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Abstract

Using the curved bc—beta-gamma system (a tensor product of a Heisenberg and a Clif-
ford vertex algebra) we introduce quantum analogy of Lichnerowicz differential. As follows
we suggest new machinery for finding the Lichnerowicz—Poisson cohomology groups for any
Poisson manifold. Moreover, the defined provides new invariant.
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1 Introduction

A Poisson manifold is a smooth n-dimensional manifold endowed with a Poisson bivector field,
viz., a skew-symmetric contravariant tensor P of rank 2 satisfying the Jacobi identity
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where P is locally given by Y} PY(x)d,, A Oa;.
1<

A Poisson structure P on ]a manifold defines geometric object, the Lichnerowicz differential
dy, discovered in [1]. It acts on multivector fields by the formula d;, := [[ P, —]], where [[—, —]]
denotes the canonical Schouten bracket.

We are going to give a quantum analogy of dy based on the paper of Malikov, Schechtman
and Vaintrob [2], who introduced a sheaf of vertex superalgebras Q" attached to any smooth
variety M, called the chiral de Rham complex, which is used in understanding the “stringy”
invariants, such as the elliptic genera. If M is n-dimensional, the fibers of Q" are isomorphic
as vertex superalgebras to a completion of the bc — S system on n generators, or in physics
terminology, to the tensor product of the bosonic and fermionic ghost systems.

We would like to outline here that the chiral de Rham complex is an example of the general
localization pattern [3][4].

The paper [5] served as a main motive for this research. We would like to shed the light on
mathematical part of [5]. On the contemporary state-of-the art, the interested reader is referred
to [3 — 8] and references therein.

The corresponding cohomology of Lichnerowicz differential dj, is called the Lichnerowicz —
Poisson cohomology (or LP-cohomology). It is a useful tool in Poisson Geometry, as it provides
framework to express deformation and quantization obstructions. For every smooth Poisson



manifold there is a natural homomorphism from its de Rham cohomology to its Lichnerow-
icz—Poisson cohomology. For symplectic manifolds, this homomorphism is an isomorphism [7].
But, generally, the LP-cohomology space are very large and their structure is known only in some
particular cases. The quantum version of dy, helps to clarify this issue by encoding everything in
OPEs (the operator product expansion).

2 Quantum Lichnerowicz differential

Consider Poisson n-dimensional manifold M with a Poisson tensor P = Y} PY(x)0,, A 0y,, where
1<j
P are analytic functions.

Let of = ~% + bidz, 0; = ¢; + B;dz, where b;, ¢;,7;, 3; is corresponding bc — B~ system on n
generators on M according to [2].
Assign

ngij(a)é’i@j = 3@13”'(7 + bdz)(c; + pidz)(c; + B;dz).

The last is equal to

%(Pij(w)(ciﬁj — Bic;) + 0P (y)eic;bF)dz.
Define
s = {§ P ()01, -}
Proposition 1. d?; = 0.
Proof. The associated non-zero Operator Product Expansions (OPEs) for bc and 37 systems:
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Further, without loss of generality A := 1.

As P () is analytic function, it can locally be written via a convergent power series. More-
over, notice
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Using Wick’s theorem we obtain the following:
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Term

P((2))(€i(2)B5(2) = Bi(2)e; (2)) 8 PV (y(w)) e (w) s (w)bF (w) +

+0k PP (y(2))ci(2)e; (2D (2) PY (3 (w)) (e (w) B (w) — B; (w)e; (w))
yields
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Grouping up, further we obtain:
Terms of type ccf:
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where, as P is a skew-symmetric, i.e. P%(7)

P?"(v), under changing variables ¢ <> j first
row is equal to second row and third one — to forth one
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Rearranging indexes accordingly we can see that second and forth lines are nothing but Jacobi
identity:
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where due to antisymmetric variables first line is equal to second one and third line is equal to
forth one under changing variables m <> m. Moreover, first column is equal to the second under
changing variables ¢ « j, ¢ « j. Thus, we get
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But the last is derivative of Jacobi identity. Thus, it is zero. B A
Terms of type cc do not also survive. Indeed, in OPE P%(v)(c:if}; — fBic;) 0, PV (7v)c;c;0" +

Op PY (7)cicjkazj (7)(¢;8; — B;c;) they reduce one another due to symmetry of second derivatives.
Moreover, corresponding terms obtained from OPEs PY(v)(cif8; — Bic;) PY(7v)(¢;3; — Bic;) and
0k P () cic;bF 0, P (7)¢;¢;0" reduce each other as well.,

Remark. dy;, is globally well-defined vertex operator, which raises the fermionic number by +1,
as Poisson tensor and the bc— [~ system are globally well-defined. According to [4] the cohomology
of the bc — By system with differential dyr, is again a vertex algebra.

