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Abstract

The rapid growth of scientific literature in the fields of computer engineering (CE) and computer
science (CS) presents difficulties to researchers who are interested in exploring research publication
records based on standard scientific categories. This urges the need for a context-aware, automatic clas-
sification of text documents into standard scientific categories. Document classification is a significant
application of supervised learning which requires a labeled dataset for training the classifier. However,
research publication records available on Google Scholar and dblp services are not labeled. First,
manual annotation of a large body of scientific research work based on standard scientific terminology
requires domain expertise and is extremely time-consuming. Second, hierarchical labeling of records
facilitates a more effective and context-aware retrieval of documents. In this paper, we propose an
ontology-driven classification technique based on zero-shot learning in conjunction with agglomerative
clustering to automatically label a scientific literature dataset related to CE and CS. We further study
and compare the effectiveness of multiple text classifiers such as logistic regression (LR), support vector
machines (SVM), gradient boosting with Word2vec and bag of words (BOW) embedding, recurrent neural
networks (RNN) with GloVe embedding, and feed-forward neural networks with BOW embedding. Our
study showed that RNN with GloVe embedding outperforms other models with an above 0.85 F1 score
on all granularity levels. Our proposed technique will help junior and experienced researchers identify
new emerging technologies and domains for their research purposes.
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I. INTRODUCTION

Identifying potential emerging technologies and topics is an integral part of scientific research
that has become increasingly difficult given the rapidly growing volume of research papers,
journals, and conferences. Global research output grew about 4% annually from 2008 to 2018
and does not show signs of slowing down. For peer-reviewed publications, there is an increase
from 1.8M to 2.6M articles per year [18]. Motivated by this challenge and in an effort to
help junior researchers enter the field, we explored potential applications of machine learning
through natural language processing (NLP), self-supervised learning, ontology construction,
and agglomerative clustering for hierarchical document classification in order to automatically
classify research papers in different sub-fields of CE and CS. While previous research papers
have explored document classification, they did not use hierarchical document classification to



classify research publications to support research topics in CE and CS. In [3], [5], the authors
proposed a hierarchical method for the classification of income tax and management-related
documents. However, their datasets were manually labeled by domain experts. In [16], the authors
proposed a document classification framework for the field of CS, using an unsupervised learning
approach by applying clustering methods to unlabeled documents. Another research on scholarly
paper classification only developed a flat model for classification with low F1 scores caused by
data imbalance problem [22]. Furthermore, a promising document classification approach was
proposed by [1] where the dataset was manually labeled by domain experts. However, human-
induced tags can introduce noise and affect the performance of the model. Being inspired by all
these previous research works, we propose a context-aware document classification framework
based on the hierarchical structure of topics related to our dataset to achieve high classification
performance using three granularity levels, from the coarsest to the finest level,i.e., domains,
categories, and raw tags. The proposed framework supports the research fields of CE and CS. Our
tri-level classifier obtained F1 scores ranging from 0.80 to 0.96. Moreover, this paper introduces
an automatic labeling approach based on a self-supervised learning model along with an ontology
to organize labels, and agglomerative clustering to verify label assignments. This novel approach
in hierarchical document classification in the field of CS and CE is extremely valuable to
researchers and would be a boon to the field. Compared to [16] which apply unsupervised
learning methods to classify research papers, our proposed method provides more specialized
and context-aware document labels to facilitate meaningful search and information retrieval. The
outline of our proposed methodology for classifying scientific research documents into trending
technological fields is illustrated in figure. 1.

The input dataset contains documents with titles, abstracts, published year, and conference
names from 50K publication records collected from Google Scholar and dblp database [4]
[15]. The metadata enrichment task used the papers’ conference name and published year
information to scrape each conferences’ Call-For-Papers page to further obtain three-level of
metadata corresponding to the topics of papers including domains (e.g. Machine Learning),
categories (e.g. Applications), and raw tags (e.g. Crowdsourcing, Healthcare). Such contextual
multi-level information was used in addition to the information mined from the title and abstract
of paper publications to enrich the set of labels and to classify scientific papers. In order to
create a standard, hierarchical and context-aware vocabulary for labeling documents in multiple
granularity levels, we constructed an ontology to determine the labels. The metadata enrichment
and ontology construction tasks were mainly conducted to use standardized and context-aware
vocabulary rather than using unstructured, ad-hoc labels due to the noise associated with them.
The standardized vocabulary was used in this work for the training of our text classifiers.

