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Abstract

Heart disease is the leading cause of death worldwide.
Amongst patients with cardiovascular diseases, myocardial
infarction is the main cause of death. Thus, detection of
myocardial infarction in a timely manner is a serious chal-
lenge with a significant potential for impact. Here, we study
the impact of multiple channels of observation to correctly
classify heart conditions, finding that lead I and lead II
are critical to obtain correct classifications using data from
the Physikalisch-Technische Bundesanstalt (PTB) database.
Based on these findings, we develop a convolutional neu-
ral network to detect myocardial infarction using lead I and
lead II electrocardiogram (ECG) signals. Our approach dif-
fers from others in the community in that it does not require
any kind of manual feature extraction or pre-processing of
any kind. Rather, the raw ECG signal is fed into the neural
network. When evaluated, the model achieves a 99.15% ac-
curacy, reaching cardiologist-level performance level for my-
ocardial infarction detection. Preliminary experiments indi-
cate that coupling this neural network model with a denoising
deep learning model increases classification accuracy even
further.

In recent years, deep learning has brought forth a paradigm
shift in many industries, with healthcare being one of the
most significantly impacted domains. Advancements in sta-
tistical learning techniques that are able to recognize pat-
terns in large datasets in conjunction with the presence of a
vast amount of medical data presents an opportunity to re-
visit automated medical diagnosis efforts.

The Physikalisch-Technische Bundesanstalt (PTB)
database consists of 549 ECG records from 290 unique
patients, with a mean length of over 100 seconds for each
record (Goldberger et al. 2000). The dataset provides data
from the 12 conventional ECG leads, along with 3 Frank
leads, all sampled at 1000 Hz. This dataset was used for
both training and testing the model. No pre-processing was
done to these raw ECG signals before they were fed into the
neural network.

In this study, we developed an eight-layer convolutional
neural network to detect myocardial infarction given a
10-second long ECG signal. Recently, Perol et al. developed
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ConvNetQuake, a convolutional neural network capable of
extracting meaningful patterns from seismic records (Perol,
Gharbi, and Denolle 2018). Inspired by the model’s success,
our model is based on ConvNetQuake with modifications
made to better suit our domain and dataset. The ReLU
activation function is used immediately after each convolu-
tional layer, and this output is then passed through a batch
normalization layer.
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Figure 1: Model architecture

While other works in this domain have employed simply
one or two of the 15 leads that the PTB database provides for
each record, strong justification for their choice of lead(s)
hasn’t been provided. Here, we trained our model on each of
the 15 leads—first individually, and then in pairs—to see which
lead contained the most meaningful information for the de-
tection of myocardial infarction. The table below shows our
results:



Lead 1 11 11l avl avr

Accuracy (%) | 91.81 | 92.73 | 82.67 | 73.52 | 88.35

Table 1: Quantification of accuracies for
single channels [i - avr]

Lead avf vl v2 v3 v4

Accuracy (%) | 82.85 | 73.87 | 85.39 | 87.45 | 80.49

Table 2: As Table 1, for channels [avf - v4]

Lead v5 vb VX vy vz
Accuracy (%) | 92.8 | 95.52 | 84.2 | 71.23 | 66.01

Table 3: As Table 1, for channels [v5 - vz]

Based on these results, we selected the top five best per-
forming leads and paired them up to see which pair would
perform the best. Our results are presented below:

Leads 1, il i, avr | 1, V5 1, v6 | 1i, avr

Accuracy (%) | 99.15 | 95.55 | 95.83 | 93.29 | 97.35

Table 4: Quantification of accuracies for
pairs of channels

Leads i, vS | i, v6 | avr, v5 | avr, v6 | v5, vb

Accuracy (%) | 79.47 | 97.63 | 8693 | 98.96 | 90.03

Table 5: As Table 4, continued

The above table indicates that when lead I and lead II are
paired and fed into the neural network as a 2-channel input,
the model is most successful at the task at hand.

A number of specific techniques were employed to im-
prove the performance of the model. One such technique
was label smoothing; label smoothing refers to the act of
relaxing our confidence on the labels and is known to help
discourage the model from making over-confident predic-
tions. We also decayed the learning rate during training. Our
experiments showed that both of these techniques helped in-
crease the accuracy of our models.

The WaveNet architecture (Oord et al. 2016) has been
shown to be a robust model for denoising. Inspired by the
results that Wei et al. (Wei and Huerta 2019) obtained in
denoising gravitational waves, we modified the WaveNet
architecture in a similar fashion to de-noise ECG signals.
That is, we removed the causal structure of the network,
dilated the convolutional layers for a increase in the size
of the receptive field, and decreased the depth of the ar-
chitecture. ECGSYN (Goldberger et al. 2003), a realistic
ECG waveform generator was used to train our de-noising
model. Models have previously been developed specifically
for the purpose of ECG denoising, and our model was able to
achieve an order of magnitude decrease in the mean-squared
error relative to work by Antczak et al. (Antczak 2019)

Preliminary experiments indicate that feeding the raw
ECG signals through our WaveNet-based denoising model

may help increase the accuracy of our classification model.
The figure below shows the validation set accuracy of our
classification model during training with and without de-
noising:
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Figure 2: Raw signal vs denoising before classification

Our current and future work includes experimenting
with multiple instance learning, inspired by the success of
the work of Shanmugam et al. on applying this to ECG
data (Shanmugam, Blalock, and Guttag 2003). We are also
in the search for a larger dataset — if we are able to further
increase the accuracy of our model with the help of a larger
dataset, the model could potentially be deployed to aid car-
diologists in their work.
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