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MINIMALLY MANY-VALUED MAXIMALLY PARACONSISTENT
MINIMAL UNARY SUBCLASSICAL EXPANSIONS OF LP

ALEXEJ P. PYNKO

Abstract. Here, for any n > 2, we propose a minimally n-valued (i.e., m-valued,

for no 0 < m < n) maximally paraconsistent (i.e., having no proper paraconsistent

extension) subclassical (i.e., having a classical extension) expansion Cn of the logic

of paradox LP by solely unary connectives, elimination any of which gives rise to

loosing either minimal n-valuedness or (even, axiomatic) maximal paraconsistency,

C3 being exactly LP . And what is more, we prove that, in case n = [>]4, like

for LP [resp., HZ/LA], there are just two proper consistent extensions of Cn —

the classical one, defined by the two-valued submatrix An:2 of the n-valued matrix

An defining Cn and relatively axiomatized by the Resolution/“Modus Ponens” rule

/“for material implication” [or ({un}like HZ/LA {resp., LP}) by a single axiom],

and its proper sublogic, defined by the direct product of An and An:2 (in which case

having the same theorems as Cn has, and so not being an axiomatic extension of

Cn) and relatively axiomatized by the Ex Contradictione Quodlibet rule. Finally,

we find both a sequent axiomatization of Cn with Cut Elimination Property that is

algebraizable iff n 6= 4, Cn as such being algebraizable iff n > 4, in which case it is

equivalent to its sequent axiomatization, and a finite Hilbert-style one as well as, in

case n > 4, finite equational axiomatizations of the discriminator variety equivalent

to both Cn and its sequent axiomatization.

Key words: logic; matrix; extension; sequent; calculus; discriminator.
MSC 2020 : 03B20, 03B22, 03B50, 03B53, 03G10, 03F03, 08A40, 08B05,
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§1. Introduction. Appearance of any logic/calculus satisfying a prop-
erty P inevitably raises the question whether it can not be enhanced (by
extending with new — viz., non-derivable — rules [without premises]) but
with retaining the property P, in which case it is said to be [axiomatically]
maximally P.

Within the framework of Paraconsistent Logic, P is paraconsistency
— viz., refuting the Ex Contradictione Quodlibet rule. Then, maximal
paraconsistency (versus it axiomatic version first observed in [24] for P 1)
was first discovered in [12] for the logic of paradox LP [10] and then
also proved in [16] for HZ [4] and for arbitrary expansions of the logic
of antinomies LA [1] in [19]. And what is more, it has been proved
for arbitrary conjunctive paraconsistent subclassical three-valued logics
(including all the particular logics mentioned above, and so providing a
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first proof of the maximal paraconsistency of P 1; cf. the reference [Pyn95
b] of [12]).

On the other hand, according to [20], there are minimally four-valued
maximally paraconsistent (even subclassical) logics. This, first, has defi-
nitely shown that the maximal paraconsistency is not at all a prerogative
of three-valued logics, and, second, has inevitably raised the question
whether there is any limit n > 0 such that any minimally m-valued
paraconsistent logic is maximally paraconsistent, for no m > n. The
stipulation “minimally” is essential here, simply because any n-valued
matrix has an m-valued strict surjective homomorphic counter-image, for
any m > n, in which case any n-valued logic is equally m-valued, and
so the above three-valued maximally paraconsistent instances would im-
mediately yield the negative answer to the question under consideration
but without the stipulation involved. The primary purpose of this paper
is to give a (negative) answer with taking the mentioned stipulation into
account, the secondary one being to find the lattices of extensions, both
sequent and finite Hilbert-style axiomatizations as well as finite equational
axiomatizations of equivalent varieties (if any) of proposed instances, for
these, being closely related to LP , have appeared quite interesting.

The rest of the paper is as follows. The exposition of the material is
perfectly self-contained (of course, modulo very basic issues of Set and
Lattice Theories, Universal Algebra and Mathematical Logic to be con-
sulted in standard mathematical handbooks like [2, 6, 7] or fundamental
papers like [5]). We entirely follow the standard conventions (most of
which have become a part of logical and algebraic folklore constituting
foundations of General Logic) adopted in [20], to Sections 2 and 3 of
which the reader is referred just in case it is necessary. Section 2 is then
to provide certain key issues proving beyond the scopes of the mentioned
study, those appearing therein being still briefly recalled for the sake of
self-containity. Finally, Section 3 is devoted to the main results of the
paper.

§2. Preliminaries. As usual (cf., e.g., [7]), natural numbers (includ-
ing 0) are treated as ordinals (viz., sets of lesser natural numbers), the
set of all them being denoted by ω, while functions are viewed as binary
relations with the left/right components of their elements as their argu-
ments/values, respectively, but with standard (viz., left-|right-hand) writ-
ing functions|arguments, respectively, in which case though (f ◦ g)(a) =
g(f(a)), where f and g are functions with (img f) ⊆ (dom g) and a ∈
(dom f) = dom(f ◦ g), whereas singletons are identified with their unique
elements, unless any confusion is possible. Likewise, given any set S (and
any equivalence relation θ on it), let ℘[α](S) [where α ⊆ ω] be the set of all
subsets of S [of cardinality in α] (as well as both νθ , {〈s, θ[{s}]〉 | s ∈ S}
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and (T/θ) , νθ[T ], where T ⊆ S). Then, given any f : S → S, set
f1 , f and f0 , ∆S , {〈s, s〉 | s ∈ S}, binary relations of the latter
kind being referred to as diagonal. Next, any S-tuple (viz., a function
with domain S) is normally written in the sequence form t̄, its s-th com-
ponent (viz., the value on argument s ∈ S) being written as ts. Further,
set S+ ,

⋃
i∈(ω\1) S

i, elements of S∗ , (S0 ∪ S+) being identified with
ordinary finite tuples/”comma separated sequences”. Then, any binary
operation � on S determines the equally-denoted mapping � : S+ → S as
follows: by induction on the length (viz., domain) l of any ā ∈ S+, put:

(�ā) ,

{
a0 if l = 1,
(�(ā�(l − 1))) � al−1 otherwise.

Finally, an enumeration of S is any bijection from its cardinality |S| onto
S.

In general, to unify algebraic notations, unless otherwise specified, al-
gebra[ic system]s [cf. [6]; (including logical matrices; cf. [5])] are denoted
by capital Fraktur [resp. Calligraphic] letters, their underlying sets (viz.,
carriers) [resp., underlying algebras (viz., algebra reducts)] being denoted
by corresponding capital Italic [resp., Fraktur] letters.

Let Σ be a (propositional/sentential) language|signature constituted
by (propositional/sentential) connectives to be viewed as function sym-
bols. Then, the absolutely-free Σ-algebra, freely generated by the set
Vω , {xi | i ∈ ω} of (propositional/sentential) variables, is denoted
by FmΣ, the standard algebra superscript being normally omitted in
writing its operations, elements of its carrier FmΣ being called (proposi-
tional/sentential) Σ-formulas to be viewed as Σ-terms. As usual, any cou-
ple 〈φ, ψ〉 of Σ-formulas is viewed as a Σ-equation/-identity to be written
in the standard equational form φ ≈ ψ. Likewise, a (two-side) Σ-sequent
is any couple 〈φ̄, ψ̄〉 of finite tuples of Σ-formulas normally written in the
standard sequential form φ̄ ` ψ̄.

Recall that a (ternary) discriminator for a Σ-algebra1 A is any Σ-
formula δ with at most three variables x0, x1 and x2 such that

δA[xi/ai]i∈3 =

{
a2 if a0 = a1,

a0 otherwise,

for all ā ∈ A3, in which case, for any θ ∈ (Con(A) \ {∆A}), any 〈a, b〉 ∈
(θ \ ∆A) and any c ∈ A, we have c = δA(a, b, c) θ δA(a, a, c) = a, and
so we get θ = A2 (in particular, A has no non-diagonal congruence other
than A2).

1Algebras with discriminator are also referred to as quasi-primal (cf., e.g., [9]).
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As usual, [bounded] distributive lattices (cf., e.g., [2]) are supposed to
be of the signature Σ+[01] , ({∧,∨}[∪{⊥,>}]) with binary ∧ (conjunc-
tion/meet) and ∨ (disjunction/join) [as well as nullary ⊥ (falsehood/zero)
and > (truth/unit)]. Given any n > 0, by Dn[01] we denote the [bounded]
distributive lattice given by the chain poset 〈n,6〉. In general, given any
signature Σ ⊇ Σ+ and any φ, ψ ∈ FmΣ, either φ / ψ or ψ ' φ stands
for the Σ-equation (φ ∧ ψ) ≈ φ. Likewise, given any Σ-algebra A such
that A�Σ+ is a lattice, “the partial ordering”/“[prime] ideals|filters” of
the latter “is denoted by 6A”/“are called those of A”, respectively. Let
Σ∼[01] , (Σ+[01] ∪ {∼}) be the signature with unary ∼ (negation). Then,
a [bounded] Kleene lattice is any Σ∼[01]-algebra A, the Σ+[01]-reduct of
which is a [bounded] distributive lattice and which satisfies the identi-
ties:

∼∼x0 ≈ x0,(2.1)
∼(x0 ∨ x1)≈∼x0 ∧ ∼x1,(2.2)
∼(x0 ∧ x1)≈∼x0 ∨ ∼x1,(2.3)
(x0 ∧ ∼x0) / (x1 ∨ ∼x1)(2.4)

[in which case it satisfies the identities:

∼⊥≈>,(2.5)
∼>≈⊥,(2.6)

and also called a Kleene/Boolean algebra (following a traditional termi-
nology; cf., e.g., [2]) /“whenever each element of it is Boolean”, any a ∈ A
being referred to as Boolean, whenever (a∧A∼Aa) = ⊥A, that is (in view
of (2.1), (2.2), (2.3), (2.5) and (2.6)), (a ∨A ∼Aa) = >A, the set [A of
all Boolean elements of A forming a Boolean subalgebra of it]. Given
any n > 0, by Kn[01] we denote the [bounded] Kleene lattice such that
(Kn[01]�Σ+[01]) , Dn[01] and, for all i ∈ n, ∼Kn[01]i , (n− 1− i).

Next, elements/subsets of ℘[1](FmΣ) × FmΣ are called {Hilbert-style}
(propositional |sentential) [axiomatic] Σ-rules/-calculi, respectively, any
[axiomatic] Σ-rule 〈Γ, ϕ〉 being normally written in the standard inline
Γ → ϕ or displayed Γ

ϕ forms and semantically viewed as the infinitary ba-
sic Horn formula (

∧
Γ) → ϕ of the first-order signature Σ∪{D} with single

unary truth predicate D — under the identification of any Σ-formula ψ
with the atomic first-order formula D(ψ) — [as well as being referred to
as a (propositional |sentential) Σ-axiom and identified with ϕ]. Then, set
(Γ
ϕ l) , ({Γ

ϕ} ∪ {
ϕ
ψ
| ψ ∈ Γ}). Likewise, as usual, any Σ-sequent φ̄ ` ψ̄ is

semantically treated as the first-order disjunct
∨

(¬[D[img φ̄]∪D[img ψ̄])
of the first-order signature involved.
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Unless otherwise specified, throughout the paper, o/� is supposed to be
a (possibly, secondary) unary/binary connective of Σ (i.e., a Σ-formula
with at most one/two variable/s x0/“ and x1”).

Now, recall that a (propositional/sentential) Σ-logic (cf., e.g., [5]) is
any closure operator C over FmΣ that is structural in the sense that
σ[C(X)] ⊆ C(σ[X]), for all X ⊆ FmΣ and all σ ∈ hom(FmΣ,FmΣ).
Then, a Σ-rule Γ → ϕ is said to be satisfied in C, provided ϕ ∈ C(Γ),
Σ-axioms satisfied in C being called its theorems. Next, a Σ-logic C ′ is
said to be a [proper] extension of C (C ⊆ [(]C ′, in symbols), provided
[C ′ 6= C and] C(X) ⊆ C ′(X), for all X ⊆ FmΣ, in which case C is referred
to as a [proper] sublogic of C ′. Then, C ′ is said to be axiomatized by a[n
axiomatic] Σ-calculus C (relatively to C), provided C ′ is the least {under
the extension partial ordering ⊆} Σ-logic (being an extension of C and)
satisfying every Σ-rule in C [(in which case C ′ is called an axiomatic
extension of C)]. Further, C is said to be �-conjunctive|-disjunctive,
provided C(X ∪ {φ � ψ}) = C(C(X ∪ {φ})(∪|∩)C(X ∪ {ψ})), for all
X ⊆ FmΣ and all φ, ψ ∈ FmΣ. Likewise, C is said to be weakly �-
implicative, provided it satisfies the Modus Ponens rule:

{x0, x0 � x1} → x1(2.7)

and has Deduction (viz,. Herbrand ; cf. [7]) theorem (DT/HT) with respect
to � in the sense that, for all φ ∈ X ⊆ FmΣ and all ψ ∈ C(X), it holds
that (φ � ψ) ∈ C(X \ {φ}), in which case the following axioms:

(x0 � x0),(2.8)

(x0 � (x1 � x0),(2.9)

(x0 � x1) � ((x1 � x2) � (x0 � x2))(2.10)

are satisfied in C. Then, C is said to be (strongly) �-implicative, whenever
it is weakly so and satisfies the Peirce Law axiom (cf. [8]):

(((x0 A x1) A x0) A x0).(2.11)

Furthermore, C is said to be {axiomatically} (maximally) [ o-para]consis-
tent, provided x1 6∈ C(∅[∪{x0, ox0}]) (and C has no proper [o-para]con-
sistent {axiomatic} extension). Finally, given any Σ′ ⊆ Σ, we have the
Σ′-logic C ′, given by C ′(X) , (C(X) ∩ FmΣ′), for all X ⊆ FmΣ′ , called
the Σ′-fragment of C, in which case C is referred to as a (Σ-)expansion
of C ′.