As part of feature extraction, we extracted n-grams and performed word embedding to generate
the input for dataset labeling. Next, to avoid manual annotation which requires significant time
and human effort, we leveraged self-supervised learning to annotate the unlabeled dataset [12].
Using self-supervised learning as Zero-shot learning (ZSL) in conjunction with the standard
vocabulary obtained through data collection and metadata enrichment; the assignment of labels
was automated to a massive collection of papers according to relevant scientific topics with a
reasonable degree of confidence.

To ensure the accuracy of the assigned labels, labeling verification was performed. This
verification task ensured that the document classifiers would not be trained on erroneous labels. In
order to validate the labels, it is important to understand the content of the documents. This task is
necessary to check if the counts of different assigned labels correspond to the distributions of the



Figure 1. A Tri-Layer Document Classification Framework.

unlabeled documents categorized by their contents. To this end, we applied unsupervised learning
as agglomerative clustering on word embedding. Motivated by the imbalanced data labeling
results from the ZSL label assignment and the imbalances document clusters by agglomerative
clustering, we resampled the dataset to have balanced label counts in order to achieve a higher
classification performance.

We then used grid search to obtain the best performing combination of hyper-parameters
for each classifier at each granularity level. Furthermore, we performed a comparative study of
various word embedding techniques including BOW, Word2vec, and GloVe [9] embedding in
conjunction with several text classifiers to report the winning classifier that yielded the highest
F1 score at each topic-granularity level.

This paper proposes a tri-layer text classification framework (see figure. 1) which used struc-
tured metadata as a standard vocabulary to classify scientific published papers. The contribution
of this paper is twofold:

• Performing a robust, ontology-based, automated labeling using a combination of ZSL and
clustering which enabled us to achieve a 76% confidence score at the domain-level, 80
% confidence score at the category-level, and 70% confidence score at the raw-tags-level
along with the proof of labels’ relatedness to its corresponding document content through
ward-linkage hierarchical clustering.



• Performing a comparative study that led to developing a robust classifier using Recurrent
Neural Net (RNN) algorithm and GloVe embedding technique. Our comparative study
showed that RNN with GloVe embedding outperformed other models studied in this work
(including logistic regression, support vector machines, and gradient boosting with bag of
words or word2vec) with 0.95 F1 scores after resampling at the domain level, while SVM
with BOW embedding outperformed other models with 0.90 F1 scores at the category-level
and 0.95 F1 scores at the raw-tags-level.

The structure of this paper is organized as follows: In section 2 a body of related work is
studied. Section 3 presents methods in our multi-stage proposed architecture. In Section 4, we
discussed experimental results and model comparative studies such as ZSL labeling assignments
and hierarchical text classification. Finally, section 5 concludes the paper.

II. RELATED WORKS

A. Self-Supervised Learning
Unlike supervised and semi-supervised learning methods that require labeled documents, zero-

shot learning is a form of self-supervised learning that can generalize a model trained on a labeled
set for a specific task to a different task without requiring further training on any of the new
labels. This is based on the transfer of knowledge from seen classes to unseen classes based on
semantic attributes, descriptions of all classes, correlations among classes [17]. BART is known
for fine-tuning for topic labeling tasks for multi-genre datasets. It matches the performance of
RoBERTa with comparable training resources on GLUE and SQuAD, achieves new state-of-
the-art results on a range of topic labels generation, abstract dialogue, question answering, and
summarization tasks, with gains of up to 6 ROUGE [24]. BART’s flexibility and performance
on a variety of tasks allow researchers to bypass the need of having a large amount of properly
annotated training data.

B. Hierarchically Classifying Documents Using Very Limited Information
Instead of building a single huge classifier for the entire task, the structure of topics can help

to break down the classification problem into a manageable sizes. Using one classifier in the
coarse level labels, and another classifier in the finer levels of labels so that classifiers are facing
much simpler sub-tasks. Experiments show that the performance of Naive Bayes appears to yield
the same performance in both flat classification and hierarchical classification, but more complex
models such as KDB1 provide an 80 percent reduction in error with significance P < 0.01 in
hierarchical classification [1].

Instead of approaching this task with a single large classifier, they used two separate classifiers
to form a hierarchical classification structure. They leverage the structure of the ontology in order
to reduce the classifier’s scope. the first classier used the coarse-level labels while the second
classifier is for the finer-level of labels. Previous experiments showed that the performance of
Naive Bayes yielded the same performance in both flat classification and hierarchical classifi-
cation use cases, but more complex models such as KDB1 provided an 80 percent reduction in
error with significance P < 0.01 in hierarchical classification [1].

III. PROPOSED METHODOLOGY

In this section, we present our problem statement and an overview of our methodology.

Context plays a key role in text classification using a standard vocabulary. For instance,
a categorical label such as ”Healthcare Application” provides enriched semantics when it is



modeled within a context such as ”Machine Learning”. The goal of this work is to classify
scientific documents with context-aware standard vocabulary.