3 Cohomology

While de Rham cohomology groups of manifolds of “finite type” (e.g. compact manifolds) are
of finite dimensions, Lichnerowicz—Poisson cohomology groups may have infinite dimension in
general. The problem of determining whether the LP-cohomology space is finite dimensional or
not is already a difficult open problem for most Poisson structures. The quantum version of the
differential settles down this issue, as ¢ — part of bc — v system always emerges as subcomplex.
Moreover, general procedure is the following.

Due to OPEs of the bc — v system differential complex (C = @ C*, d,;) admits filtration

by degree of h. The filtration is of finite length and the terms of tﬁe spectral sequence can be
computed inductively.

For a non-negative integer n define space V,, of all elements, containing order of derivatives
of b*, cy, v, By less or equal n. Then on first page of spectral sequence by degree of A the
defined filtration by maximal order of derivatives is compatible with the boundary map leL due
to only single contractions. Accordingly, for the be — 5y system D[b*, c,, v*, 5] we have such
representation

0
]D)[b*7 C, 7*7 B*] = Vb @ C—D Vn-‘rl/Vn

n=0



As (V,, leL) is subcomplex of (V,,41, leL) and there exists the short exact sequence
00—V, — Vn+1 - Vn+1/Vn — 0,

it is sufficient to compute cohomology of (V,,, leL) for any non-negative integer n.
In addition
Vn+1 = (Vn X R[an-ﬁ-lc*’ an-i—l,y*]) ® R[an-ﬁ-lb* 8”“6*]

where (V,, @ R[0"T1c*, 0" 1vy*], d 1) is subcomplex of (V,11, qu) Thus, mathematical induction

can be used. Notice also that differential dhL satisfies Leibniz rule and it raises the multiplicity
degree by +2.
It is worthy to point out here that the complex (R[e,, v*], leL) is the classical LP-complex.
To illustrate the machinery we will consider in detail one of quadratic Poisson structures
on R% All quadratic Poisson structures on R? were classified (their LP-cohomologies were also
determined) in [9]:

Py = 0y A 0y,

Py = xy 0, A 0y,

Py = (2% + y?) 0x A 0y,
Py =y? 0y A Oy

Corresponding quantum Lichnerowicz differentials are

(0152 - 5102)0[27 —},

qu - {j
qL2 {ﬂr‘ 172(01ﬁ2 - ﬁlcg)dz + ('72b1 + ’)/152)0102652, —},
dgrs = {ﬂP«’Yl)Q + (V) (e1Be — Prez)dz + 2(7*b + 410 crcadz, — 1,

r

dgra = {j (7?)?(c1B2 — Brca)dz + 29°b crcadz, -}

First case is symplectic case: it is usual de Rham cohomology. We have only one non-zero
cohomology group, namely H° =~ R, constants, since dn qL1 18 monomial preserving and the complex
can be represented as tensor product of ¢ — v and b — 3 parts.

For second case as well as for third one the LP-cohomology space is finite dimensional. Two
cases are similar. We will consider the second case closely.

The LP-cohomology space is of infinite dimension for the last case. Indeed, cydcodcs . . .
(v')™cy and (B;)™ , where m € Z, represent part of cohomology classes.

Let’s inspect complex (D[b*, Ca v*, By], dgr2) on the first page of spectral sequence by degree
of h. To begin with, values of dq 1o for all single elements are written below:

am+lc2’

quz( D =", dzle(WQ) = 7'y lem(cl) = 7’109, dglm(cz) = ylercs;
o (') = 71928y + (V0" + ') ca, dlp(b) = 719281 + (470! + 7' 0%)en

qLQ(ﬁl) = 7*(c1fr — Prca) + Vercy, d222(/32) =7 (12 = frca) + blercs.



The complex (R[e,, v*], leLQ) is the classical LP-complex and from [9] we know its cohomology
classes: 1, vler, v2es, cico, Y1y2cico. However, notice that in contrast with [9] we could obtain
that directly and it would not be difficult.