As usual, any (logical) Σ-matrix A = 〈A, DA〉 with its underlying Σ-
algebra A and its truth predicate (viz., the set of its distinguished values)
DA ⊆ A (cf., e.g., [5], to which the reader is referred for the conception of
the logic CnA of/“defined by”A) is treated as a first-order model structure
(viz, an algebraic system; cf. [6], to which the reader is referred for
notions of [sub]direct product|power, subsystem, etc.) of the first-order
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signature Σ ∪ {D}, in which case any Σ-rule is true (viz., satisfied) in A
iff it is satisfied in CnA. Then, A is said to be �-conjunctive/-disjunctive,
provided, for all a, b ∈ A, (a �A b) ∈ DA iff both/either a ∈ DA and/or
b ∈ DA, “that is,”/“in which case” its logic is so, respectively. Likewise,
A is said to be �-implicative, provided, for all a, b ∈ A, (a �A b) ∈ DA

iff either a 6∈ DA or b ∈ DA, in which case it is ∨�-disjunctive, where
(x0 ∨� x1) , ((x0 � x1) � x1), and so its logic is strongly �-implicative, for
(2.11) = ((x0�x1)∨�x0). Next, A is said to be [ o-para]consistent, provided
A 6= DA [and {a, oAa} ⊆ DA, for some a ∈ A], that is, the logic of it is so.
Likewise, A is said to be o-negative, provided (a ∈ DA) ⇔ (oAa 6∈ DA),
for all a ∈ A. Further, according to [17], an equality determinant for A
is any set = of Σ-formulas with at most one variable x0 such that any
a, b ∈ A are equal, whenever, for every ι ∈ =, it holds that (ιA(a) ∈
DA) ⇔ (ιA(b) ∈ DA). In that case, given any a ∈ A, set =A,a,+/− ,
{ι ∈ = | ιA(a) ∈ / 6∈ DAn}, respectively. Furthermore, according to
[15], a set ε of Σ-equations with at most one variable x0 is said to define
(equationally) truth [predicate] of/in A, provided, for all a ∈ A, a ∈ DA

iff A |= (
∧
ε)[x0/a]. Likewise, according to Appendix A of [19], a set ε of

Σ-equations with at most two variable x0 and x1 is called an equational
implication for A, provided, for all a, b ∈ A, (a ∈ DA) ⇒ (b ∈ DA)
iff A |= (

∧
ε)[x0/a, x1/b]. Next, a congruence of A is any θ ∈ Con(A)

such that θ[DA] ⊆ DA (in which case we have the quotient Σ-matrix
(A/θ) , 〈A/θ,DA/θ〉), the set of all them being denoted by Con(A), A
being said to be simple, whenever Con(A) = {∆A}. Then, the transitive
closure a(A) of

⋃
Con(A) is the greatest congruence of A. Further, A

is said to be a model of a Σ-logic C, provided its logic is an extension
of C, the class of all them being denoted by Mod(C). Furthermore, A
is said to be finite[ly-generated]/“generated by B ⊆ A”|n-valued, where
n > 0, whenever A is so|n-element, respectively, the logics of n-valued
Σ-matrices being well-known to be finitary (cf. [5]) and referred to as
[minimally] (uniform) n-valued [unless they are m-valued, for any 0 <
m < n]. Then, both two-valued and o-negative Σ-matrices are said to be
o-classical, [sublogics of] their logics being referred to as o-[sub]classical. In
addition, A is said to be false-singular, provided A\DA has no more than
one element. Finally, given any Σ′ ⊆ Σ, A is said to be a (Σ-)expansion
of (A�Σ′) , 〈A�Σ′, DA〉, then defining the Σ′-fragment of the logic of A.

Given Σ-matrices A and B such that the set hom[S]
(S)(A,B) , {h ∈

hom(A,B) | [h[A] = B, ]DA ⊆ h−1[DB](⊇ DA)} of all (strict) [surjective]
homomorphisms from A [on]to B is not empty (in which case A is �-
conjunctive|-disjunctive|-implicative if[f] B is so, while the logic of A is a
[non-proper] extension of the one of B; cf. (2.2) of [20], whereas (kerh) ∈
Con(A), and so h is injective, whenever A is simple; cf. Remark 2.2 and
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Corollary 2.3 of [20]), injective/bijective strict homomorphisms from A to
B being called embeddings/isomorphisms of/from A into/onto B, B|A is
referred to as a (strict) [surjective] homomorphic image|counter-image of
A|B, respectively. Then, the class of all “(consistent) submatrices”/“strict
surjective homomorphic [counter-]images” of members of any class M of
Σ-matrices is denoted by (S(∗)/H[−1])(M), respectively.

2.1. False-singular matrices.
2.1.1. Conjunctive matrices.

Lemma 2.1. Let A be a false-singular �-conjunctive Σ-matrix, f ∈ (A\
DA), I a finite set, B an I-tuple constituted by consistent submatrices of
A and D a subdirect product of it. Then, (I × {f}) ∈ D.

Proof. By induction on the cardinality of any J ⊆ I, let us prove that
there is some a ∈ D including (J × {f}). First, when J = ∅, take any
a ∈ D 6= ∅, in which case (J ×{f}) = ∅ ⊆ a. Now, assume J 6= ∅. Take
any j ∈ J ⊆ I, in which case K , (J \ {j}) ⊆ I, while |K| < |J |, and
so, as Bj is a consistent submatrix of the false-singular Σ-matrix A, we
have f ∈ Bj = πj [D]. Hence, there is some b ∈ D such that πj(b) = f ,
while, by induction hypothesis, there is some a ∈ D including (K ×{f}).
Therefore, since J = (K ∪ {j}), while A is both �-conjunctive and false-
singular, we have D 3 c , (a �D b) ⊇ (J × {f}). Thus, when J = I, we
eventually get D 3 (I × {f}), as required. a

2.1.2. Implicative matrices.

Lemma 2.2. Let A be a false-singular Σ-matrix and C the logic of it.
Then, the following are equivalent:

(i) C is stronly �-implicative;
(ii) C is weakly �-implicative;
(iii) C (viz., A) satisfies (2.8), (2.9) and (2.7);
(iv) A is �-implicative.

Proof. First, (iv/ii)⇒(i/iii) are immediate. Next, (ii) is a particular
case of (i). Finally, assume (iii) holds. Consider any a, b ∈ A. Then, by
(2.7) and (2.9), (a �A b) ∈ / 6∈ DA, whenever b ∈ / 6∈ DA/ 3 a. Now,
assume a 6∈ DA 63 b, in which case a = b, and so, by (2.8), DA 3 (a�Aa) =
(a �A b). Thus, (iv) holds. a

§3. Main results. Fix any n > 2.
Let Nn[−] , {i ∈ ((n−1)\1) | (2 · i) < (n[−1])}, Σn , (Σ∼[01]∪{∂i | i ∈

Nn−} ∪ {∇j | n > 4, j ∈ Nn}) [whenever n > 3] the signature with unary
connectives in Σn \ Σ∼[01], An the Σn-matrix with (An�Σ∼[01]) , Kn[01],
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DAn , (n \ 1) and, for all k ∈ n:

∂An
i k ,

{
n− 1 if i < k,

0 otherwise,
(3.1)

for all i ∈ Nn−, as well as, in case n > 4:

∇An
j k ,

{
j if k ∈ ((n− 1) \ 1),
k otherwise,

for all j ∈ Nn, and Cn the logic of An. Then, An is false-singular (as
well as both ∧-conjunctive, ∨-disjunctive and ∼-paraconsistent, and so
is Cn). Moreover, C3 is the logic of paradox LP [10] (cf. [12]). And
what is more, {0, n − 1} forms a subalgera of An, in which case An:2 ,
(An�{0, n− 1}) is a ∼-classical model of Cn, and so this is ∼-subclassical
(more precisely, it is a sublogic of the ∼-classical logic CPC

n of An:2), while
hn:2 , (((n \ 1) × {n − 1}) ∪ {〈0, 0〉}) ∈ homS

S(An�Σ+,An:2�Σ+), so the
Σ+-fragment of Cn is equal to that of CPC

n , whereas hn:3 , ((((n−1)\1)×
{1})∪ {〈0, 0〉, 〈n− 1, 2〉}) ∈ homS

S(An�Σ∼,A3), in which case LP = C3 is
the Σ∼-fragment of Cn, and so, being then defined by An�Σ∼, is n-valued.

Lemma 3.1. =n , ({x0,∼x0} ∪ {∂i∼jx0 | i ∈ Nn−, j ∈ 2}) is an equal-
ity determinant for An.

Proof. Consider any k, l ∈ n such that k < l and the following com-
plementary cases:
• 0 ∈ {k, l},

in which case k = 0 6= l, and so k 6∈ DAn 3 l.
• 0 6∈ {k, l}.

Consider the following complementary subcases:
– (n− 1) ∈ {k, l},

in which case (n − 1 − k) 6= 0 = (n − 1 − l), and so ∼Ank =
(n− 1− k) ∈ DAn 63 (n− 1− l) = ∼An l.

– (n− 1) 6∈ {k, l}.
Consider the following complementary subsubcases:
∗ l ∈ Nn,

in which case l > k ∈ Nn−, and so ∂An
k k = 0 6∈ DAn 3

(n− 1) = ∂An
k l.

∗ l 6∈ Nn,
in which case (n − 1 − k) > (n − 1 − l) ∈ Nn−, and so
∂An

n−1−l∼
Ank = ∂An

n−1−l(n − 1 − k) = (n − 1) ∈ DAn 63 0 =
∂An

n−1−l(n− 1− l) = ∂An
n−1−l∼

An l. a

To unify further notations, set C−PC
n , Cn and An−:2 , An.
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Now, we are in a position to prove the following key lemma “killing two
birds — the minimal n-valuedness and maximal ∼-paraconsistency of Cn

— with one stone”:

Lemma 3.2 (Key Lemma). Let B be a [∼-para]consistent model of Cn.
Then, An[−]:2 is a strict surjective homomorphic image of a submatrix of
B.

Proof. Then, there is [resp., are some a ∈ DB and] some b ∈ (B \DB)
[such that ∼Ba ∈ DB], in which case the submatrix D of B generated
by {[a, ]b} is a finitely-generated [∼-para]consistent model of Cn, and so,
by Lemma 2.7 of [20], there are some finite set I, some E ∈ S∗(An)I ,
some subdirect product F of it, some Σn-matrix G and some (g|h) ∈
homS

S(D|F ,G). In that case, F is [∼-para]consistent, and so I 6= ∅. Then,
by Lemma 2.1, e , (I×{0}) ∈ F , in which case F 3 ∼Fe = (I×{n−1}).
[Moreover, there is some c ∈ DF such that ∼Fc ∈ DF , in which case
c ∈ ((n− 1) \ 1)I , and so d , (c∧F c) ∈ N I

n. Consider any i ∈ Nn and the
following complementary cases:
• n 6 4,

in which case Nn = {1}, and so i = 1. Then, F 3 d = (I × {i}).
• n > 4,

in which case ∇i ∈ Σn, and so F 3 ∇F
i d = (I × {i}).

Thus, in any case, F 3 (I × {i}). On the other hand, for every j ∈
(((n− 1) \ 1) \Nn), (n− 1− j) ∈ Nn, in which case F 3 (I ×{n− 1− j}),
and so F 3 ∼F(I × {n − 1 − j}) = (I × {j}).] In this way, {I × {k} |
k ∈ An[−]:2} ⊆ F . Hence, as I 6= ∅, f , {〈k, I × {k}〉 | k ∈ An[−]:2} is an
embedding of An[−]:2 into F , in which case, by Lemmas 3.2, 3.3 of [20]
and 3.1, f ◦ h is that into G, and so img(f ◦ h) forms a subalgebra of G.
Then, H , g−1[img(f ◦ h)] forms a subalgebra of D, while H , (D�H) is
a submatrix of B, whereas ((g�H) ◦ (h ◦ f)−1) ∈ homS

S(H,An[−]:2). a

Theorem 3.3 (cf. Theorem 2.1 of [12] for n = 3). C [−]PC
n is maximal-

ly [∼-para]consistent.

Proof. Let C be a [∼-para]consistent extension of C [−]PC
n , in which

case x1 6∈ T , C(∅[∪{x0,∼x0}]), and so, by the structurality of C,
B , 〈FmΣ, T 〉 is a [∼-para]consistent model of C (in particular, of Cn).
Hence, by Lemma 3.2, An[−]:2 ∈ Mod(C), in which case C

[−]PC
n is an

extension of C, and so C = C
[−]PC
n , as required. a

Theorem 3.4. Cn is minimally n-valued.

Proof. Let B be a Σn-matrix defining Cn, in which case, as Cn is ∼-
paraconsistent, B ∈ Mod(Cn) is ∼-paraconsistent, and so, by Lemma 3.2,
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there are some submatrix D of B, being a strict surjective homomorphic
counter-image of An. In this way, n = |An| 6 |D| 6 |B|, as required. a

Further, we argue that each of the supplementary unary operators in
Σn \ Σ∼ is necessary for both Theorems 3.3 and 3.4 to hold.

Proposition 3.5. Let i ∈ Nn−, Σ′ ⊆ (Σn \ {∂i}), A′
n , (An�Σ′) and

C ′
n the logic of A′

n. Then, C ′
n is non-minimally n-valued.

Proof. Then, (i+1) < (n−1), for, otherwise, we would have (i+1) >
(n−1) > (2 ·i), in which case we would get i < 1, and so would eventually
get i = 0 6∈ Nn−. Thus, D , {i, i+1, n−1− i, n−2− i} ⊆ ((n−1)\1) ⊆
DAn . In particular, in case n > 4, ∇An

j d = j, for all d ∈ D and all j ∈ Nn.
Let ϑ , (∆n ∪ {〈i, i+ 1〉, 〈n− 1− i, n− 2− i〉}). Consider any 〈a, b〉 ∈
(ϑ \∆n), in which case min(a, b) = (max(a, b)− 1), and so, for all c ∈ n,
we have (a(∧|∨)Anc) = (b(∧|∨)Anc) = (c(∧|∨)Ana) = (c(∧|∨)Anb) = c, if
c 6 | > (min |max)(a, b), and both (a(∧|∨)Anc) = a = (c(∧|∨)Ana) and
(b(∧|∨)Anc) = b = (c(∧|∨)Anb), otherwise. Then, in case n > 4, for all
j ∈ Nn, 〈∇An

j a,∇An
j b〉 ∈ ∆n ⊆ ϑ. Now, consider any k ∈ (Nn− \ {i}).

Let us prove, by contradiction, that k 6= (n − 2 − i). For suppose k =
(n− 2− i), in which case, as k ∈ Nn−, we have (2 · (n− 2− i)) 6 (n− 2),
and so we get (n − 2) 6 (2 · i). Conversely, as i ∈ Nn−, we also have
(2 · i) 6 (n − 2), in which case we get (n − 2) = (2 · i), and so we
eventually get k = (n− 2− i) = ((2 · i)− i) = i. This contradiction shows
that k 6= (n − 2 − i). Thus, we have k 6= min(a, b). Therefore, ∂An

k a =
1 = ∂An

k b, if k 6 min(a, b), and ∂An
k a = 0 = ∂An

k b, otherwise. Hence,
〈∂An

k a, ∂An
k b〉 ∈ ∆n ⊆ ϑ. Finally, we clearly have 〈∼Ana,∼Anb〉 ∈ ϑ. In

this way, ϑ ⊇ ∆n is closed under unary algebraic operations of A′
n. Then,

the transitive closure θ of ϑ∪ ϑ−1 is a non-diagonal congruence of A′
n, in

which case C ′
n is defined by B , (A′

n/θ), for νθ ∈ homS
S(A′

n,B), and so is
not minimally n-valued, for |B| < |A′

n| = n, as required. a
In general, when Nn|(n−) 6= ∅ (i.e., 1 ∈ Nn|(n−), that is, n > (2|3)),

let (l|m)n , max(Nn|(n−)) ∈ Nn|(n−), in which case Nn|(n−) = (((l|m)n +
1) \ 1), and so ((l|m)n + 1) = (Nn|(n−) ∪ 1), respectively. Moreover, when
2 ∈ Nn (i.e., n > 4 > 3, that is, ∇2 ∈ Σn 3 ∂1), we have the secondary
unary connective ∂0x0 , ∂1∇2x0 such that

∂An
0 a ,

{
0 if a = 0,
n− 1 otherwise,

(3.2)

for all a ∈ n, in which case (3.1) holds, for all i ∈ (mn + 1), and so

(img ∂An
i ) ⊆ An:2.(3.3)

Let (x0 ⊃ x1) , (∼∂0x0 ∨ ∂0x1). Then, by (3.2), An is ⊃-implicative (in
particular, Cn is so), for An:2 is both ∼-negative and ∨-disjunctive.
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Proposition 3.6. Suppose n > 4. Let i ∈ Nn, (Σ∼∪{∂j | j ∈ Nn−}) ⊆
Σ′′ ⊆ (Σn \ {∇i}), A′′

n , (An�Σ′′) and C ′′
n the logic of A′′

n. Then, C ′′
n is

(axiomatically) non-maximally ∼-paraconsistent.