Given a dataset D = {di}, such that 1 ≤ i ≤ n, di indicates a text document represented
with a feature vector in form of n-grams, extracted from the title and abstract of a document,
and n represents the number of documents. For instance, we want to classify scientific literature
with extracted tri-grams such as “exploits machine learning”, “link browser fingerprints”, bi-
grams such as “tracking users”, “long duration”, “browser fingerprinting” and uni-gram such as
“fingerprints”, we would know the scientific literature belonged to either the domain “Machine
learning”, with the category “Machine learning applications”, or the domain “Privacy and Secu-
rity”, with the raw tag “Machine learning and AI security”. It’s extremely difficult to classify the
scientific literature into an accurate domain, category, or raw tag without extracting meaningful
phrases or collecting context-aware labels.

In order to collect context-aware labels, given all the scientific literature as vocabulary context,
we collected labels Lh = li such that li =< li, ...dm > where li was each label at different
granularity level (eg. domain as Machine learning, category as deep learning, raw tag as deep
reinforcement learning) and m represented the number of labels. We used an ontology to organize
Lh in hierarchical structure.

Next, we generated numerical vectors as readable input for text classifiers, given J = f1(D)
where f1 is the word embedding applied to n-grams, we got numerical vectors J that closely
represented document contents.

To assign all labels Lh to the dataset D. With Zh1 = f2(D, J, Lh) where f2 was the
development of Zero-shot Learning (ZSL) model to automatically label documents at different
granularity levels, and Zh1 was the labeled dataset. Zh1 was chosen either from f2(D,Lh) or
f2(J, Lh) based on whichever method yielded a more accurate labelled dataset.

To verify the automatic label assignment Zh1 matches how manual labeling of documents was
done, f3 was applied to Zh1 so that we get Zh2 = f3(J, Zh1) where Zh2 represents the finalized
accurate labelled training data at each granularity level. Finally, after the split of training and
testing the labelled data Zh2, given Rh = f4(Zh2) where Rh = ri s.t. ri =< r1, ...rn > and ri was
each classified document at the finest granularity level (eg. raw tags), f4 was the development
of several text classifiers at different hierarchical levels (eg. domains, categories, raw tags), and
n represented the number of documents.

Overall, to generate the classified scientific literature Rh, we summarized the solutions to our
problem statement as the mathematical formula below:

Rh = f4(f3(J, f2(f1(D), f1(D), Lh))) (1)

The following subsections will elaborate details about methodologies including metadata
enrichment and Ontology, feature extraction, dataset labeling, and labeling verification, and the
comparative study on the tri-level document classification.

A. Meta Data Enrichment and Ontology Construction
What motivated us to enrich our labels was the low text classification performance by a flat

model on only 30 labels collected from trending technological terms based on Gartner Hype
Cycle [18]. The best model had only a 0.50 F1 score in classifying thousands of documents in
these 30 labels. Besides, 30 labels were too general to classify a document into a fine granularity
level.

In order to come up with a number that best describes how many topics these documents can
be classified, we tried a Self Organizing Map (SOM) on BOW embedding based on extracted



Figure 2. The SOM shows the fuzzy clustering on BOW embedding based on extracted n-grams from documents. This clustering
is done on 5% of random sampling data for visualization purposes.

n-grams to study document distributions. SOM showed fuzzy clustering presented in figure. 2.
This made it hard to know the actual number of clusters. The fuzzy clustering indicated that the
document might contain overlapping content, and they could be better classified with hierarchical
granularities, from the coarse level labels to the finer level labels. This motivated us to collect
more labels, and to organize them in hierarchical structures. To enrich our standard vocabularies
to label Google Scholar and dblp [4] [15] scientific literature with high degrees of confidence
related to thousands of different domains, we scraped the Call-For-Papers section in conference
web pages to obtain domains, categories, and raw tags based on conference names and years
from our dataset.

Due to the hierarchical nature of the collected domains, categories, and raw tags, we manually
created an ontology using Protege software [10] to organize all these labels from coarse to fine
levels of information. figure. 3 contains the ontology that presents an example of the organization
of hierarchical labels. In this Ontology, the domain superclass represented the highest level of
topics across conferences. Since subclasses represented concepts that were more specific than
the domain superclass, we set categories as subclasses. Raw tags were the finest level, so we
set raw tags as instances of the subclass categories to constitute a knowledge base for research
topics [2]. The ontology can be reused so that future topics can be directly added at a certain
hierarchical level [6], [8], [23]. The ontology helped to determine the labels for text classification
at each granularity level. We first performed text classification at the domains level (such as
Machine Learning, Field programming devices, Manufacturing, design, and EDA, etc.). Next,
we collected all the documents classified to the specific domain such as Machine Learning,
and we used categories under the domain Machine Learning as labels (e.g., Machine Learning
Applications, Deep Learning, Learning Theory, etc.), and performed text classification again. For
documents classified to Machine Learning Applications, they were assigned with labels at the
raw tags level under Machine Learning Applications (e.g., Crowdsourcing, Healthcare, Social
Good, etc.) and the final text classification would classify documents into the raw tags level.



