment with abundant amounts of test data. Addi-
tionally, our test data was created in a laboratory setting,
which may not reflect the possible mobile applications that
people might want to create in the real world. We do not
also consider the individual outputs of each test case. Dif-
ferent applications require different features; some applica-
tions might require more UI design while other applications
might require more robust functionality. We can examine
each individual test case and use different sample selection
based on the application’s needs. Finally, The BLEU score
attempts to evaluate how similar Codex can program to a
human programmer. However, it is unable to check exact
syntax errors, check functionality, and it may disregard cer-
tain ways to create a desired application. We plan to address
these issues in future research. There are also some poten-
tial changes to the automated prompt construction that were
not examined within this study. One of these was tuning
the hyper-parameters of Codex, similar to how the authors
of the Codex paper examined the effect of, for example,
model temperature on the quality of generated code (Chen
et al. 2021). Additionally, we plan to do unit testing, as it
is important to test detailed functionalities of each app and
check its ability to implement all requested tasks. Finally,
the performance of other large language models such as
Meta AI’s InCoder in generating apps can be compared to
Codex’s performance (Fried et al. 2022).

Discussion
There are many challenges young learners face when try-
ing to develop impactful computational solutions. Many of
these can be attributed to the context of computing educa-
tion itself often taking place in traditional computing labs,
which are far removed from students’ everyday lives. Too
often, K-12 computing education has been driven by an em-
phasis on kids learning the “fundamentals” of programming

such as variables, loops, conditionals, parallelism, opera-
tors, and data handling (Tissenbaum, Sheldon, and Abelson
2019). This often discourages students from being part of
the technological community. In order to empower young
people to build these solutions, we need to provide plat-
forms and learning environments that reduce the techno-
logical barriers for app creation to emphasize the students’
ideas. In this study, we’ve worked on optimizing a platform
that aims to harness the power of AI to take an user de-
scription of an app and generate an app that matches that
description. There are several potential educational uses of
such a platform.

Furthermore, our work has many potential applications
in the democratization of app creation; not only children
but also adults will be able to create meaningful apps with-
out prior experience in programming. Seniors continue to
lag behind their younger compatriots when it comes to
tech adoption (Smith 2014). A significant majority of older
adults say they need assistance when it comes to using new
digital devices. Just 18% would feel comfortable learning
to use a new technology device such as a smartphone or
tablet on their own. Our new platform enables them to by-
pass these obstacles— we aim to make computing educa-
tion more inclusive, more motivating, and more empower-
ing. We hope that through our work, we are one step closer
to the goal of anyone with an app idea being able to convert
it to an usable mobile application.
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