Proof. In that case, B , (An \ {i, n− 1− i}) 3 0 forms a subalgebra
of A′′

n, for (n − 1 − i) ∈ (((n − 1) \ 1) \ Nn), unless (n − 1 − i) = i,
because i ∈ Nn, and, as n > 4, is not disjoint with (n − 1) \ 1, in which
case B , (A′′

n�B) is a ∼-paraconsistent submatrix of A′′
n, and so defines

a ∼-paraconsistent extension C ′ of C ′′
n. To prove that this is a proper

axiomatic extension, consider any submatrix D of A′′
n with i ∈ D (in

particular, D = A′′
n), in which case (i − 1) ∈ (mn + 1), while, for every

k ∈ n, (i − 1) < k 6 i iff k = i, and so the Σ′′-axiom ∂i−1x0 ⊃ ∂ix0 is
true in B but is not true in D under [x0/i], in view of the ⊃-implicativity
of A′′

n and (3.1). In this way, Corollary 2.9 of [20], due to which C ′ is the
(proper) axiomatic extension of C ′′

n relatively axiomatized by the axiom
involved, completes the argument. a

Finally, the following immediate observation discloses more connections
between Cn and LP , unless n = 3:

Proposition 3.7. Suppose n > 3. Let Σ∼ ⊆ Σ′′′ ⊆ (Σn \ {∂i | i ∈
Nn−}), A′′′

n , (An�Σ′′′), C ′′′
n the logic of A′′′

n and A′′′
3 the Σ′′′-expansion

of A3 by diagonal operations. Then, hn:3 ∈ homS
S(A′′′

n ,A′′′
3 ). In partic-

ular, C ′′′
n is defined by A′′′

3 , in which case it is an n-valued term-wise
definitionally equivalent expansion of LP .

3.1. Extensions. In case n = 3, the lattice of extensions of Cn = LP
has been due to [15]. Here, we mainly explore the opposite case, when
n > 3, and so 1 ∈ Nn− (in particular, ∂1 ∈ Σn). On the other hand,
its complementary subcases n = 4 and n > 4 are essentially different
(especially, methodologically), so these are discussed separately but the
following points, being common for all n > 2.

First, by CNP
n we denote the least non-∼-paraconsistent extension of

Cn, that is, the proper extension of Cn relatively axiomatized by the Ex
Contradictione Quodlibet rule:

{x0,∼x0} → x1.(3.4)

Likewise, by CMP
n we denote the extension of Cn relatively axiomatized

by the Modus Ponens rule for material implication:

{x0,∼x0 ∨ x1} → x1.(3.5)

Then, by the ∨-disjunctivity of Cn, CMP
n is an extension of CNP

n . Fur-
thermore, (3.5), being true in An:2, is not true in An × An:2 under
[x0/〈1, n− 1〉, x1/〈0, n− 1〉], in which (3.4) is though true, and so, since
(π0�(n× {0, n− 1})) ∈ homS(An ×An:2,An), by (2.3) of [20], we have:
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Proposition 3.8. CNP
n (∅) = Cn(∅). In particular, CNP

n is not an
axiomatic extension of Cn.

Next, by CR
n we denote the extension of Cn relatively axiomatized by

the Resolution rule (cf. [23] for roots of such terminology):

{x0 ∨ x1,∼x0 ∨ x1} → x1.(3.6)

Then, since (∼(x0 ∨ x1) ∨ x1) ∈ Cn({x0 ∨ x1,∼x0 ∨ x1}), by the ∨-
disjunctivity of Cn, we have:

CR
n = CMP

n .(3.7)

Finally, remark that, unless n = 3, An:2 is the only proper subalgebra
of An, because, for any k ∈ ((n − 1) \ 1), providing n = [6=]4, it holds
that ((n − 1) \ 1) = {(∼An)j [∇An

i ](k ∧An ∼Ank) | j ∈ 2[, i ∈ Nn]}, while
(0(+(n−1))) = ∂An

1 (1(+1)) whereas (0{+(n−1)}) = ∼An((n−1){−(n−
1)}). Otherwise, A3:2 is though the only proper consistent submatrix of
A3. And what is more, providing Cn is �-implicative (viz., An is so; cf.
Lemma 2.2), the Ex Contradictione Quodlibet axiom:

x0 � (∼x0 � x1),(3.8)

being true in An:2, for this is both ∼-negative and �-implicative, is not
true in An under [x0/1, x1/0]. In particular, by Corollary 2.9 of [20], we
have:

Proposition 3.9. Cn has a proper consistent axiomatic extension iff
CPC

n is an axiomatic extension of Cn, in which case CPC
n is a unique

proper consistent axiomatic extension of Cn, and so CPC
n (∅) 6= Cn(∅).

In particular, providing Cn is �-implicative (viz., An is so; cf. Lemma
2.2), CPC

n is a unique proper consistent axiomatic extension of Cn and is
relatively axiomatized by (3.8), in which case CPC

n (∅) 6= Cn(∅).

3.1.1. The four-valued case.

Lemma 3.10. Let I be a finite set, B ∈ S∗(A4)I and D a consistent
non-∼-paraconsistent subdirect product of it. Then, hom(D,A4:2) 6= ∅.

Proof. Let us prove, by contradiction, that there is some i ∈ I such
that πi[D] ⊆ A4:2. For suppose πi[D] ⊆ A4:2, for no i ∈ I. By induction on
the cardinality of any J ⊆ I, we prove that there is some a ∈ (D∩{0, 1}I)
including J × {1}. The case, when J = ∅, is by Lemma 2.1. Otherwise,
take any j ∈ J ⊆ I, in which case K , (J \ {j}) ⊆ I, while |K| < |J |,
and so, by induction hypothesis, there is some b ∈ (D∩{0, 1})I including
K × {1}. Moreover, as 4 ⊇ πj [D] * A4:2, there is some c ∈ D such that
πj(c) ∈ (4\A4:2) = {1, 2}. Then, d , (c∧D∼Dc) ∈ D, in which case, for all
i ∈ I, πi(d) = 1, if πi(c) ∈ {1, 2} (in particular, πj(d) = 1), and πi(d) = 0,
otherwise (in particular, d ∈ {0, 1}I), and so a , (b ∨D d) ∈ D, while,
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for all i ∈ I, πi(a) = 1, if 1 ∈ {πi(b), πi(d)}, and πi(d) = 0, otherwise (in
particular, a ∈ {0, 1}I includes J × {1}, for J = (K ∪ {j})). Thus, when
J = I, there is some a ∈ D ⊆ 4I including (and so equal to) (I × {1}), in
which case D 3 ∼Da = (I ×{2} ∈ DD 3 a, and so D, being consistent, is
∼-paraconsistent. This contradiction shows that there is some i ∈ I such
that Bi = πi[D] ⊆ A4:2 6= 4, in which case Bi forms a proper subalgebra
of A4, and so Bi = A4:2, while (πi�D) ∈ hom(D,Bi), as required. a

Theorem 3.11. CNP
4 is defined by A4 ×A4:2.

Proof. Consider any Σ4-rule R = (Γ → ϕ), where Γ is finite, not
satisfied in CNP

4 , in which case ϕ 6∈ T , CNP
4 (Γ), and so, by the struc-

turality of CNP
4 , B , 〈FmΣ4 , T 〉 ∈ Mod(CNP

4 ). Let V be the finite set of
all variables actually occurring in R. Then, the submatrix D of B gen-
erated by V is a finitely-generated model of CNP

4 (in particular, of C4),
in which R is not true under [v/v]v∈V . Therefore, by Lemma 2.7 of [20],
there are some finite set I, some E ∈ S∗(A4)I , some subdirect product
F ∈ H−1(H(B)) of it, in which case R is not true in F ∈ Mod(CNP

4 ),
and so F is consistent but not ∼-paraconsistent. Hence, by Lemma 3.10,
there is some e ∈ hom(F ,A4:2) 6= ∅. Consider any a ∈ (F \DF ), in which
case there is some i ∈ I such that Ei 3 πi(a) 6∈ DEi = (Ei ∩DAn), and so
f : F → (4 × A4:2), b 7→ 〈πi(b), e(b)〉 belongs to J , hom(F ,A4 × A4:2),
while f(a) 6∈ DA4×A4:2 . In this way, g : F → (n × A4:2)J , b 7→ 〈h(b)〉h∈J

is a strict homomorphism from F to (A4 × A4:2)J , in which case R is
not true in A4 × A4:2, and so the finiteness of the latter completes the
argument. a

Note that

∂A4
1 ∈ homS

S(〈A4, {2, 3}〉,A4:2),(3.9)

in which case CPC
4 is equally defined by 〈A4, {2, 3}〉, and so, taking Propo-

sition 3.9 and Theorem 3.11 into account, since {2, 3} ⊆ {1, 2, 3}, we have
the following four-valued analogue of Lemma 4.14 of [15] for the three-
valued case:

Lemma 3.12. CPC
4 (∅) = CMP

4 (∅) = CNP
4 (∅) = C4(∅). In particular,

C
NP/PC
4 is not an axiomatic extension of C/[NP]

4 /“, in which case C4 has
no proper consistent axiomatic extension, and so is not implicative (viz.,
A4 is not so; cf. Lemma 2.2)”.

Corollary 3.13. CMP
4 = CPC

4 .

Proof. By induction on the cardinality of any X ∈ ℘ω(FmΣ4), we
prove that CPC

4 (X) ⊆ CMP
4 (X). The case, when X = ∅, is by Lemma

3.12. Otherwise, take any φ ∈ X, in which case Y , (X \ {φ}) ∈
℘ω(FmΣ4), while |Y | < |X|. Consider any ψ ∈ CPC

4 (X), in which case, by
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the ∼-negativity and ∨-disjunctivity of A4:2 as well as induction hypoth-
esis, we have (∼φ∨ψ) ∈ CPC

4 (Y ) ⊆ CMP
4 (Y ), and so by (3.5)[x0/φ, x1/ψ]

and the structurality of CMP
4 , we get ψ ∈ CMP

4 (Y ∪ {φ}) = CMP
4 (X), as

required. Then, the finiteness of A4:2 completes the argument. a

Lemma 3.14. Let C be an extension of C4. Suppose (3.6) is not sat-
isfied in C. Then, C ⊆ CNP

4 .

Proof. Then, x1 6∈ T , C({x0 ∨ x1,∼x0 ∨ x1}), in which case, by
the structurality of C, B , 〈FmΣ4 , T 〉 is a model of C (in particular, of
C4), and so is its finitely-generated submatrix D generated by {x0, x1}, in
which (3.6) is not true under [xi/xi]i∈2. Hence, by Lemma 2.7 of [20], there
are some set I and some E ∈ (H−1(H(D)) ∩ S(AI

4)), in which case (3.6)
is not true in E ∈ Mod(C) ⊆ Mod(C4), and so, since E is ∧-conjunctive,
for C4 is so, while E�Σ+ is a distributive lattice, for A4�Σ+ is so, there
are some a, b ∈ E such that ((a ∧E ∼Ea) ∨E b) ∈ DE 63 b. Then, c ,
(a∧E∼Ea) ∈ {0, 1}I . Given any j ∈ 4, set Jj , {i ∈ I | πi(b) = j}. Then,
∅ 6= J0 ⊆ K , {i ∈ I | πi(c) = 1}. Given any k̄ ∈ 47, put (k0 : k1 : k2 :
k3 : k4 : k5 : k6) , (((J3∩K)×{k0})∪((J3\K)×{k1})∪((J2∩K)×{k2})∪
((J2 \K)×{k3})∪((J1∩K)×{k4})∪((J1 \K)×{k5})∪(J0×{k6})) ∈ 4I ,
in which case (3 : 3 : 2 : 2 : 1 : 1 : 0) = b ∈ E 3 c = (1 : 0 : 1 : 0 : 1 : 0 : 1),
and so

E 3 d , (∂E
1 b ∨E (b ∨E c)) = (3 : 3 : 3 : 3 : 1 : 1 : 1).(3.10)

Consider the following complementary cases:
• (J3 ∪ J2) = ∅.

Then, by (3.10), E 3 d = (I × {1}), while I ⊇ J0 6= ∅, whereas A4,
having no proper subalgebra other than A4:2, is generated by any
element of (4 \A4:2) = {1, 2} 3 1, in which case {〈l, I × {l}〉 | l ∈ 4}
is an embedding of A4 into E ∈ Mod(C), and so C ⊆ C4 ⊆ CNP

4 .
• (J3 ∪ J2) 6= ∅.

Note thatA4×A4:2 is generated by 〈1, 3〉, for∼A2
4〈1, 3〉 = 〈2, 0〉, while

(〈1, 3〉(∧|∨)A2
4〈2, 0〉) = 〈1|2, 0|3〉, whereas ∂A2

4
1 〈1|2, 0/3〉 = 〈0|3, 0/3〉.

In that case, since J0 6= ∅, by (3.10), we see that {〈〈l,m〉,
(m : m : m : m : l : l : l)〉 | l ∈ 4,m ∈ A4:2} is an embedding of
A4 ×A4:2 into E ∈ Mod(C), and so, by Theorem 3.11, C ⊆ CNP

4 .