Figure 3. The ontology shows the hierarchical structure for labels for hierarchical classification in the Machine Learning domain.
This ontology only showed the branch of the Machine Learning domain from coarse to fine levels. The details of other domains,
categories, and raw tags were omitted.

B. Feature Extraction
After organizing the labels hierarchically, we collected the title and abstract for each document

as a single input to the text classification pipeline. We extracted features from each input in the
form of n-grams by stop words removal, tokenization, and additional splitting and filtering to
obtain n-grams in the format of uni-grams, bi-grams, and tri-grams. Since all the text classifiers
require the input to be represented as numerical vectors, word embedding is essential to transform
human understanding of text into machine-readable vectors. We applied word embedding on n-
grams so that titles and abstracts were presented as n-dimensional vector space. We studied the
performance of word embedding techniques including Bag of Words (BOW), Word2vec, and
GloVe [9], in conjunction with several text classifiers before and after re-sampling the result
of word embedding. The outcome of these experiments is discussed in Experimental Results
section.

To extract meaningful n-grams, the document titles and abstracts had special characters filtered
out and then tokenized. With stop words acting as boundary words, the words between two
boundary words were considered candidate words to join a phrase. All the candidate words
were joined together in the form of uni-grams, bi-grams, and tri-grams. For long phrases with
more than 3 words, we split each long phrase into two bi-grams, or a combination of bi-gram and
tri-gram, or a combination of uni-gram and tri-gram. So we ensured the phrases were short and
meaningful. As for word embedding, we applied Word2vec, Bag of Words (BOW), and GloVe
embedding on n-grams extracted from titles and abstracts. We studied different combinations of



word embedding and classifiers to get the word embedding that yield the highest F1 score.
1) Word2Vec: Word2Vec is a feed-forward neural network-based model that predicts all of

the neighboring words for every occurrence of every word in an entire corpus. Word2vec is good
at capturing the local statistics of a corpus. It assigns similar numerical values to similar phrases
because those are the values that minimize the loss function. The loss function for Word2Vec is
the difference between the weights assigned to the word vectors. We used Word2Vec because we
wanted to capture the phrase context within documents. The algorithm we used for Word2vec
was Skip-gram (SG) because we wanted to guess the context words for each word, and SG
is known for good performance for rare words or phrases which we wanted to capture in rare
documents [21].

2) BOW: BOW counts how many times a word appears in a document. Each document
was represented as a bag of word vectors. Each phrase in the document was regarded as a
feature, and the occurrence of each feature was recorded in the numerical vector that represented
each document. We used BOW because different documents shared the same phrases. BOW
embedding gave similar vectors to documents with similar occurrences of the same phrases.

3) GloVe: Compared to Word2vec, GloVe can capture both global and local statistics of a
corpus. GloVe embedding is based on matrix factorization techniques on the word-context matrix
with co-occurrence information. GloVe allows us to take a text corpus and transform each word
into a position in a high dimensional space so that similar words are placed together [9]. Below
is the cost function about how Glove creates the word vectors:

J =
V∑

i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (2)

V is the size of the vocabulary, and X is the co-occurrence matrix,Xij is occurrences of ith
word in jth word context, for example, the ith word is “high-performance computing”, and the jth
word is “high-performance memory”. Xij is the occurrence of “high-performance computing”
with “high-performance memory”. f is a weighting function to reduce the effect of long-tail, wi

is word vector for ith word, and wj is context word vector for jth word, and bi and bj are bias
values for i and j. Glove intended to minimize this cost function, so it assigned similar numerical
vectors to documents with similar phrase pairs [9]. In this example, those documents with co-
occurring phrases such as “high-performance computing” and “high-performance memory” were
assigned with similar numerical vectors by Glove.

