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5) Shank: The carbon fiber shank connects the foot to the knee of the robot. The

shank is sealed and features a conical slider for protection of the force sensor.

6) Sealing: The joint is protected by thick bellows (visible in Figure 2c), mechan-

ically clamped to the structure and sealed, which improves the ingress protection

rating compared to previous work. O-rings and sealants have been used for all the

matching surfaces. Water-proof cable glands and connector have been used for the

cables.

3 Tactile inspection motion

The scratching motion we use to collect the data needs to be repeatable and reliable

across the entire range of possible surface areas. The motion, therefore, needs to be

specified in such a way that it can adapt to local terrain geometry and surface rough-

ness. We implemented a Cartesian-space impedance controller [19], which allows

a motion design on both force and position level. Specifying and executing these

motions was done by extending the free-gait framework [20]. The full sequence of

the inspection motion, shown in Figure 3, can be split into several phases.

A predefined position relative to the three stance legs is approached in (a) and

contact is established in (b). In (c), a straight line trajectory is followed until a target

location (d). In (e) and (f), the foot is re-positioned to return to a nominal stance

on four feet. For the part (c) of the inspection motion, where data is collected, the

desired end-effector force is computed as seen in the following equation.

Fig. 3: Picture sequence of the tactile inspection motion with the foot placement

phase (a), inspection motion start location (b), main inspection phase (c), motion

target (d), re-positioning movement (e), and final position (f).
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Thus, to avoid over-fitting during classification later on, we moved and reoriented

the robot frequently to capture different areas and poses of the robot with respect to

the sewer floor. In order to construct the dataset, we defined a scale of five condition

ratings for the sewers. The scale was developed with professional sewer inspectors

who use a similar scheme to assess the state of the sewers.

• Good: Smooth concrete, no problems noticeable

• Satisfactory: Minor signs of deterioration, increased roughness

• Fair: Medium signs of deterioration, increased roughness and scratches/spalling

• Critical: Major deterioration noticeable, large cracks, imminent failure

• Failure: Loss of structural integrity, leakage

The condition of the concrete we encountered in the sewers ranged from good

to fair, while critical or extremely bad structural failures were not encountered.

In total, we were able to collect 355 samples (good: 119 samples, satisfactory: 79

samples, fair: 157 samples) in different parts of the sewers, which were classified

together with a professional sewer inspector who provided the ground truth. The

dataset named STINK (Sewer Terrain Inspection Knowledge) is openly available3.

4.2 Classifying concrete deterioration

We chose a machine learning approach to capture and classify the diverse appear-

ance of concrete deterioration together with the varying environmental conditions.

As mentioned, the surface condition is not only expressed by the roughness of the

concrete, but also by macroscopic features such as holes, scratches or cracks. At

the same time, the surface can be dry, wet, submerged and/or covered by a biofilm

(Figure 6).

(a) good state, water (b) satisfactory state, biofilm (c) fair state, wet

Fig. 6: An exemplary set of pictures illustrating the various surface conditions en-

countered in the sewers.

3 DOI: 10.3929/ethz-b-000336822
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