After all, combining Theorems 3.3, 3.11, Corollary 3.13, Lemma 3.14
and (3.7), we eventually get the following four-valued analogue of Theo-
rem 4.13 of [15]:

Theorem 3.15. Proper consistent extensions of C4 form the two-ele-
ment chain CNP

4 = CnA4×A4:2 ( C
MP/R
4 = CPC

4 .
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Concluding this discussion, we should like to highlight three more neg-
ative consequences of (3.9), aside from the second sentence of Lemma
3.12. First of all, if any ε ⊆ Fm2

Σ4
with at most one variable x0 defined

truth in A4, then, as 1 ∈ DA4 , we would have A4 |= (
∧
ε)[x0/1], in which

case, since ∂A4
1 1 = 0, by (3.9), we would get A4 |= (

∧
ε)[x0/0], and so

would eventually get 0 ∈ DA4 . In particular, as opposed to C3 = LP , the
generic technique developed in §3 of [15] is not applicable to C4, while
there is no secondary unary/binary connectives (∂0|τ0‖3)/(≡ | ↔) satis-
fying ((3.2)|“(3.23) below”)/“(3.11)|(3.12) below”, for, otherwise,

{(((∂0x0)|(∼τ0‖3(∼0‖1x0)))/(∼(x0(≡ | ↔)⊥))) ≈ >}
would define truth in A4, respectively, whereas, by Propositions 6 and
7 of [18] as well as Lemmas 3.2 of [17] and 3.1, C4 is not algebraizable.
Likewise, if any ε ⊆ Fm2

Σ4
with at most two variables x0 and x1 was an

equational implication for A4, then, as 1 ∈ DA4 , we would have A4 |=
(
∧
ε)[x0/2, x1/1], in which case, since ∂A4

1 (2|1) = (3|0), by (3.9), we would
get A4 |= (

∧
ε)[x0/3, x1/0], and so would eventually get 0 ∈ DA4 , for

3 ∈ DA4 . And what is more, by (3.9), h , ∂A4
1 is not injective, for |A4| =

4 66 2 = |A4:2|, in which case, as |A4| = 4 6= 1, (kerh) ∈ (Con(A4) \ {A2
4})

is not diagonal, and so A4 has no ternary discriminator. This is why
the advanced algebraic methods used in the next subsubsection are not
applicable to the four-valued case.

3.1.2. The more-than-four-valued case. Here, it is supposed that n >
4, in which case we set (x0 ≡ x1) , ((x0 ⊃ x1)∧ (x1 ⊃ x0)). Then, as An

is both ⊃-implicative and ∧-conjunctive, by (3.3), we have:

(a ≡A4 b) =

{
n− 1 if (a = 0) ⇔ (b = 0),
0 otherwise,

(3.11)

for all a, b ∈ n.
Further, as mn ∈ ω, we have the one more secondary binary connective

of Σn: (x0 ≡n x1) , (∧〈∂kx0 ≡ ∂kx1〉k∈(mn+1)). Finally, put (x0 ↔ x1) ,
((x0 ≡n x1) ∧ (∼x0 ≡n ∼x1)). Then, since =′n is an equality determinant
for An, by (3.11) and the ∧-conjunctivity of An:2, we eventually get:

(a↔A4 b) =

{
n− 1 if a = b,

0 otherwise,
(3.12)

for all a, b ∈ n. By (3.2), we first conclude that εn , {∂0x0 ≈ >} defines
truth in An, in which case, in particular, by (3.12), Cn is equivalent to
the quasivariety generated by An with respect to ↔ and εn in the sense
of [13], and so is algebraizable with respect to ↔ and εn, in view of
Proposition 6 of [18]. And what is more, by (3.12), we see that ((x0 ↔
x1) ∧ x2) ∨ (∼(x0 ↔ x1) ∧ x0) is a ternary discriminator for An. In this
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way, combining Theorem 3.3 of [15] as well as Corollaries 4.3, 4.6, 4.12
and Example B.2 of [19] with (3.7) and Proposition 3.9, we eventually
get:

Theorem 3.16. Proper consistent extensions of Cn form the two-ele-
ment chain CNP

n = CnAn×An:2 ( C
MP/R
n = CPC

n . Moreover, CPC
n is the

axiomatic extension of Cn relatively axiomatized by (3.8) with � = ⊃, in
which case CPC

n (∅) 6= Cn(∅).

This subsumes Theorem 3.3, yielding another insight into it, and re-
sembles the corresponding results obtained in [16]/[19] for HZ/LA [4]/[1],
respectively. In general, combining Theorems 4.13 of [15], 3.15, 3.16 as
well as Lemmas 4.14 of [15] and 3.12 with (3.7) and Proposition 3.8, we
have the following universal result:

Corollary 3.17. Let n > 2. Then, proper consistent extensions of
Cn form the two-element chain CNP

n = CnAn×An:2 ( C
MP/R
n = CPC

n .
Moreover, CNP

n (∅) = Cn(∅), in which case CNP
n is not an axiomatic

extension of Cn. And what is more, providing n 6 | > 4, CPC
n (∅) =

| 6= Cn(∅), while CPC
n “is not an”|“is the” axiomatic extension of Cn

|“relatively axiomatized by (3.8) with � = ⊃”, respectively.

This does not depend upon whether exactly n = 3, and so definitely
unifies C3 = LP with its minimally more-than-three-valued maximally
∼-paraconsistent expansions.

3.2. Sequent calculi. Here, we propose Cut-free sequent axiomati-
zations of the introduced logics tacitly using Lemma 3.1 and entirely
following the generic approach elaborated in [17] but naturally using the
variables x0 and xi, where i ∈ ω, instead of p and pi+1, respectively,
for both p and p1 occur in no sequent [rule] actually dealt with here,
and involving all substitutional instances of sequent rules in construct-
ing derivations as well as at once endowing the calculi to be constructed
with structural rules other than Cut and Contraction, and so disregarding
the item (i) of Definition 1 therein and taking merely those of context-
free canonical sequent axioms (i.e., ones with disjoint injective left and
right sides — viz., components, constituted by formulas in =n alone and
ordered according to any total ordering of =n [e.g., the one given by
x0 < {∂k〈∼〉x0 < ∂l〈∼〉x0 < (∂m)}∼x0 {for all k, l(,m) ∈ Nn− such that
k < l〈(<)〉m} and supposed below]), in the item (ii) of Deinition 1 therein
(i.e., true in An), which are minimal under subsumption partial (because,
for all Σn-formulas η and ζ with at most one variable x0, η = x0 = ζ,
whenever η(ζ) = x0) ordering between canonical sequents under their
identification with their semantically treating disjuncts (cf. [23] for the
definition of the subsumption quasi -ordering between disjuncts), that are
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proved right below to be as follows:

` [∂i]x0, {∂j}∼x0 [i ∈ Nn−]{j ∈ Nn−}(3.13)

∂ix0 ` [∂j ]x0 [Nn− 3 j <]i ∈ Nn−(3.14)

∂mnx0, ∂mn∼x0 ` n > 3 is even.(3.15)

Proof. Consider any k ∈ n. First, we prove that (3.15) is true in An

under [x0/k], by contradiction. For suppose it is not true in An under
[x0/k], in which case k > mn < (n−1−k), and so k 6∈ Nn− 63 (n−1−k).
Then, (n − 1 − k) ∈ Nn 3 k, in which case (n − 1 − k) = k, and so
n = ((2 · k) + 1) is odd. This contradiction shows that (3.15) is true in
An. Next, for proving the truth of (3.13) in An under [x0/k], assume
k 6 (0[+i]). Then, in case k = 0, we have {∂An

j }∼Ank = (n − 1) 6= 0
[while, otherwise, ∼Ank > ∼Ani > ∼Anmn > mn > (0{+j}), in which
case {∂An

j }∼Ank 6= 0], and so (3.13) is true in An. Likewise, for proving
the truth of (3.14) in An under [x0/k], assume k 6 (0[+j]) 6 i, in which
case ∂An

i k = 0, and so (3.14) is true in An. In particular, any minimal
canonical sequent true in An is strictly canonical in the sense that, if
the left/right side of it contains (∂i[∼]x0)/({∂i}[∼]x0), where i ∈ Nn−,
then this does not contain ({∂j}[∼]x0)/(∂j [∼]x0), where j ∈ Nn− {and
j > / < i}, respectively. On the other hand, those of strictly canonical
sequents, which are subsumed by neither (3.13) nor (3.14) nor (3.15),
subsume either of the following sequents, each of which is proved not true
in An, and so is each of the former ones:

1. x0,∼x0 `.
This is not true in An under [x0/1].

2. [∂i]∼mx0 ` {∂j}∼1−mx0, where m ∈ 2 [and i ∈ Nn−] {as well as
j ∈ Nn−}.
This is not true in An under [x0/(∼An)m(n− 1)].

3. ∂ix0, ∂j∼x0 `, where i, j ∈ Nn−, while n is odd,
in which case Nn− 6= ∅, and so n > 3, while (n−1) < n is even, and
so l , n−1

2 ∈ n. Then, i < l > j and ∼An l = l, in which case the
sequent under consideration is not true in An under [x0/l].

4. [∂i]x0, {∂j}∼x0 ` ((∂ıx0)|(∂∼x0)), where (ı|)[, i]{, j} ∈ Nn− [and
i < ı] {as well as j < },
in which case 0 < (ı|) 6 mn, and so (0{+j}|0[+i]) 6 mn <
∼Anmn 6 ∼An(ı|). In this way, the sequent under consideration
is not true in An under [x0/(ı|∼An)]. [{In particular, when taking
(ı|) = mn, in case (i|j) 6= mn, we see that ∂ix0, ∂j∼x0 ` is not true
in An.}]

Finally, by (4), we eventually conclude that both (3.13) and (3.14) and
(3.15) has no proper (viz., non-equal) subsequent [under inclusion of the
images (viz., contents) of the left and right sides pairwise] true in An,
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in which case it, being strictly canonical, is minimal under subsumption
among strictly canonical sequents true in An, because, for any Σn-formula
ϕ with at most one variable x0 and any strictly canonical sequent Φ,
ϕ = x0, whenever Φ[x0/ϕ] is equal to either of the three sequents under
consideration, and so among canonical sequents true in An. a

Likewise, in case n > 3, it suffices to take solely context-free sequent
axioms in the items (iii-iv) of Definition 1 of [17] that are clearly as follows
(where i ∈ Nn−):

` (∂i)>,(3.16)

(∂i)∼> `,(3.17)

` (∂i)∼⊥,(3.18)

(∂i)⊥ ` .(3.19)

Further, the only (=n,Σn)-type[s], not being =n-complex, is [resp., are]
(∼) [as well as both (∂i) and ∂i(∼), where i ∈ Nn−]. Then, we have
the following Σn-sequential =n-table T = 〈λT , ρT 〉 of rank (0, 0) for An

yielding the rules in the item (v) of Definition 1 of [17], constituting
collectively with both the axioms (3.13), (3.14), (3.15) [as well as (3.16),
(3.17), (3.18) and (3.19), whenever n > 3] and structural rules but Cut
and Contraction the resulting Cut-free Gentzen-style axiomatization Sn

of Cn with admissible Cut and Contraction. First, for all i ∈ Nn−, ∂An
i ∈

hom(An�Σ+,An:2�Σ+). Moreover, DAn is a prime filter of An, while the
identities (2.1), (2.2) and (2.3) are true in the Kleene lattice (An�Σ∼) =
Kn. Therefore, [for all i ∈ Nn−] one can naturally choose:

λT ([∂i](∧)) , {[∂i]x0, [∂i]x1 `},
λT ([∂i]∼(∨)) , {[∂i]∼x0, [∂i]∼x1 `},
λT ([∂i](∨)) , {[∂i]x0 `, [∂i]x1 `},

λT ([∂i]∼(∧)) , {[∂i]∼x0 `, [∂i]∼x1 `},
ρT ([∂i](∨)) , {` [∂i]x0, [∂i]x1},

ρT ([∂i]∼(∧)) , {` [∂i]∼x0, [∂i]∼x1},
ρT ([∂i](∧)) , {` [∂i]x0,` [∂i]x1},

ρT ([∂i]∼(∨)) , {` [∂i]∼x0,` [∂i]∼x1},
λT ([∂i]∼(∼)) , {[∂i]x0 `},
ρT ([∂i]∼(∼)) , {` [∂i]x0}.

And what is more, for all i ∈ Nn−, we have (img ∂An
i ) ⊆ An:2, while

∂An
i l = l, for all l ∈ An:2, and so, by the ∼-negativity of An:2, one can

choose, for all ı ∈ Nn−:

λT (∂i(∂ı)) , {∂ıx0 `},
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ρT (∂i(∂ı)) , {` ∂ıx0},
λT ([∂i]∼(∂ı)) , {` ∂ıx0},
ρT ([∂i]∼(∂ı)) , {∂ıx0 `}.

Likewise, in case n > 4, for all j ∈ Nn, we have (k = l) ⇔ (∇An
j k = l),

for all k ∈ n, and so one can choose:

λT ([∼](∇j)) , {[∼]x0 `},
ρT ([∼](∇j)) , {` [∼]x0}.

Finally, in that case, for all m ∈ 2, we have ∂An
i (∼An)m∇An

j k = 0 iff either
(∼An)mk = 0 or both (∼An)1−mk 6= 0 and (n − 1−)mj 6 i, and so one
can eventually choose:

λT (∂i∼m(∇j)) , ({∼mx0 `| i < (n− 1−)mj}
∪ {∼mx0 ` ∼1−mx0}),

ρT (∂i∼m(∇j)) , ({` ∼mx0}
∪ {∼1−mx0 `| i < (n− 1−)mj}).

It is remarkable that, in case n = 3, the resulting sequent calculus Sn is
the exactly already-known (due to [17]) one resulted from that discovered
in [11] for Belnap’s four-valued logic B4 [3] by adding the Excluded Middle
Law sequent axiom (3.13) alone — ` x0,∼x0, for Nn− = ∅, in that case.

Finally, in case n > 4, by (3.2), we see that {∂0x0 / ∂0x1} is an
equational implication for An. On the other hand, by Remark 1 of [18],
A3 has an equational implication. In this way, taking the fourth sentence
of the last paragraph of Subsubsection 3.1.1 into account, we conclude
that An has an equational implication (that is, the sequent calculus S̃n

resulted from the constructed one Sn by adding Cut and Contraction
is algebraizable; cf. Theorems 10 and 13 of [18]) iff n 6= 4, in which
case, in view of (16) of [18], the sequent calculus S̃n is equivalent to the
quasivariety generated by An in the sense of [13]. On the other hand, by
Lemma 5 of [18], the constructed calculus Sn as such is not algebraizable.
And what is more, by Theorem 7 of [18] as well as Lemmas 3.2 of [17] and
3.1, C3 = LP is not algebraizable, for K ′

4 , {〈2, 2〉, 〈1, 2〉, 〈1, 0〉, 〈0, 0〉}
forms a subalgebra of A2

3, while (π1�K ′
4) ∈ homS

S(A2
3�K

′
4,A3:2) is not

injective, in which case A2
3�K

′
4 is not simple. Thus, taking third part of

the third sentence of the last paragraph of Subsubsection 3.1.1 and the
seventh sentence of Subsubsection 3.1.2 into account, we see that Cn is
algebraizable iff n > 4, in which case it is equivalent to the quasivariety
generated by An, and so to S̃n in the sense of [13].