The routine calculations are left for the reader, but we are about to highlight the key points.

The complex (Vg = R[c,, v*] @ R[b*, Bs], dglm) is more complicated and twisted. Leibniz rule

dEZ?( fg) = leLQ( g+ fdz-ﬂ(g) is useful here. Part of cohomology classes are

01025{“@”, clcgﬁf@”(ﬁlbl — ngQ), where k, m € Z~,.

Next step is (Vi = (Vp ® R[dc*, 0v*]) ®R[8b*,06*],d£”22), where (1} ®R[&c*,8’y*],d§22) is
subcomplex of (Vi,d"},). Notice that Z(vle;), Z(v%c2), Z(cica), Z(v'7%c1c2) represent part of
cohomology classes, see the Remark in Chapter 2.

Moreover, element cicodciOcy ... 0™ e 0™ ey, where m € Zg, determines a cohomology
class of complex (D[b*, ¢y, v*, Bl leLQ). Thus, there are infinitely many non-zero cohomology

groups.

4 Chiral de Rham Operator

There is impossible to expect that the chiral de Rham differential (see [2]) is going to commute
with constructed operator dgr, as it doesn’t happen on classical level. That’s why we consider
another differential, which luckily commutes with d,;,.

Using the same notions o = % + bldz, 0; = ¢; + B;dz and concept of variation we have

In other words, , , ,
6(b') = d.7",6(v") =0,
3(B:) = 0.¢i,0(c;) = 0.

Define the associated non-zero OPEs for be and /7 systems to be (changing sign of S+ system
from usual one):

HEelw) ~ —— clhw) ~ ——
Bi(w) ~ —— 1 (2)fw) ~ ———

Then 0,v(z)8(w) ~ ﬁ and the above operator of variation is equal to the following
operator

diar = {fﬁ(@zyici)dz, -}
Proposition 2. §3; = 0, [dar,d,z] = 0.

Proof. First statement that d4r is differential is obvious as there are no singular terms.
Second one is not harder. We obtain integral of total derivative, indeed:

Term 0, P (7(2))ci(2)cj(2)0F(2) 0wy (w)e; (w) yields (P9 (v))e;c;.

Term P (y(2))(e:(2)85(2) — Bi(2)es (2))u (w)e; (1) ields PY (1) (cies).



5 Appendix: Nambu-Poisson bracket

Let us come back to the concept of Poisson manifold. Let M be a smooth finite dimensional
manifold and C*(M) be the algebra of smooth functions on this manifold.
A bilinear mapping {=, +} : C*(M) x C*(M) — C*®(M) is said to be a Poisson bracket if for
any smooth functions f, g, h € C*(M) it satisfies
i) {/,g} = —{g, [} (skew-symmetry);
i) {fg,h} = flg,h} + g{f, h} (Leibniz rule);
iii) {f,{g, h}} + {9, {h, f}} + {h,{f,9}} = 0 (Jacobi identity).
For instance consider the 2-dimensional space R? with coordinates denoted by p, ¢ and define
the bracket by the formula
_dfs9) _|of Ouf
Vo9 =300 o s
A generalization of Poisson bracket was proposed by Y. Nambu in [10], where he introduced
a ternary bracket of three smooth functions f, g, h defined on the three dimensional space R?,
whose coordinates are denoted by x,y,z. This ternary bracket is defined with the help of the
Jacobian of a mapping

(I‘, y? Z) - (f(x7 y? Z)? g(aj7 y? Z)’ h('T? y? Z))

as follows

Ouf Oyf O.f
of.g,h S
{f,9,h} = ﬁ = [0z9 0Oyg 0.9
Y Ozh O,h 0.h
Evidently this ternary bracket is totally skew-symmetric. It can be also verified that it
satisfies the Leibniz rule

{gha f17f2} = g{h> flafZ} + h{g7flaf2}7

and the identity

{97 h7 {f17f27f3}} = {{g7h7f1}7.f2af3} + {fla {97 h'7 f2}7f3} + {f17f27 {gv h7 f3}}

This identity is called Filippov-Jacobi identity and its n-ary version is the basic component
of a concept of n-Lie algebra proposed by V. T. Filippov in [11]. So, Poisson bracket can be
generalized to any number of arguments. A smooth manifold endowed with a n-ary Nambu-
Poisson bracket is called a Nambu-Poisson manifold of nth order [12].