C. Dataset Labeling and Labeling Verification
Labeling Verification visualized the resulting clusters, the count of documents in each cluster,

and the frequent n-grams per cluster to verify the labeled assignments. With all n-grams and all
hierarchical labels, we performed label assignments percolating down from coarse level i.e.,
domains to finer levels as categories and raw tags. We used the BART method for Zero-
Shot Learning (ZSL) at each granularity level. Next, for labeling verification, ward-linkage
agglomerative clustering was applied on the BOW embedding based on n-grams extracted from
titles and abstracts. The most frequent n-grams in each cluster were manually checked to ensure
that their content was compatible with the ZSL assigned labels.

1) Dataset Labeling with ZSL: As for ZSL, the transformer we used was Facebook’s BART-
large (BART), a large pre-trained model with 12 encoder and decoder layers and 400M param-
eters [19]. The model we used was one that has been pre-trained on the MNLI (Multi-genre
Natural Language Inference) dataset [11]. BART is an effective model for sequence or text



classification as it includes encoders and decoders that are connected by cross-attention. BART
is trained by corrupting documents and then optimizing a reconstruction loss, which is the cross-
entropy between the decoder’s output and the original document. Inputs to the encoder do not
need to be aligned with decoder outputs, allowing random noise transformations. The input is
a corrupted document (left), and it’s encoded with a bidirectional model. The likelihood of the
original document (right) is calculated with an autoregressive decoder [19]. The details of the
schematic of BART are illustrated in figure 4.

Figure 4. The left block shows that the corrupted document is input into the bidirectional encoder. The right block represents
the decoder where the autoregressive decoder calculates the likelihood of the original document.

Each decoder layer performs attention over the final hidden state of the encoder output [19].
This design allowed BART to assign labels that were closely related to the original input as
extracted n-grams from titles and abstracts. We used the BART-large transformer to label the
dataset at each granularity level. We also studied the performance of ZSL with BART on our
extracted n-grams and word embeddings (Glove, Word2vec, BOW) corpus. The text corpus
contained all the extracted n-grams and the labels with all the technical phrases from the domains
level. We only chose the domains level to study ZSL because the domains level contained the
most diverse topics. If ZSL performs well at the domains level, we assume that it also performs
well at the categories and raw tags level, because the label assignments range in the finer
granularity levels (categories, raw tags) are narrowed down to each domain with less noise from
other topics. For example, considering assigning categories labels such as “General Machine
Learning”, “Deep Learning” and “Optimization”, the label assignment was performed on the
text corpus that was labeled with the domain “Machine Learning”. Topics became narrower in
the finer levels, so the noises from other domains at the finer levels (categories, raw tags) were
reduced. The experimental results about the kernel density of confidence scores are displayed in
8. Details about ZSL confidence scores on the text corpus and word embeddings are discussed
in Experimental Results section. BART with the highest confidence score trained at domains
level was developed to label documents at categories and raw tags level.

2) Labeling Verification with Ward-linkage Agglomerative Clustering: In order to get the
most frequent n-grams from each distinct cluster based on document content, we chose the ward
linkage for agglomerative clustering to categorize documents, because ward linkage can merge
the pair of clusters that minimize the variance of the clusters being merged. This helped categorize
documents into pure and unique clusters. We chose the metric euclidean to compute the linkage
of agglomerative clustering because the linkage ward only accepts euclidean metrics. The ward-
linkage agglomerative clustering applied on BOW embedding of documents’ abstracts and titles



showed around 9 clusters at the threshold level of 10000 documents. As a result, cluster sizes
were imbalanced, corresponding to the label distributions based on the ZSL label assignments
at all granularity levels. Our manual verification started from the most general clusters and per
located down to their subclusters. According to the cluster size and the frequency of the assigned
labels, we visualized the most frequent n-grams within hierarchical clusters and manually verified
that the content of n-grams matched the ZSL assigned labels. figure. 5 shows the cut threshold
and a number of estimated clusters by ward-linkage agglomerative clustering.

Figure 5. The dendrogram shows the hierarchical clusters by ward-linkage hierarchical clustering. We selected the threshold as
1000 documents, and the threshold seperated documents into approximately 9 clusters.

In order to verify the matching between clusters’ content and labels, we gathered the top 6 most
frequent phrases in unigrams, bigrams, trigrams and visualized them in the form of pie charts.
Most unigrams contained common phrases such as “behavior”, “framework” and ”process”. Most
bigrams provided useful information that distinguished topics across clusters. For example, while
doing the manual label verification at the domains level, the largest cluster contained bigrams
such as “power dissipation”, “energy efficiency”, “embedding system” and “case study”. So we
got an intuition that most documents were related to the functionality of computers. As for
the smallest cluster, the most frequent bigrams contained “virtual machine”, “high sensitivity”,
“performance degradation” etc. We expected that documents related to performance and testing
took up the smallest percentage across the entire corpus.