3.3. Hilbert-style calculi. First of all, let us summarize how the
universal approach developed in [21] is applicable to Cn, when n >
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(2/4), in which case An is ∨-disjunctive|“⊃-implicative (cf. Subsub-
section 3.1.2)”, upon the basis of Lemma 3.1 and Subsection 3.2. Let
A be the finite set of Σn-sequents (3.13), (3.14) and (3.15) [as well as
(3.16), (3.17), (3.18) and (3.19), whenever n > 3] collectively with the
following supplementary ones: for each =n-complex (=n,Σn)-type ι(F ),
where F ∈ ((Σn \ {∨}|Σn)) of arity l > 0, all sequents resulted from
those in (λ/ρ)T (ι(F )) by adding ι(F (x0, . . . , xl−1)) to their right/left
sides, respectively. (Note that, in case ι = [∂i]∼x0 and F = ∂ı, where
ı[, i] ∈ Nn−, the resulting sequent is subsumed by (3.13), and so can be
omitted.) Then, let σ+1 , [xi/x1+1]i∈ω, in which case we get the finite
set B , {((φ̄ ◦ (∨x0)) ` 〈ψ̄, x0〉)|(∅ ` ((ψ/x)0, φ̄/, (ψ̄ ◦ (⊃ x0)))) | k ∈
ω 3 m| = / 6= 1, φ̄ ∈ Fmk

Σn
, ψ̄ ∈ Fmm

Σn
, (φ̄ ` ψ̄) ∈ (σ+1[A]|(A/σ+1[A]))}

of Σn-sequents with non-empty right sides|“ and empty left ones”, and so
eventually get the finite axiomatization H

∨|⊃
n of Cn resulted from any fi-

nite axiomatization of the (∨| ⊃)-fragment of the classical logic by adding
the following Σn-rules|-axioms: for each (φ̄ ` ψ̄) ∈ B, where φ̄ ∈ Fmk

Σn

and ψ̄ ∈ Fmm
Σn

, while k,m ∈ ω, whereas m 6= 0| = k, the Σn-rule|-axiom
(img φ̄) → ((∨| ⊂)ψ̄), respectively. And what is more, due to rules aris-
ing from both (λ/ρ)T ([∂i](∧)) and (λ/ρ)T ((∂i|[∂i])(∨)), where i ∈ Nn−,
as well as those satisfied in the (∨| ⊃)-fragment of the classical logic,
some rules of the resulting calculus are then subject to evident equivalent
transformations, tacitly made below.

In this way, a definitive version of H∨
n is constituted by the following

axioms and rules, where i, ı ∈ Nn−, j ∈ Nn and m ∈ 2:

(3.20)
[∂i]x0 ∨ {∂ı}∼x0

(∂i)> (∂i)∼⊥ n > 3

(∂i)∼> ∨ x0

x0

(∂i)⊥ ∨ x0

x0
n > 3

∂ix1 ∨ x0

[∂ı]x1 ∨ x0
[ı <]i

(∂mnx1 ∧ ∂mn∼x1) ∨ x0

x0
n > 3 is even

(∂i∼m∇jx1 ∧ ∼1−mx1) ∨ x0

x0

∼mx1 ∨ x0

∂i∼m∇jx1 ∨ x0
n > 4, i < (n− 1−)mj

∼mx1 ∨ x0

(∼1−mx1 ∨ ∂i∼m∇jx1) ∨ x0

∂i∼m∇jx1 ∨ x0

∼mx1 ∨ x0

∼m∇jx1 ∨ x0

∼mx1 ∨ x0
l n > 4

∂i∂ıx1 ∨ x0

∂ıx1 ∨ x0
l (∂ıx1 ∧ [∂i]∼∂ıx1) ∨ x0

x0

x0 ∨ x0

x0

x0

x0 ∨ x1

(x0 ∨ x1) ∨ x2

(x1 ∨ x0) ∨ x2

(x0 ∨ (x1 ∨ x2)) ∨ x3

((x0 ∨ x1) ∨ x2) ∨ x3
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[∂i](x1 ∧ x2) ∨ x0

[∂i]x1 ∨ x0

[∂i](x1 ∧ x2) ∨ x0

[∂i]x2 ∨ x0

[∂i]x1 ∨ x0 [∂i]x2 ∨ x0

[∂i](x1 ∧ x2) ∨ x0

(∂ix1 ∨ ∂ix2) ∨ x0

∂i(x1 ∨ x2) ∨ x0
l [∂i]x1 ∨ x0

[∂i]∼∼x1 ∨ x0
l

([∂i]∼x1 ∧ [∂i]∼x2) ∨ x0

[∂i]∼(x1 ∨ x2) ∨ x0
l ([∂i]∼x1 ∨ [∂i]∼x2) ∨ x0

[∂i]∼(x1 ∧ x2) ∨ x0
l

It is remarkable that, in case n = 3, H∨
n is exactly the axiomatization of

Cn = LP found in [11] (cf. Corollary 5.3 therein) under enhancement of
that of B4 being due to [21].

Likewise, a definitive version of H⊃
n is constituted by (2.7), (2.9), (2.10)

and (2.11) with � = ⊃ as well as by both (3.20) and the following axioms,
where i, ı ∈ Nn−, j ∈ Nn and m ∈ 2:

(∂i)∼> ⊃ x0

(∂i)⊥ ⊃ x0

[∂i](x0 ∧ x1) ⊃ [∂i]xm

[∂i]x0 ⊃ ([∂i]x1 ⊃ [∂i](x0 ∧ x1))

[∂i]xm ⊃ [∂i](x0 ∨ x1)

([∂i]x1 ⊃ x0) ⊃ (([∂i]x2 ⊃ x0) ⊃ ([∂i](x1 ∨ x2) ⊃ x0))

∂ix0 ⊃ [∂ı]x0 [ı <]i

∂mnx1 ⊃ (∂mn∼x1 ⊃ x0) n is even

∼1−mx1 ⊃ (∂i∼∇jx1 ⊃ x0) i < (n− 1−)mj

∼mx0 ⊃ ∂i∼∇jx0 i < (n− 1−)mj

∼mx0 ⊃ (∼1−mx0 ∨ ∂i∼∇jx0)
∂i∼∇jx0 ⊃ ∼mx0

∂ıx1 ⊃ ([∂i]∼∂ıx1 ⊃ x0)
∼mx0 ≡ ∼m∇jx0

∂i∂ıx0 ≡ ∂ıx0

[∂i]∼∼x0 ≡ [∂i]x0

[∂i]∼(x0 ∧ x1) ≡ ([∂i]∼x0 ∨ [∂i]∼x1)

[∂i]∼(x0 ∨ x1) ≡ ([∂i]∼x0 ∧ [∂i]∼x1)

3.4. Equivalent varieties. In case n = 3, the quasivariety generated
by An = K3 and equivalent to S̃n is well-known to be the variety of Kleene
lattices (cf., e.g., Proposition 3.4 of [14]). Here, we mainly explore the
opposite case, when n > 4, in which case both Cn and S̃n are equiv-
alent to the quuasi-variety QV(An) generated by An, and so Corollary
3.24 of [13] yields a finite quasi-equational axiomatization of QV(An)
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upon the basis of H⊃
n . However, such an axiomatization would be too

cumbersome as well as far from being algebraically (more specifically,
lattice-theoretically) natural. And what is more, since An has a ternary
discriminator, in view of Theorems 1.3, 2.5 (collectively with the com-
ment 4 after it) and 2.6 of [9], QV(An) is a variety. On the other hand,
the above axiomatization contains two non-equational quasi-identities be-
cause of the items (i-ii) of Corollary 3.24 of [13], for, in particular, (2.7) is
not an axiom. Nevertheless, we find below equational algebraically natural
finite axiomatizations of QV(An).

First, by Lemma 3.1 and (3.2), =′n , {∂i∼kx0 | i ∈ (mn + 1), k ∈ 2} is
an equality determinant for An with

=′n,An,0/(n−1),−|+ = {∂i∼kx0 | i ∈ (mn + 1)}, k , ((0|1)/(1|0)).(3.21)

Given any i ∈ n, take any enumeration =′n,An,i,+|− of =′n,An,i,+|−, respec-
tively (in case i = (0/(n − 1)), it can be chosen to be 〈∂i∼kx0〉i∈(mn+1);
cf. (3.21)). Then, put τi , ((∧〈=′n,An,i,+,>〉) ∧ (∧〈∼ ◦ =′n,An,i,−,>〉), in
which case, by the ∼-negativity, ∧-conjunctivity and ∨-disjunctivity of
An:2 as well as (3.3), τAn

i (i) = (n − 1), and so the following identity is
satisfied in An:

(∨〈τi〉i∈n) ≈ >.(3.22)

Now, consider any j ∈ n distinct from i. Then, as =′n is an equality
determinant for An there is either some ι ∈ =′n,An,i,+ such that ιAn(j) 6∈
DAn or some ι ∈ =′n,An,i,− such that ιAn(j) ∈ DAn , in which case, by the
∼-negativity, ∧-conjunctivity and ∨-disjunctivity of An:2 as well as (3.3),
τAn
i (j) = 0, and so we have:

τAn
i (m) =

{
(n− 1) if m = i,

0 otherwise,
(3.23)

for all m ∈ n. In particular, the following identities are satisfied in An:

(τi ∧ τj)≈⊥ n 3 i 6= j ∈ n(3.24)
(∧〈〈τkl

(xl)〉l∈m,>〉) / τk(F (x0, . . . , xm−1)),(3.25)

where F ∈ (Σn \ {∨,>}) of arity m ∈ ω, k̄ ∈ nm and k = FAn(k̄).
Likewise, by (3.11), (3.12) and (3.23), the following identity is then also
satisfied in An:

(∧〈τi(x0) ≡ τi(x1)〉i∈n) / (x0 ↔ x1).(3.26)

Next, an n-graded Kleene algebra is any Σn-algebra, the Σ∼,01-reduct of
which is a Kleene algebra and which satisfies the identities (3.22), (3.24),
(3.25), (3.26) and the following additional ones:

(x0 ∧ (x0 ↔ x1)) / x1,(3.27)
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τi / (x1 ⊃ τi),

(τi ∨ (τi ⊃ x1)) ≈ >,
i ∈ n,(3.28)

the variety of all them being denoted by GKAn.

Theorem 3.18. An is an n-graded Kleene algebra. Conversely, any
[finite] n-graded Kleene algebra is embeddable into a [finite] direct power
of An. In particular, GKAn = QV(An).

Proof. First, (An�Σ∼,01) = Kn,01 is a Kleene algebra. Next, the fact
that An satisfies (3.27) is by (3.12). Further, the fact that, for each i ∈ n,
An satisfies (3.28) is by the fact that (img τAn

i ) ⊆ An:2, while ♦An�An:2 is
diagonal. Thus, An ∈ GKAn. Conversely, consider any [finite] B ∈ GKAn

and any ā ∈ (B2 \ ∆B), in which case there is some j ∈ 2 such that
aj 
A a1−j , and so, by the Prime Ideal Theorem for distributive lattices,
there is some prime filter F of B such that a , aj ∈ F 63 b , a1−j (in
particular, >B ∈ F 63 ⊥B). Then, by (2.1), (2.2), (2.5), (3.22), (3.24)
and (3.25), g , {〈c, k〉 ∈ (B × n) | τB

k (c) ∈ F} ∈ hom(B,An). Let us
prove, by contradiction, that g(a) 6= g(b). For suppose g(a) = g(b), in
which case, for each i ∈ n, (τB

i (a) ∈ F) ⇔ (τB
i (b) ∈ F), and so, by (3.28),

(τB
i (a) ≡B τB

i (b)) ∈ F. Hence, by (3.26), (a ↔B b) ∈ F. Therefore, by
(3.27), b ∈ F, for a ∈ F. This contradiction shows that g(a) 6= g(b). In this
way, H , hom(B,An) is a [finite] set, while e : B → nH , d 7→ 〈h(d)〉h∈H

is an embedding of B into AH
n , as required. a

Completing this discussion, we specify what is the set =′n,An,i,+, where
i ∈ ((n − 1) \ 1), in which case (n − 1 − i) ∈ ((n − 1) \ 1), and so, by
(3.2), ∂An

0 [{i, n − 1 − i}] ⊆ {n − 1}, while =′n,An,i,− = (=′n \ =′n,An,i,+)
is then equally specified. Then, if i ∈ Nn−, we have i 6 mn, in which
case, for all j ∈ Nn−, we get j 6 mn < (n − 1 −mn) 6 (n − 1 − i), and
so =′n,An,i,+ = ({∂0x0, ∂0∼x0} ∪ {∂jx0 | j ∈ Nn−, j < i} ∪ {∂j∼x0 | j ∈
Nn−}). Likewise, if (n− 1− i) ∈ Nn−, then =′n,An,i,+ = ({∂0x0, ∂0∼x0} ∪
{∂j∼x0 | j ∈ Nn−, j < (n − 1 − i)} ∪ {∂jx0 | j ∈ Nn−}). Otherwise, we
have (2 · i) = (n − 1) is even (in particular, n is odd), in which case, for
all j ∈ Nn−, we get j < n−1

2 = i = (n − 1 − i), and so =′n,An,i,+ = =′n.
In this way, taking (3.21) into account, we have a transparent analytical
expression for τi, making the above finite equational axiomatization of
QV(An) equally transparent and algebraically natural. Nevertheless, we
present below an alternative finite equational axiomatization of it that
seems to better reflect its algebraic (as well as lattice-theoretic) substance
and does not involve the secondary unary operators τi.

For every j ∈ (((n− 1) \ 1) \Nn), we have (n− 1− j) ∈ Nn, and so the
secondary unary operation ∇jx0 , ∼∇n−1−jx0.

Theorem 3.19. QV(An) is axiomatized by the identities axiomatizing
the variety of Kleene algebras collectively with (3.27) and the following
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additional ones:

(x0 ↔ x0) ≈ >,(3.29)
((x0 ↔ x1) ∧ (x1 ↔ x2)) / (x0 ↔ x2),(3.30)

(x0 ↔ x1) / (ox0 ↔ ox1) : o ∈ (Σn \ Σ∼,01)(3.31)
(x0 ↔ x1) / ((x0 ∧ x2) ↔ (x1 ∧ x2)),(3.32)

> ≈ ((x0 ↔ (x0 ∧ x1)) ∨ (x1 ↔ (x0 ∧ x1))),(3.33)
∼((x0 ↔ ⊥) ∨ (x0 ↔ >)) ≈ (∨〈x0 ↔ ∇j′′+1(x0)〉j′′∈(n−2)),(3.34)

⊥ ≈ ((x0 ↔ x1) ∧ ∼(x0 ↔ x1)),(3.35)
(∇j′(x0) ↔ ∇j(x0)) / ((x0 ↔ ⊥) ∨ (x0 ↔ >)) : j′ 6= j,(3.36)

∇⊥ ≈ ⊥,(3.37)
∇> ≈ >,(3.38)
∂i⊥ ≈ ⊥,(3.39)
∂i> ≈ >,(3.40)

(∇jx0 ↔ ∇j∼x0) ≈ (∼(x0 ↔ ⊥) ∧ ∼(x0 ↔ >)),(3.41)
(∼∇jx0 ↔ ∇n−1−jx0) ≈ (∼(x0 ↔ ⊥) ∧ ∼(x0 ↔ >)),(3.42)

∇∇x0 ≈ ∇x0,(3.43)
(∂i∇jx0 ↔ ⊥) ≈ (∼(x0 ↔ >)) : j 6 i,(3.44)
(∂i∇jx0 ↔ >) ≈ (∼(x0 ↔ ⊥)) : j 
 i,(3.45)

(x2 ↔ x3) ' (∧〈((x2+k ↔ ∇jxk)(3.46)
∧(∼(xk ↔ ⊥) ∧ ∼(xk ↔ >))〉k∈2,

(∇min(j,j′)(x0 ∧ x1) ↔ (∇jx0 ∧∇j′x1))(3.47)

' (∧〈∼(xk ↔ ⊥) ∧ ∼(xk ↔ >)〉k∈2),

where i ∈ Nn−, j, j′ ∈ ((n− 1) \ 1) and  ∈ Nn.