As was mentioned, Nambu-Poisson bracket is generalization of Poisson bracket, but there is
opposite direction: Nambu-Poisson brackets can be defined inductively (see Proposition 3, [13]).

Proposition 3. An n-bracket, n > 2, is Nambu-Poisson if and only if fixzing an argument we
get an (n — 1)-Nambu-Poisson bracket.,

The widest generalization we shall need is the notion of a strong homotopy Lie (or L)
algebra, which is well-known in algebraic homotopy theory, where it originated. This is obtained
by allowing for a countable family of multilinear antisymmetric operations of all arities n > 1,
constrained by a countable series of generalizations of the Jacobi identity known as the L.
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identities. This notion admits specializations indexed by subsets S € N of arities and which are
defined by requiring vanishing of all products of arities not belonging to S. This leads to the
notion of Lg algebra. The case S = {n}, when only a single product of arity n is non-vanishing,
recovers the notion of n-Lie algebras. We refer the reader to [14][15] for more details.

Due to Leibniz rule Nambu-Poisson bracket acts on each factor as a vector field, whence it
must be of the form

{f17f27-~'7fn} = P(dfhdf?v"'adfn)a

where P is a field of n-vectors on a smooth manifold M [16]. It is called a Nambu-Poisson tensor.
Remember that if we use the same definition for n = 2, we get a Poisson tensor.

The Nambu-Poisson tensor fields were characterized as follows by L. Takhtajan [12] (see
additionally also [16])

Proposition 4. The n-vector field P is a Nambu-Poisson tensor of order n (n = 3) iff the natural
components of P with respect to any local coordinate system x* of M satisfy the equalities:

Y

n
Z[Pblbg...bk_lubk+1...bnP’Uazag...an_ﬂ)k + Pble---bk—lvbk+1---anua2a3---an—lbk] — 0
k=1

n

n
Z[Palagag..‘anfluauplnbg ...... bn _ Z Pb1bg...bk,1ubk+1.‘.bn(’}uPalaQag,...an,lbk] — 0v
u=1

k=1

A Nambu-Poisson tensor field P of an even order n = 2k satisfies the condition [[P, P]] = 0,
where the operation is again the canonical Schouten bracket [16]. This suggests the study of
generalized Poisson structures: the Nambu-Poisson cohomology.

It is possible (using Proposition 4) to extend the concept of quantum Lichnerowicz differential
to a Nambu-Poisson tensor P of an even order n = 2k. This way, we obtain universalization of
Kontsevich’s theory (to a smooth manifold one can associate the Lie algebras of multi-vector
fields and multi-differential operators, where one can encode classical data (Poisson structures)
and quantum data (star products); relating these two led Kontsevich to his famous formality
theorem that establishes the deformation quantization of Poisson manifolds) [17][18] in the most
direct and natural way. Thus, it opens the road for comprehensive pursuing of rational homotopy
theory [19].

6 Appendix: Gromov-Witten theory

The object of interest in Gromov-Witten theory is a holomorphic map ¢ : ¥ — X from genus g
Riemann surface ¥ to manifold (or orbifold) X. The number of such maps is equivalent to the
Gromov-Witten invariant, which exhibits invariance under complex deformations on X. It has
origin from topological string theory, namely in Witten’s work [20] on integrals in two dimensional
gravity with enumerative meaning of counting instantons (non-trivial solutions of equations of
motion) on X of topological string.

There is a formal definition of Gromov-Witten invariant in algebraic geometry, wherein it
can be expressed through cohomology classes on Calabi-Yau manifold X. When the target space
is an orbifold, the cohomology that is involved in the Gromov-Witten invariant theory is called
Chen-Ruan cohomology. This is the type of cohomology that is sufficient [21] for orbifolds, rather
than the orbifold de Rham cohomology (in the sense that this enlarges the orbifold de Rham
cohomology by keeping track of the automorphisms that the cohomology classes might have).
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Quantum Lichnerowicz — Poisson complex is also connected to many geometrical invariants.
As we have seen, finding its cohomologies requires enormous calculations. However, first page
of spectral sequence by degree of h is more handleable. For example, we can apply the general
Kiinneth theorem to

Vn ®Vo R[b*, C*,’}/*, 5*7 (’Jm+1b*’ an+1c*7 an+1,y*, anJrlﬁ*]7

where ®y, means tensor product over ring Vo = R[b*, ¢*, v*, f*]. Corresponding cohomologies
yield new invariant.
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