With this base knowledge, at the domains level, we manually checked the most popular label
assigned by ZSL related to the functionality of computers, and the least popular label assigned by
ZSL related to performance and testing. In order to verify label assignment at the next granularity
level, we directly accessed the subclusters and visualized the frequent n-grams within clusters.
Based on the frequency of ZSL assigned labels, the size of each cluster and the most frequent
n-grams in clusters, we conducted manual checking for the rest of the ZSL assigned labels at
each granularity level.

figure. 6 shows the pie charts with the n-gram frequencies in the largest cluster based on
ward-linkage agglomerative clustering. The top 6 phrases with frequency larger than one from
each type of n-gram were selected to represent the cluster content. The actual content of the
phrases was manually analyzed to ensure the most frequent label at the domains level correlated
with the selected phrases.



Figure 6. The pie charts show the n-gram frequencies in the largest cluster based on ward-linkage agglomerative clustering.

figure. 7 shows the pie charts with the n-gram frequencies in the smallest cluster based on
ward-linkage agglomerative clustering. The top 6 phrases with frequency larger than one from
each type of n-gram were selected to represent the cluster content. The actual content of the
phrases was manually analyzed to ensure the most frequent label at the domains level correlated
with the selected phrases.

Figure 7. The pie charts show the n-gram frequencies in the smallest cluster based on ward-linkage agglomerative clustering.



D. Resampling
Due to the uneven label distributions from the ZSL label assignment results presented in

figure. 10 and the uneven cluster size by the ward-linkage agglomerative clustering, we com-
pared the performance of word embedding methods combined with classifiers before and after
resampling. As for resampling methods, we tried Synthetic Minority Over-Sampling Technique
(SMOTE), Random Oversampling, Random Undersampling, and the hybrid resampling method
with Random Oversampling and Random Undersampling. Since the hybrid resampling method
yielded the most balanced word embedding with all labels obtaining a similar amount of em-
bedding vectors, we selected the hybrid resampling method to resample word embedding. All
classifiers’ performances were evaluated with an F1 score before and after resampling.

E. Comparative Study on the Tri-level Document Classification
First, the labeled abstracts were split into the proportion as 80/20 ratio for training and testing.

Next, we studied several machine learning algorithms and reported the classifier with the highest
F1 score. We chose the F1 score because the data was distributed unevenly based on label
assignment results. Our analysis compared Logistic Regression (LR), Support Vector Machine
(SVM), Gradient Boosting (GB), Recurrent Neural Network (RNN), and Feed Forward Neural
Network with BOW embedding (BOW Model) based on F1 score metric to select the best
combination of word embedding and a classifier at each granularity level.

1) LR: We used LR as a baseline model to compare the model performances with more
complex models. Even Though Naive Bayes was famous for its effectiveness in text classification,
Naive Bayes was not chosen as the baseline model because the word embedding Word2Vec
generated negative values which were incompatible with Naive Bayes. LR was chosen because
of its fast classification of unknown values, and it adjusted well to linear text distribution. Logistic
regression was trained on both BOW and Word2vec embedding at each granularity level.

2) SVM: We chose SVM because it was effective in high-dimensional space, which was
suitable for the high-dimensional word vectors created by BOW embeddings and Word2vec
embeddings. With the assumption of Gaussian distributed data, the Support vector machine aims
to find a hyperplane or a set of hyperplanes in an n-dimensional space that distinctly classifies
the data points. The objective of the SVM was to find a hyperplane in n-dimensional space such
that the margin is maximized. SVM was trained on both BOW and Word2vec embedding at
each granularity level.

3) GB: We choose GB because of its good adjustment to imbalanced data distribution as
we observed from the result of zero-shot learning (ZSL) label assignment, and GB provides
parallelization in tree building. GB is an iterative functional gradient algorithm. It minimizes a
loss function by iteratively choosing a function that points towards the negative gradient [7]. GB
was trained on both BOW and Word2vec embedding at each granularity level.

4) RNN: In our model comparison study, we only trained RNN with Glove embedding,
because we wanted to study classification performance with the order of phrase pairs preserved
in each document. We used Glove embedding to create word representations that capture co-
occurrence phrases and using RNN to capture the order of the n-grams in each document. Other
models with the combination of either BOW or Word2vec embedding didn’t achieve this. RNN
makes use of sequential data when the current step has some kind of relationship with the
previous steps. RNN is good at classification in a long-range semantic dependency [13]. Even
though RNN is famous for time component application, our dataset might have word pairs that



often appear to be together in a document, which satisfied the sequential data requirement for
RNN. Below is a formula about how RNN classifies documents:

a<t> = g1(Waaa
<t−1> +Waxx

<t> + ba) (3)

y<t> = g2(Wyaa
<t> + by) (4)

For each document, at each time step t (word phrase), each word phrase in the document goes
through activation a<t>, and generates the output y<t>. Waxx, Waa, Wya, ba, by are coefficients
that were shared temporarily and g1, g2 are activation functions. As for the architecture of RNN,
we used the embedding vector length with a maximum number of words fewer than 200, sigmoid
activation function, binary cross-entropy loss function, 32 batch size, and 20 epochs.