Proof. The fact that An satisfies the above identities is immediate,
with using (3.12). Conversely, consider any Σn-algebra B satisfying the
identities involved and any ā ∈ (B2\∆B), in which case there is some k ∈ 2
such that ak 
A a1−k, and so, by the Prime Ideal Theorem for distributive
lattices, there is some prime filter F of B such that a , ak ∈ F 63 b , a1−k

(in particular, >B ∈ F 63 ⊥B). Then, by the commutativity identity for
∧, (2.1), (2.2), (3.27), (3.29), (3.30), (3.31) and (3.32), {〈⊥B,>B〉, 〈a, b〉}
is disjoint with θ , {〈c, d〉 ∈ B2 | (c ↔B d) ∈ F} ∈ Con(B). Let
g , ({〈e, 0〉 | B 3 e θ ⊥B} ∪ {〈e, n− 1〉 | B 3 e θ >B} ∪ {〈e, i〉 | e ∈
B, i ∈ ((n− 1) \ 1), e θ ∇B

i e, 〈e,⊥B〉 6∈ θ 63 〈e,>B〉}. Clearly, (img g) ⊆ n,
Moreover, by (2.1), (2.2), (2.3), (2.5), (3.34) and (3.35), (dom g) = B.

Further, consider any e ∈ B. Then, as 〈⊥B,>B〉 6∈ θ, by (2.2), (3.34)
and (3.35), g[{e}] is a singleton, unless it is disjoint with An:2. Other-
wise, consider any any i, j ∈ ((n − 1) \ 1) such that e θ ∇B

i e θ ∇B
j e.
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Then, by (3.36), i = j. Thus, g : B → n. Moreover, by (3.29),
g((⊥|>)B) = (⊥|>)An . Now, consider any e ∈ B, any i ∈ Nn− and
any j ∈ Nn. Then, in case g(e) = (0|(n − 1)), that is, e θ (⊥|>)B, by
(3.37)|(3.38), we have ∇B

j e θ (⊥|>)B, that is, g(∇B
j e) = (0|(n − 1)) =

∇An
j g(e), while, by (2.5)|(2.6), we have ∼Be θ (>|⊥)B, that is, g(∼Be) =

((n− 1)|0) = ∼Ang(e), whereas, by (3.39)|(3.40), we have ∂B
i e θ (⊥|>)B,

that is, g(∂B
i e) = (0|(n − 1)) = ∂An

i g(e). Otherwise, by (3.43), we have
∇B

j ∇B
j e θ ∇B

j e, and so we get g(∇B
j e) = j = ∇An

j g(e), while there is
some  ∈ ((n − 1) \ 1) such that g(e) =  and e θ ∇B

 e, in which case,
by the commutativity identity for ∧, (2.1), (2.3), (2.5), (3.35), (3.41) and
(3.42), we have ∼Be θ ∼B∇B

 e θ ∇B
n−1−e θ ∇B

n−1−∼Be, and so we get
g(∼Be) = (n − 1 − ) = ∼Ang(e), whereas, in case  6 | 
 i, by (2.1),
(2.3), (2.5), (3.35) and (3.44)|(3.45), we have ∂B

i e θ ∂
B
i ∇B

 e θ (⊥|>)B,
and so we get g(∂B

i e) = (0|(n− 1)) = ∂An
i g(e).

Now, we prove that:

(ker g) = θ.(3.48)

For consider any c, d ∈ B. First, assume c θ d. Then, in case g(c) =
(0|(n − 1)), we have c θ (⊥|>)B, and so d θ (⊥|>)B, that is, g(d) =
(0|(n − 1)) = g(c), respectively. Otherwise, ⊥B 6 θ c 6 θ >B, while there
is some j ∈ ((n − 1) \ 1) such that g(c) = j and c θ ∇B

j c, in which case
⊥B 6 θ d 6 θ >B, while d θ ∇B

j d, and so g(d) = j = g(c). Conversely,
assume g(c) = g(d). Then, in case g(c) = g(d) = (0|(n − 1)), we have
c θ (⊥|>)B θ d, respectively. Otherwise, (c/d) 6 θ (⊥|>)B, while there are
some i, j ∈ Nn such that g(c|d) = (i|j) and (c|d) θ ∇B

i|j(c|d), respectively.
In that case, since g(c) = g(d), we have i = j. Then, by (2.3), (2.5),
(3.35) and (3.46), we have d θ c, and so (3.48) does hold.

Furthermore, we prove that g is monotonic with respect to the lattice
partial ordering, that is:

(c 6B d) ⇒ (g(c) 6 g(d)),(3.49)

for all c, d ∈ B. For consider any c, d ∈ B such that c 6B d and the
following complementary cases:
• g(c) = 0.

Then, g(c) = 0 6 g(d).
• g(c) 6= 0,

in which case c 6 θ ⊥B, and so d 6 θ ⊥B, that is, g(d) 6= 0, for,
otherwise, it would hold that c = (c ∧B d) θ (c ∧B ⊥B) = ⊥B.
Consider the following complementary subcases:
– g(d) = (n− 1).

Then, g(c) 6 (n− 1) = g(d).
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– g(d) 6= (n− 1),
in which case d 6 θ >B, and so c 6 θ >B, that is, g(c) 6= (n−1), for,
otherwise, it would hold that >B = (d ∨B >B) θ (d ∨B c) = d.
Then, there is some (i|j) ∈ Nn such that g(c|d) = (i|j) and
(c|d) θ ∇B

i|j(c|d), respectively. Hence, by (2.1), (2.3), (2.5), (3.35)
and (3.47), we have ∇B

min(i,j)(c) = ∇B
min(i,j)(c ∧

B d) θ (∇B
i c ∧B

∇B
j d) θ (c ∧B d) = c θ ∇B

i c, and so, by (3.36), we get i =
min(i, j), that is, g(c) = i 6 j = g(d).

Thus, anyway, g(c) 6 g(d), and so (3.49) holds.
Finally, consider any c, d ∈ B, in which case, by (3.33), we have (c ∧B

d) θ (c|d), and so, by (3.48), we get g(c ∧B d) = g(c|d). Moreover,
(c ∧B d) 6B (d|c), in which case, by (3.49), we have g(c ∧B d) 6 g(d|c),
and so, by the above equality, we get g(c∧Bd)) = min(g(c∧Bd), g(d|c)) =
min(g(c|d), g(d|c)) = min(g(c), g(d)) = (g(c) ∧An g(d)).

In this way, by (2.1) and (2.2), g ∈ hom(B,An). Moreover, by (3.48),
g(a) 6= g(b). Thus, H , hom(B,An) is a set, while f : B → nH , e 7→
〈h(e)〉h∈H is an embedding of B into AH

n , and so B ∈ QV(An), as re-
quired. a

However, this finite equational axiomatization of QV(An) is not most
intrinsic because of involving secondary unary operators ∇j , where j ∈
(((n− 1) \ 1) \Nn). Below, we find that without involving these.

Theorem 3.20. QV(An) is axiomatized by the identities axiomatiz-
ing the variety of Kleene algebras collectively with (3.27), (3.29), (3.30),
(3.31), (3.32), (3.33), (3.35), (3.37), (3.38), (3.39), (3.40) as well as both
(3.36), (3.41), (3.44), (3.45), (3.46), (3.47) but with j, j′ ∈ Nn and (3.42)
but with (n− 1− j) = j ∈ Nn and the following additional identities:

(∼(x0 ↔ ⊥) ∧ ∼(x0 ↔ >)) ≈(3.50)
(∨〈(x0 ∧ ∼x0) ↔ ∇j′+1(x0)〉j′∈ln),

((x0 ↔ ∼x0) ≈ ∼(x0 ↔ ∇jx0) : (n− 1) 6= (2 · j),(3.51)
∼(x0 ↔ >) ≈ ((∇jx0 ∧ ∼∇jx0) ↔ ∇jx0),(3.52)

∇j∇x0 ≈ ∇jx0,(3.53)
∂i(x0 ∨ ∼x0) ≈ >,(3.54)

(∇max(j,)(x0 ∨ x1) ↔ (∇jx0 ∨∇x1))(3.55)

' (∧〈∼(xk ↔ ⊥) ∧ ∼(xk ↔ >)〉k∈2),

where i ∈ Nn− and j,  ∈ Nn.

Proof. The fact that An satisfies the above identities is immediate,
with using (3.12). Conversely, consider any Σn-algebra B satisfying the
identities involved and any ā ∈ (B2\∆B), in which case there is some k ∈ 2
such that ak 
A a1−k, and so, by the Prime Ideal Theorem for distributive
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lattices, there is some prime filter F of B such that a , ak ∈ F 63 b , a1−k

(in particular, >B ∈ F 63 ⊥B). Then, by the commutativity identity for
∧, (2.1), (2.2), (3.27), (3.29), (3.30), (3.31) and (3.32), {〈⊥B,>B〉, 〈a, b〉}
is disjoint with θ , {〈c, d〉 ∈ B2 | (c ↔B d) ∈ F} ∈ Con(B). Let
g , ({〈e, 0〉 | B 3 e θ ⊥B}∪{〈e, n− 1〉 | B 3 e θ >B}∪{〈e, (n− 1−)mi〉 |
e ∈ B,m ∈ 2, i ∈ Nn, (∼B)me θ (e ∧B ∼Be) θ ∇B

i e, 〈e,⊥B〉 6∈ θ 63
〈e,>B〉}. Clearly, (img g) ⊆ n, Moreover, by (2.1), (2.2), (2.3), (2.5),
(3.33), (3.35) and (3.50), (dom g) = B. Next, consider any e ∈ B. Then,
as 〈⊥B,>B〉 6∈ θ, by (3.35) and (3.50), g[{e}] is a singleton, unless it is
disjoint with An:2. Otherwise, consider any l,m ∈ 2 and any i, j ∈ Nn

such that (∼B)le θ (∼B)me θ (e∧B∼Be) θ ∇B
i e θ ∇B

j e. Then, by (3.36),
i = j. Therefore, (n− 1−)li = (n− 1−)mj, whenever m = l. Otherwise,
∼Be θ e, in which case, by (3.35) and (3.51), (n − 1) = (2 · i) = (2 · j),
and so (n− 1−)li = i = j = (n− 1−)mj. Thus, g : B → n. Moreover, by
(3.29), g((⊥|>)B) = (0|(n− 1)) = (⊥|>)An .

Further, consider any e ∈ B, any i ∈ Nn− and any j ∈ Nn. Then,
in case g(e) = (0|(n − 1)), that is, e θ (⊥|>)B, by (3.37)|(3.38), we
have ∇B

j e θ (⊥|>)B, and so g(∇B
j e) = (0|(n − 1)) = ∇An

j g(e), while,
by (2.5)|(2.6), we have ∼Be θ (>|⊥)B, and so g(∼Be) = ((n − 1)|0) =
∼Ang(e), whereas, by (3.39)|(3.40), we have ∂B

i e θ (⊥|>)B, and so g(∂B
i e)

= (0|(n − 1)) = ∂An
i g(e). Otherwise, by (2.1), (2.3), (2.5), (3.35), (3.52)

and (3.53), we have ∇B
j ∇B

j e θ ∇B
j e θ (∇B

j e ∧B ∼B∇B
j e), and so we get

g(∇B
j e) = j = ∇An

j g(e), while there are some m ∈ 2 and some  ∈ Nn

such that g(e) = (n− 1−)m and (∼B)me θ (e ∧B ∼Be) θ ∇B
 e, in which

case, by the commutativity identity for ∧, (2.1), (2.3), (2.5), (3.35) and
(3.41), we have (∼B)1−m∼Be θ (∼Be ∧B ∼B∼Be) θ ∇B

 ∼Be, and so
we get g(∼Be) = (n − 1−)1−m = ∼Ang(e), whereas, in case m = 1,
by the commutativity identity for ∧, (2.1), (2.3) and (3.54), we have
∂B

i e θ ∂
B
i (e ∨B ∼Be) = >B, and so we get g(∂B

i e) = (n − 1) = ∂An
i g(e),

and, in case m = 0 and  6 | 
 i, by (2.1), (2.3), (2.5), (3.35) and
(3.44)|(3.45), we have ∂B

i e θ ∂
B
i ∇B

 e θ (⊥|>)B, and so we get g(∂B
i e) =

(0|(n− 1)) = ∂An
i g(e).

Furthermore, we prove that:

(ker g) = θ.(3.56)

For consider any c, d ∈ B. First, assume c θ d. Then, in case g(c) =
(0|(n − 1)), we have c θ (⊥|>)B, and so d θ (⊥|>)B, that is, g(d) =
(0|(n−1)) = g(c), respectively. Otherwise, ⊥B 6 θ c 6 θ >B, while there are
some m ∈ 2 and some j ∈ Nn such that g(c) = (n−1−)mj and (∼B)mc θ
(c ∧B ∼Bc) θ ∇B

j c, in which case ⊥B 6 θ d 6 θ >B, while (∼B)md θ (d ∧B

∼Bd) θ ∇B
j d, and so g(d) = (n − 1−)mj = g(c). Conversely, assume
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g(c) = g(d). Then, in case g(c) = g(d) = (0|(n − 1)), we have c θ
(⊥|>)B θ d, respectively. Otherwise, (c/d) 6 θ (⊥|>)B, while there are
some l,m ∈ 2 and some i, j ∈ Nn such that g(c|d) = (n− 1−)l|m(i|j) and
(∼B)l|m(c|d) θ ∇B

i|j(c|d), respectively. In that case, since (n − 1−)li =
(n − 1−)mj, we have i = j, if l = m, while, otherwise, as (i|j) ∈ Nn, we
have (i|j) 6 ((n−1− i)|(n−1− j)) = (j|i), and so get i = j = (n−1− i).
Then, in case max(l −m,m − l) = (0[+1]), by (2.1), (2.3), (2.5), (3.35)
and (3.46) [as well as (3.42)], we have d θ [∼B]c[θ c] [for (∼B)1−lc =
∼B(∼B)lc θ ∼B∇B

i c θ ∇B
i c θ (∼B)lc], and so (3.56) does hold.

Now, we are in a position to prove that g is monotonic with respect to
the lattice partial ordering, that is:

(c 6B d) ⇒ (g(c) 6 g(d)),(3.57)

for all c, d ∈ B. For consider any c, d ∈ B such that c 6B d and the
following complementary cases:

• g(c) = 0.
Then, g(c) = 0 6 g(d).

• g(c) 6= 0,
in which case c 6 θ ⊥B, and so d 6 θ ⊥B, that is, g(d) 6= 0, for,
otherwise, it would hold that c = (c ∧B d) θ (c ∧B ⊥B) = ⊥B.
Consider the following complementary subcases:
– g(d) = (n− 1).

Then, g(c) 6 (n− 1) = g(d).
– g(d) 6= (n− 1),

in which case d 6 θ >B, and so c 6 θ >B, that is, g(c) 6= (n−1), for,
otherwise, it would hold that >B = (d ∨B >B) θ (d ∨B c) = d.
Then, there are some (l|m) ∈ 2 and some (i|j) ∈ Nn such that
g(c|d) = (n−1−)l|m(i|j) and (∼B)l|m(c|d) θ (((c|d)∧B∼A(c|d)) θ
∇B

i|j(c|d), respectively. Consider the following complementary
subsubcases:
∗ l = 0.

Consider the following complementary subsubsubcases:
· m = 1.

Then, as i, j ∈ Nn 3 ln, and so i 6 ln > j, we have
g(c) = i 6 ln 6 (n− 1− ln) 6 (n− 1− j) = g(d).

· m = 0.
Then, by (2.1), (2.3), (2.5), (3.35) and (3.47), we have
∇B

min(i,j)(c) = ∇B
min(i,j)(c∧

Bd) θ (∇B
i c∧B∇B

j d) θ (c∧B

d) = c θ ∇B
i c, and so, by (3.36), we get i = min(i, j),

that is, g(c) = i 6 j = g(d).
∗ l = 1.

Consider the following complementary subsubsubcases:
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· m = 0.
Then, by the commutativity identity for ∧, (2.1) and
(2.2), we have c θ (c ∨ ∼Ac), in which case, by (2.4),
we get d θ (d ∧B ∼Bd) = ((d ∧B ∼Bd) ∧B (c ∨ ∼Ac)) θ
(d∧B c) = c, and so, by (3.56), we eventually get g(c) =
g(d) 6 g(d).

· m = 1.
Then, by (2.1), (2.2), (2.3), (2.5), (3.35) and (3.47)/
(3.55), we have ∇B

(min / max)(i,j)(c/d) = ∇B
(min / max)(i,j)

(c(∧/∨)Bd) θ (∇B
i c(∧/∨)B∇B

j d) θ (∼Bc(∧/∨)B∼Bd)
= ∼B(c(∨/∧)Bd) = ∼B(d/c) θ ∇B

j/i(d/c), respectively,
in which case, applying ∇B

i to the first equivalence, by
(3.53), we get ∇B

i c θ ∇B
i d, and so, combining this with

the second equivalence, by (3.36), we eventually get i =
max(i, j), that is, g(c) = (n−1−i) 6 (n−1−j) = g(d).

Thus, anyway, g(c) 6 g(d), and so (3.57) holds.
Finally, consider any c, d ∈ B, in which case, by (3.33), we have (c ∧B

d) θ (c|d), and so, by (3.56), we get g(c ∧B d) = g(c|d). Moreover,
(c ∧B d) 6B (d|c), in which case, by (3.57), we have g(c ∧B d) 6 g(d|c),
and so, by the above equality, we get g(c∧Bd)) = min(g(c∧Bd), g(d|c)) =
min(g(c|d), g(d|c)) = min(g(c), g(d)) = (g(c) ∧An g(d)).

In this way, by (2.1) and (2.2), g ∈ hom(B,An). Moreover, by (3.56),
g(a) 6= g(b). Thus, H , hom(B,An) is a set, while f : B → nH , e 7→
〈h(e)〉h∈H is an embedding of B into AH

n , and so B ∈ QV(An), as re-
quired. a

Though the above finite equational axiomatizations essentially rely up-
on either tabular — (3.25) – or congruence — (3.29), (3.30), (3.31) and
(3.32) — identities for the secondary equivalence connective ↔, below
we find that not involving these. On the other hand, just to unify and
abbreviate further notations, we use the secondary unary connectives ∂0

and τ0 alone as well as either of the secondary binary connectives ↔ or
≡n.

Theorem 3.21. QV(An) is axiomatized by the identities axiomatizing
the variety of Kleene algebras collectively with both (3.39), (3.40) and
(3.54) but with i ∈ (mn + 1) and the following additional identities:

(∂i∇jx0 ∧ ∼τ0(∼x0))≈⊥ : j 6 i,(3.58)
(∂i∇jx0 ∨ τ0)≈> : i < j,(3.59)

τ0(∼x0) / ∂i∇jx0,(3.60)
∂i∼∇jx0 /∼τ0(∼x0),(3.61)

τ0 / ∂i∼∇jx0,(3.62)
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∂i∇jx0 /∼τ0,(3.63)
∂i∼∇jx0 '∼τ0(∼x0),(3.64)

∂ıx0 / ∂ix0 : i < ı,(3.65)
∂i(x0 ∧ x1)≈ (∂ix0 ∧ ∂ix1),(3.66)
∂i(x0 ∨ x1)≈ (∂ix0 ∨ ∂ix1),(3.67)

∂i∼k∂ıx0 ≈∼k∂ıx0,(3.68)
(∂ix0 ∧ ∼∂ix0)≈⊥,(3.69)

(∂mnx0 ∧ ∂mn∼x0)≈⊥ : (2 · (mn + 1)) 6= (n− 1),(3.70)

where k ∈ 2, i ∈ (mn + 1), ı ∈ Nn− and j ∈ Nn, as well as either (3.27)
or

((x0 ∧ ∼x1) ∧ (x0 ≡n x1)) / x1.(3.71)

Proof. First, the fact that An satisfies the above identities but the
seventh and last two ones [including the first six ones] is immediate, using
(3.1) with i ∈ (mn + 1) [and (3.23)], (3.64) being due to both (3.23)
and the fact that i < (n − 1 − j), where i ∈ (mn + 1) and j ∈ Nn, for,
otherwise, since (j|i) 6 (l|m)n and mn ∈ Nn− ⊆ Nn 3 ln, we would
have ln 6 (n − 1 − ln) 6 (n − 1 − j) 6 i 6 mn 6 ln, in which case
we would get mn = ln = (n − 1 − ln), and so would eventually get
mn < (n− 1−mn) = mn.

Next, consider any i, ı ∈ n. Then, in case either (n − 1 − ı) 6 ı or
i 6 ı, (x0 ∧ ∼x1) / x1 is true in An under [x0/i, x1/ı], and so is (3.71).
Otherwise, (mn + 1) 3 ı < i, in which case ∂An

ı i = (n − 1) 6= 0 = ∂An
ı ı,

and so, by (3.11), (i ≡An
n ı) 6 (∂An

ı i ≡An ∂An
ı ı) = 0 (in particular, (3.71)

is true in An under [x0/i, x1/ı]). Thus, (3.71) is true in An.
Finally, we prove (3.70) by contradiction. For suppose (2 · (mn + 1)) 6=

(n − 1) but (3.70) is not true in An under some [x0/ı], where ı ∈ n, in
which case both mn < ı and mn < (n− 1− ı), and so both (mn + 1) 6 ı

and (mn + 1) 6 (n − 1 − ı). Then, (mn + 1) 6  , min(ı, n − 1 − ı) 6
max(ı, n− 1− ı) = (n− 1− ) 6 (n− 2−mn). Therefore, if mn + 1 was
not equal to n − 2 −mn, then it would belong to Nn−, in which case it
would be lesser or equal to mn, and so 1 would be lesser or equal to 0.
Hence, (mn + 1) = (n− 2−mn), in which case (2 · (mn + 1)) = (n− 1),
and so this contradiction shows that (3.70) is true in An.

Conversely, consider any Σn-algebra B satisfying the identities involved
and any ā ∈ (B2 \ ∆B), in which case b0 , (a0 ∨B a1) 
B b1 , (a0 ∧B

a1) 6B b0, and so b0 6= b1. Then, by Proposition 3.4 of [14], there is some
h ∈ hom(B�Σ∼,K3) such that h(b0) 6= h(b1), in which case h(b1) 6 h(b0),
while

h(d ∨B ∼Bd) ∈ {1, 2},(3.72)
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for all d ∈ B, whereas, since {1, 2} is a prime filter of K3, F , h−1[{1, 2}]
is that of B. Consider the following complementary cases:
• h(b1) = 0,

in which case h(b0) 6= h(b1) = 0, and so b0 ∈ F 63 b1.
• h(b1) 6= 0,

in which case, as h(b1) < h(b0), we have both h(b1) = 1 and h(b0) =
2, and so we get both h(∼Bb1) = 1 and h(∼Bb0) = 0. Then, ∼Bb1 ∈
F 63 ∼Bb0.

Thus, in any case, there is some k ∈ 2 such that c0 , (∼B)kbk ∈ F 63
c1 , (∼B)kb1−k. In particular, ∅ 6= F 6= B, in which case >B ∈ F 63 ⊥B,
and so

(d ∈ F) ⇔ (∼Bd 6∈ F),(3.73)

for all d ∈ [B. Let R , {〈d, 〈k, l〉〉 ∈ (B×(2×(ln +1))) | (∂B
mn

(∼B)1−kd ∈
F,∀m ∈ (mn +1) : (∂B

m(∼B)kd ∈ F) ⇔ (m < l)} and g , {〈d, (n− 1−)kl〉
| 〈d, 〈k, l〉〉 ∈ R}. Clearly, (img g) ⊆ n and (dom g) ⊆ B ⊇ (domR).
Conversely, consider any d ∈ B. Given any k ∈ 2, set Mk(d) , {m ∈
(mn + 1) | ∂B

m(∼B)kd 6∈ F}, then putting M(d) , (M0(d) ∪M1(d)), in
which case, by (3.54) and (3.67), (M0(d) ∩M1(d)) = ∅, while, by (3.65),
(mn ∈ Mk(d)) ⇔ (Mk(d) 6= ∅), and so either M0(d) or M1(d) is empty.
Consider the following complementary cases:
• M(d) 6= ∅,

in which case there is a unique k ∈ 2 such that Mk(d) 6= ∅ =
M1−k(d), and so l , min(Mk(d)) ∈ Mk(d) ⊆ (mn + 1) ⊆ (ln + 1),
for mn ∈ Nn− ⊆ Nn. Then, for any m ∈ (mn + 1), m > l, whenever
m ∈Mk(d), while, as l ∈Mk(d), by (3.65), m < l, otherwise. In this
way, since M1−k(d) = ∅, 〈d, 〈k, l〉〉 ∈ R.

• M(d) = ∅,
in which case mn 6∈M(d), and so, by (3.70), (2 · (mn +1)) = (n−1).
Then, n is odd, in which case n − 1 is even, and so l , n−1

2 = ln,2

while mn < l, and so m < l, for all m ∈ (mn +1), whereas k , 0 ∈ 2.
In this way, 〈d, 〈k, l〉〉 ∈ R.

Thus, anyway, 〈d, 〈k(d), `(d)〉〉 ∈ R, where k(d) , (1 − max{k ∈ 2 |
Mk(d) = ∅}) and

`(d) ,

{
minMk(d) if M(d) 6= ∅,
n−1

2 otherwise,

in which case 〈d, (n− 1−)k(d)`(d)〉 ∈ g, and so d ∈ ((dom g) ∩ (domR))
(in particular, (dom g) = B = (domR) = dom(R ◦ π1)). Now, consider

2From now on, the fact that n−1
2

∈ n is supposed to subsume tacitly/implicitly the

fact that n is odd.
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any k̄ ∈ 22 and any l̄ ∈ (ln+1)2 such that, for every  ∈ 2, 〈d, 〈k, l〉〉 ∈ R,
and the following complementary cases:
• k0 = k1.

Let us prove, by contradiction, that l0 = l1. For suppose l0 6= l1, in
which case l < l1−, for some  ∈ 2, and so l 6 m , (l1−−1) < l1−.
And what is more, (2 · m) = (2 · (l1− − 1)) = ((2 · l1−) − 2) 6
((n− 1)− 2) = (n− 3) < (n− 1), in which case m ∈ (mn + 1), and
so ∂B

m(∼B)kd 6∈ F 3 ∂B
m(∼B)k1−d. This contradicts to the fact that

k0 = k1. Thus, l0 = l1, and so (n− 1−)k0 l0 = (n− 1−)k1 l1.
• k0 6= k1,

in which case {k0, k1} = 2, and so {1 − k0, 1 − k1} = 2. Then,
M(d) = ∅ 63 mn, for all  ∈ 2, in which case, by (3.70), (mn + 1) =
n−1

2 = ln, and so mn < l 6 ln, that is, l0 = ln = l1 (in particular,
(n− 1−)k0 l0 = ln = (n− 1−)k1 l1).

In this way, g : B → n, in which case g(d) = (n − 1−)k(d)`(d), while
(R ◦ π1) : B → (ln + 1), in which case (R ◦ π1)(d) = `(d). Moreover, by
(2.5), (2.6), (3.39) and (3.40), M0/1(⊥B|>B) = (((mn + 1)|∅)/(∅|(mn +
1))), in which case k(⊥B|>B) = (0|1), while `(⊥B|>B) = 0, and so
g(⊥B|>B) = (0|(n− 1)) = (⊥An |>An). Likewise, by (2.1), M0/1(∼Bd) =
M1/0(d), in which case `(∼Bd) = `(d), while k(∼Bd) = 0 = k(d), if
M(∼Bd) = M(d) = ∅, whereas k(∼Bd) = (1 − k(d)), otherwise, and so
g(∼Bd) = ∼Ang(d), for (n− 1− g(d)) = g(d), whenever g(d) = n−1

2 .
Next, consider any i ∈ Nn−. Then, by (3.68) and (3.69), we have

(m ∈M0[+1](∂
B
i d) ⇔ (i ∈ ([(mn + 1)\]M0(d)),(3.74)

for all m ∈ (mn + 1). Consider the following complementary cases:
• M0(d) = ∅.

Then, by (3.74), we have M0/1(∂B
i d) = (∅/(mn + 1)), in which

case we get k(∂B
i d) = 1, while `(∂B

i d) = min(mn + 1) = 0, and so
g(∂B

i c) = (n− 1). Consider the following complementary subcases:
– M1(d) = ∅.

Then, M(d) = ∅, in which case g(d) = `(d) = n−1
2 , and so

i 6 mn < g(d), for mn ∈ Nn−.
– M1(d) 6= ∅.

Then, k(d) = 1, `(d) ∈ (ln + 1) and g(d) = (n − 1 − `(d)).
Consider the following complementary subsubcases:
∗ mn = ln,

in which case `(d) 6 mn, and so i 6 mn < (n − 1 −mn) 6
g(d), for mn ∈ Nn−.

∗ mn 6= ln,
in which case mn < ln, for mn 6 ln, because Nn− ⊆ Nn, and
so, as `(d) 6 ln ∈ Nn, i 6 mn < ln 6 (n− 1− ln) 6 g(d).
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Thus, anyway, i < g(d), and so ∂An
i g(d) = (n− 1) = g(∂B

i d).
• M0(d) 6= ∅.