5) BOW Model: BOW Model is a simple feedforward neural network model with the input as
BOW embedding. We used the BOW Model to compare the simple neural network performance
with the complex neural network models such as Gradient Boosting with BOW embedding before
and after resampling the dataset.

IV. EXPERIMENT RESULTS AND DISCUSSIONS

A. ZSL Confidence Scores

Figure 8. All ZSL models were trained with BART with all the domains level labels. The kernel density estimate plots showed
ZSL trained on extracted n-grams from text corpus, Glove embeddings, Word2vec embeddings and BOW embeddings.

figure. 8 displays the kernel density estimate plot of confidence scores for BART trained on
text corpus (extracted n-grams) and word embeddings (Glove, Word2vec, BOW) with all domains
labels. The peaks of the kernel density plot told us the concentrated values of the confidence
scores. ZSL trained with Corpus yielded the highest concentrated confidence score 0.85. The
next highest was ZSL trained with Glove embedding with a concentrated confidence score of
0.80. Based on the high performance of ZSL with BART on text corpus (extracted n-grams), we
decided to label documents with BART based on the corpus (extracted n-grams) for the domains,



Figure 9. Bar plots show the min, mean, and max confidence scores for the ZSL label assignment results at domains, categories
and raw tags levels.

Figure 10. Pie charts show the distributions of labels at coarse level Domains to finer levels as categories and raw tags.

categories, and raw tags levels. figure. 9 contains the bar plots with the min, mean and max
confidence score based on ZSL. Categories had the highest mean confidence score 0.88. Even
though raw tags obtained a relatively lower confidence score of 0.80, we have manually checked



the labeling results and ensured most documents at raw tags levels were reasonable.
Based on figure. 10, the label distributions were not balanced at each granularity level. For the

presented pie chart, the displayed categories were under the domain “Machine Learning”, and the
displayed raw tags were under the category “Machine Learning Applications”.The major label
at the domains level was “Computer Architecture” with 26.80% of all domains labels. At the
categories level under the domain “Machine Learning”, the major category label was “Machine
Learning Applications” with 43.90% of all categories labels. At the raw tags level, the major
label was “Social good” under the category “Machine Learning Applications” with 70.30% of
all raw tags labels. These imbalanced label distributions motivated the use of the F1 score as
the evaluation metric and the resampling for further text classification.

B. Comparative Study of Word Embedding and Text Classifiers
figure. 11 shows the F1 score at each classification level before and after resampling for BOW

embedding. figure. 11-A shows the results of text classifiers before resampling, and figure. 11-B.
shows the results of text classifiers after resampling. Text classification F1 scores increased at
finer granularity levels before and after resampling.

figure. 12 shows the F1 score at each classification level before and after resampling for
Word2vec embedding. figure. 12-A shows the results of text classifiers before resampling, and
figure. 12-B. shows the results of text classifiers after resampling. Text classification F1 scores
increased at finer granularity levels before and after resampling.

According to figure. 11 and figure. 12, models yielded better performances in classifying
documents at finer granularity levels. Most classifiers had improved F1 scores at finer granularity
levels since the documents covered much narrower topics at categories and raw tags levels with
less noise from other topics. For example, classified documents that belonged to the domain
”Machine Learning” required further classification at the categories level, but the categories
under other domains such as ”Security and Privacy” were no longer considered as labels for
these documents. We can take the performances of Gradient Boosting (GB) as proof, before
resampling, as it is shown in the figure. 11-A, GB with BOW embedding had improved 17%
F1 score from domains to categories and improved 47% F1 score from categories to raw tags
level. Meanwhile, as it is shown in the figure. 12-A, before resampling, GB with Word2vec
embedding had improved 29% F1 score from domains to categories level and improved 36% F1
score from categories to raw tags level. Based on figure. 11-A and figure. 12-A, even though
LR, SVM with both BOW and Word2vec embedding obtained high F1 scores above 0.80 before
resampling at raw tags level, they performed badly at domains and categories levels. The low
F1 scores were caused by the imbalanced data problem. This motivated us to resample data to
achieve consistent performance at all granularity levels.