Then, k(d) = 0, in which case g(d) = `(d), and so, by (3.1), we have
(i ∈ | 6∈ M0(d)) ⇔ (g(d) 6 | > i) ⇔ (∂B

i g(d) = (0|(n − 1))). Hence,
by (3.74), providing ∂An

i g(d) = (0|(n − 1)), we get M0/1(∂B
i d) =

(((mn + 1)|∅)/(∅|(mn + 1))), in which case k(∂B
i d) = (0|1), while

`(∂B
i d) = min(mn + 1) = 0, and so g(∂B

i d) = (0|(n− 1)) = ∂An
i g(d).

Further, consider any j ∈ Nn and the following complementary cases:

• for each k ∈ 2, τB
0 ((∼B)kd) 6∈ F,

in which case, by (2.1), (3.54), (3.67), (3.69) and (3.73), Mk(d) 6=
(mn + 1), and so g(d) 6= (n − 1−)k0, for, otherwise, we would have
k(d) = k, because (2 · (n− 1)) 
 (n− 1), as n 
 1, in which case we
would get `(d) = 0, and so would eventually get Mk(d) = (mn + 1),
since m < 0, for no m ∈ (mn+1). In particular, ∇An

j g(d) = j. Then,
by (3.58), (3.59), (3.64), (3.69) and (3.73), we have ∂B

mn
∼B∇B

j d ∈ F

and, for all m ∈ (mn + 1), (∂B
m∇B

j d ∈ F) ⇔ (m < j), in which case
g(∇B

j d) = j = ∇An
j g(d).

• for some k ∈ 2, τB
0 ((∼B)kd) ∈ F,

in which case, by (2.1), (3.54), (3.67), (3.69) and (3.73), M[1−]k(d) =
([∅∩](mn + 1)), and so k(d) = k and `(d) = 0, in which case g(d) =
(n− 1−)k0, and so ∇An

j g(d) = (n− 1−)k0. Then, by (3.60), (3.61),
(3.62), (3.63), (3.69) and (3.73), we have M[1−]k(∇B

j d) = ([∅∩](mn+
1)), in which case k(∇B

j d) = k and `(∇B
j d) = 0, and so g(∇B

j d) =
(n− 1−)k0 = ∇An

j g(d).

Furthermore, consider also any e ∈ B and the following complementary
cases:

• there is some k ∈ 2 such that both of 〈d|e, 〈k, `(d|e)〉〉 ∈ R hold.
Consider the following complementary subcases:
– k = 0,

in which case ∂B
mn
∼Bd ∈ F, and so, by (2.3) and (3.67), we have

∂B
mn
∼B(d ∧B e) ∈ F. Then, for each m ∈ (mn + 1), (∂B

m(d|e) ∈
F) ⇔ (m < `(d|e)), in which case, by (3.66), (∂B

m(d∧Be) ∈ F) ⇔
((∂B

md ∈ F)&(∂B
me ∈ F)) ⇔ ((m < `(d))&(m < `(e))) ⇔ (((m+

1) 6 `(d))&((m + 1) 6 `(e))) ⇔ ((m + 1) 6 min(`(d), `(e))) ⇔
(m < min(`(d), `(e))), and so 〈d ∧B e, 〈0,min(`(d), `(e))〉〉 ∈ R.
In this way, g(d ∧B e) = min(`(d), `(e)) = min(g(d), g(e)).

– k = 1,
in which case ∂B

mn
(d|e) ∈ F, and so, by (3.66), ∂B

mn
(d ∧B e) ∈ F.

Then, for each m ∈ (mn +1), (∂B
m∼B(d|e) ∈ F) ⇔ (m < `(d|e)),

in which case, by (2.3) and (3.67), (∂B
m∼B(d ∧B e) 6∈ F) ⇔
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((∂B
m∼Bd 6∈ F)&(∂B

m∼Be 6∈ F)) ⇔ ((m > `(d))&(m > `(e))) ⇔
(m > max(`(d), `(e))), and so 〈d ∧B e, 〈1,max(`(d), `(e))〉〉 ∈ R.
In this way, g(d∧B e) = (n− 1−max(`(d), `(e))) = min(n− 1−
`(d), n− 1− `(e)) = min(g(d), g(e)).

• there is some f̄ ∈ {d, e}2 such that, for each k ∈ 2, 〈fk, 〈k, `(fk)〉〉 6∈
R,
in which case 〈fk, 〈1− k, `(fk)〉〉 ∈ R, and so f0 6= f1 (in particular,
(img f̄) = {d, e}). Then, g(f1) = `(f1) 6 ln 6 (n − 1 − ln) 6
(n− 1− `(f0)) = g(f0). And what is more, ∂B

mn
∼Bf1 ∈ F, in which

case, by (2.3) and (3.67), ∂B
mn
∼B(f0 ∧B f1) ∈ F, while ∂B

mn
f0 ∈ F,

whereas, for each m ∈ (mn + 1), (∂B
mf1 ∈ F) ⇔ (m < `(f1)), in

which case, by (3.65) and (3.66), (∂B
m(f0 ∧B f1) ∈ F) ⇔ (∂B

mf1 ∈
F) ⇔ (m < `(f1)), and so 〈f0 ∧B f1, 〈0, `(f1)〉〉 ∈ R. In this way,
g(d ∧B e) = g(f0 ∧B f1) = `(f1) = g(f1) = min(g(f0), g(f1)) =
min(g(d), g(e)).

Thus, anyway, g(d ∧B e) = min(g(d), g(e)) = (g(d) ∧An g(e)).
In this way, by (2.1) and (2.2), g ∈ H , hom(B,An).
Finally, we prove, by contradiction, that g(a0) 6= g(a1). For suppose

g(a0) = g(a1), in which case, as g ∈ H, g(b0) = max(g(a0), g(a1)) =
min(g(a0), g(a1)) = g(b1), and so g(c0) = (n − 1−)kg(bk) = (n − 1−)kg(
b1−k) = g(c1). Consider any k, k′ ∈ 2 and any m ∈ (mn + 1). Assume
∂B

m(∼B)kck′ 6∈ F. Then, k(ck′) = k, in which case `(ck′) 6 m, and so
k(c1−k′) = k(ck′) = k, for otherwise, we would have mn > m > `(ck′) =
(n − 1−)k(ck′ )g(ck′) = (n − 1 − (n − 1−)k(c1−k′ )g(c1−k′))) = (n − 1 −
`(c1−k′)) > (n−1− ln) > ln > mn, in which case we would get mn = ln =
(n−1− ln), and so would eventually get mn < (n−1−mn) = mn. Hence,
`(c1−k′) = (n − 1−)k(c1−k′ )g(c1−k′) = (n − 1−)k(ck′ )g(ck′) = `(ck′) 6 m.
Therefore, ∂B

m(∼B)kc1−k′ 6∈ F. Thus, ∂B
m(∼B)kc0 ∈ F iff ∂B

m(∼B)kc1 ∈ F.
In this way, by (3.68), (3.69) and (3.73), (c0 ↔B c1) ∈ F, Consider the
following exhaustive cases:

• (3.27) is satisfied in B.
Then, by (3.27), we get c1 ∈ F, for c0 ∈ F.

• (3.71) is satisfied in B.
Then, as (c0 ↔B c1) 6B (c0 ≡B

n c1), we have (c0 ≡B
n c1) ∈ F.

Moreover, as c1 6∈ F, by (3.72), we have ∼Bc1 ∈ F. Hence, by (3.71),
we get c1 ∈ F, for c0 ∈ F.

Thus, in any case, we get c1 ∈ F. This contradiction shows that g(a0) 6=
g(a1).

In this way, ~ : B → nH , d 7→ 〈h′(d)〉h′∈H is an embedding of B into
AH

n , and so B ∈ QV(An), as required. a
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Thus, the present subsection provides five essentially different insights
into the equational substance of QV(An). In this connection, it is re-
markable that, although different [quasi]equational axiomatizations of a
given [quasi]variety are derivable from one another by means of congru-
ence quasi-identities (cf., e.g., [13]) — that is, any [quasi-]identity, being
satisfied in a [quasi]variety, is derivable from any [quasi]equational axiom-
atization of it endowed with congruence quasi-identities, such is not at all
evident immediately for the above equational axiomatizations of QV(An).
In this way, these are practically independent from one another and be-
come good test samples for various systems of Automated Deduction in
first-order universal Horn logic with equality (cf., e.g., [22]).

On the other hand, the present study would not be complete without
investigating the four-valued case, especially taking the second part of
the third sentence of the last paragraph of Subsubsection 3.1.1, making
the four-valued case essentially beyond the scopes of the above discussion,
into account.

A quadro-graded Kleene algebra is any Σ4-algebra, the Σ∼,01-reduct of
which is a Kleene algebra and which satisfies the identities (3.40), (3.66),
(3.68) and (3.69) but with i = ı = 1 and k = 0 as well as the following
additional identities:

∼∂1x0 ≈ ∂1∼x0,(3.75)
(∼x0 ∧ ∂1x0) / x0,(3.76)

the variety of all them being denoted by GKA4.

Theorem 3.22. A4 ∈ GKA4. Conversely, any [finite] quadro-graded
Kleene algebra is embeddable into a [finite] direct power of A4. In partic-
ular, GKA4 is the quasivariety generated by A4.

Proof. The fact that A4 ∈ GKA4 is immediate, with using (3.1) and
(3.9). Conversely, consider any [finite] B ∈ GKA4 and any ā ∈ (B2 \∆B),
in which case b0 , (a0 ∨B a1) 
B b1 , (a0 ∧B a1) 6B b0, and so b0 6= b1.
Then, by Proposition 3.4 of [14], there is some e ∈ hom(B�Σ∼,K3) such
that e(b0) 6= e(b1), in which case e(b1) 6 e(b0), while

e(c ∨B ∼Bc) ∈ {1, 2},(3.77)

for all c ∈ B, whereas, since {1, 2} is a prime filter of K3, F , e−1[{1, 2}]
is that of B. Consider the following complementary cases:
• e(b1) = 0,

in which case e(b0) 6= e(b1) = 0, and so b0 ∈ F 63 b1.
• e(b1) 6= 0,

in which case, as e(b1) < e(b0), we have both e(b1) = 1 and e(b0) = 2,
and so we get both e(∼Bb1) = 1 and e(∼Bb0) = 0. Then, ∼Bb1 ∈
F 63 ∼Bb0.
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Thus, in any case, there is some k ∈ 2 such that (∼B)kbk ∈ F 63
(∼B)kb1−k. In particular, ∅ 6= F 6= B, in which case >B ∈ F 63 ⊥B,
and so

(c ∈ F) ⇔ (∼Bc 6∈ F),(3.78)

for all c ∈ [B. Let f , ((F×{1})∪ ((B \F)×{0})) be the characteristic
function of F ⊆ B in B and g : B → 4, d 7→ (f(d) · (1 + (f(∂B

1 d) · (2 −
f(∼Bd)))). Then, g(⊥B) = 0 = ⊥A4 . Likewise, by (2.6) and (3.40),
g(>B) = 3 = >A4 . Now, consider any c ∈ B and the following exhaustive
cases:
• g(c) = 0.

Then, f(c) = 0, in which case, by (3.77)/(2.1), f(∼B(∼B)0/1c) =
(1/0), and so, by (3.76), f(∂B

1 c) = 0. In particular, g(∂B
1 c) = 0.

And what is more, by (3.69), (3.75) and (3.78), f(∂B
1 ∼Bc) = 1.

Hence, g(∼Bc) = 3.
• g(c) = 1.

Then, f(c) = 1, while f(∂B
1 c) = 0, in which case, by (3.69), (3.75)

and (3.78), f(∂B
1 ∼Bc) = 1, and so, by (2.1) /“and (3.76)”, f(∼B

(∼B)1/0c) = 1. Hence, g(∂B
1 c) = 0 and g(∼Bc) = 2.

• g(c) = 2.
Then, f(c) = 1, while f(∂B

1 c) = 1, whereas f(∼Bc) = 1, in which
case, by (3.68), f(∂B

1 ∂
B
1 c) = 1, while, by (3.69) and (3.75), f(∂B

1

∼Bc) = f(∼B∂B
1 c) = 0, and so g(∂B

1 c) = 3 and g(∼Bc) = 1.
• g(c) = 3.

Then, f(c) = 1, while f(∂B
1 c) = 1, whereas f(∼Bc) = 0, in which

case, by (3.68), f(∂B
1 ∂

B
1 c) = 1, while, by (3.69), f(∼B∂B

1 c) = 0, and
so g(∂B

1 c) = 3 and g(∼Bc) = 0.
In this way, g(oBc) = oA4g(c), for every o ∈ (Σ4 \ Σ+,01) = {∼, ∂1},
for N4− = {1}. Finally, consider also any d ∈ B. Then, f(c ∧B d) =
min(f(c), f(d)), while, by (3.66), f(∂B

1 (c ∧B d)) = min(f(∂B
1 c), f(∂B

1 d)),
whereas, by (2.3), f(∼B(c ∧B d)) = max(f(∼Bc), f(∼Bd)). Therefore,
g((c∧Bd) = (min(f(c), f(d))·(1+(min(f(∂B

1 c), f(∂B
1 d))·(2−max(f(∼Bc),

f(∼Bd)))))). Consider the following complementary cases:
• min(f(c), f(d)) = 0.

Then, either of f(c|d) = 0 holds, in which case g(c|d) = 0 6 g(d|c),
and so g(c ∧B d) = 0 = min(g(c), g(d)).

• min(f(c), f(d)) = 1.
Then, both f(c|d) = 1 hold, in which case g(c|d) > 1 6 g(c ∧B d).
Consider the following complementary subcases:
– min(f(∂B

1 c), f(∂B
1 d)) = 0.

Then, either of f(∂B
1 (c/d)) = 0 holds, in which case g(c/d) =

1 6 g(d/c), and so g(c ∧B d) = 1 = min(g(c), g(d)).
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– min(f(∂B
1 c), f(∂B

1 d)) = 1.
Then, both f(∂B

1 (c/d)) = 1 hold, in which case g(c/d) > 2 6
g(c ∧B d). Consider the following complementary subsubcases:
∗ max(f(∼Bc), f(∼Bd)) = 1.

Then, either of f(∼B(c‖d)) = 1 holds, in which case g(c‖d) =
2 6 g(d‖c), and so g(c ∧B d) = 2 = min(g(c), g(d)).

∗ max(f(∼Bc), f(∼Bd)) = 0.
Then, both f(∼B(c‖d)) = 0 hold, in which case g(c‖d) = 3,
and so g(c ∧B d) = 3 = min(g(c), g(d)).

Thus, anyway, g(c ∧B d) = min(g(c), g(d)) = (g(c) ∧A4 g(d)).
In this way, by (2.1) and (2.2), H , hom(B,A4) 3 g [is finite]. More-

over, f((∼B)kb(1−)k) = (1(−1)), in which case we have g((∼B)kb1−k) =
0 6= g((∼B)kbk), and so, as g ∈ H, get (3−)kg(b0) 6= (3−)kg(b1). Then,
max(g(a0), g(a1)) = g(b0) 6= g(b1) = min(g(a0), g(a1)), in which case
g(a0) 6= g(a1), and so ~ : B → nH , d 7→ 〈h(d)〉h∈H is an embedding of B
into AH

4 , as required. a
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