1) Model Performances after resampling: Resampling helped simple models such as LR,
SVM with both BOW and Word2vec embedding to improve performances at all granularity
levels, but most models with BOW embedding outperformed models with Word2vec embedding
after resampling. Before resampling, for example, according to figure. 11-A, LR with BOW
embedding reached 0.15 F1 score at domains level, 0.30 F1 score at categories level, and 0.82 F1
scores at raw tags level. According to figure. 12-A, LR with Word2vec embedding reached 0.20
F1 score at domains level, 0.36 F1 score at categories level, and 0.85 F1 scores at raw tags level.
In contrast, after resampling, according to the figure. 11-B, most models with BOW embedding
such as LR and SVM improved F1 scores above 0.80 at all granularity levels. According to
figure. 12-B, LR, and SVM with Word2vec embedding obtained relatively lower F1 scores
below 0.80 at domains and categories levels. Besides, taking GB to compare the performances



Figure 11. At each classification level, BOW Embedding was applied for LR, SVM, GB, and BOW Model. Glove embedding
was applied for RNN.

on BOW and Word2vec embedding after resampling, based on the figure. 11-B, GB with BOW
embedding reached F1 score 0.61 at domains level, F1 score 0.88 at categories level, and F1



Figure 12. At each classification level, Word2vec Embedding was applied for LR, SVM, and GB. Glove embedding was applied
for RNN, and BOW embedding was applied for BOW Model.

score 0.95 at raw tags level. In comparison, based on the figure. 12-B, GB with Word2vec
embedding reached F1 score 0.62 at domains level, but obtained a lower F1 score of 0.45 at



categories level, and lower F1 score of 0.73 at raw tags level.
2) Discussions about Text Classifiers with High Performance: There was one model that

remained consistent with high performances before and after resampling at all granularity levels.
According to figure. 11 and figure. 12, RNN with Glove embedding reached high F1 scores no
lower than 0.78 before resampling at all levels. After resampling, it also reached the highest F1
score 0.95 at the domains level, the highest F1 score 0.96 at the categories level. However, after
resampling at raw tags level, BOW Model with 0.95 F1 score beat RNN with Glove embedding,
regardless of the high F1 score 0.88 from RNN with Glove embedding at raw tags level. The
high performances of RNN with Glove embedding at domains, categories, and raw tags levels
might be because that co-occurrences of phrases and sequential information were more valuable
in distinguishing documents across more diverse topics. RNN’s ability in capturing ordered
pairs of phrases to compare documents was similar to how we manually compared documents
across a large number of topics by comparing documents’ abstracts based on similar sentences.
The BOW Model obtained the highest performance at raw tags level after resampling might be
because that word representations of rare phrases were duplicated after resampling, and models
required more word representations of rare phrases to classify documents in more uncommon
topics. Besides BOW Model, other simple models such as LR and SVM with BOW embedding
both reached high F1 scores above 0.90 after resampling at categories and raw tags levels. To
conclude, simple models were able to perform well at raw tags level with smaller amounts of
features before resampling and might be better at classifying rare documents after resampling,
but a larger and more complex model such as RNN with Glove embedding performed well at
coarser levels with larger amounts of features and more noises.

V. CONCLUSION

In this paper, we propose a novel multi-stage machine learning pipeline that utilizes self-
supervised learning, Ontology, ward-linkage agglomerative clustering, and hierarchical docu-
ment classification to classify research papers into specific trending fields. The construction of
the ontology decomposed labels in 3 granularity levels, and the application of agglomerative
clustering verified that the hierarchy of documents was consistent with the hierarchy of labels.
This hierarchical decomposition on both labels and documents’ content has simplified the large-
scale automatic labeling and multi-class classification, which allowed even simple models to
perform well at the finer granularity levels and more robustness to model performances across
all granularity levels. Our pipeline classified unlabelled published papers in the field of CS and
CE with high F1 scores across all granularity levels. For example, RNN with Glove Embedding
yielded the highest F1 scores no less than 0.95 in the domain and category levels, and BOW
Model yielded the highest F1 score of 0.95 in the raw tag level. Our proposed multi-layer
classification framework automates the process of document labeling, while yielding a high F1
score (no less than 0.95) in all granularity levels after resampling. By modeling our multi-layer
vocabulary (i.e., domain, category, and raw tag level) our context-aware classification framework
showed to be way more effective that other works such as [22] which applied a deep attentive
neural network trained with a manually labeled dataset. Our proposed approach is also capable
of classifying continuous stream of raw text related to documents over time. Our novel context-
aware hierarchical documents classification technique can be applied to any research domain
with different technical backgrounds. The Initial results showed that our approach could yield
an effective tool for researchers of all levels and fields.
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