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1 Instituto Politécnico Nacional,Mexico city,CITEDI, Mexico
seyitope@citedi.mx
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Abstract

In this age where data is growing at an astronomical rate, with unfettered access to
digital information, complexities have been introduced to scientific computations, analysis,
and inferences. This is because such data could not be easily processed with traditional
approaches. However, with innovative designs brought to the fore by NVIDIA and other
market players in recent times, there have been productions of state-of-the-art GPUs such
as NVIDIA A100 Tensor Core GPU, Tesla V100, and NVIDIA H100 that seamlessly han-
dle complex mathematical simulations and computations, Artificial Intelligence, Machine
Learning, and high-performance computing, producing highly improved speed and effi-
ciency, with room for scalability. These innovations have made it possible to efficiently
deploy many parallel programming models like shared memory, distributed memory, data
parallelization, and Partitioned Global Address Space (PGAS) with high-performance met-
rics. In this work, we analyzed the parquet-formatted New York City yellow taxi dataset on
a RAPIDS and DASK-supported distributed data-parallel training platform using NVIDIA
multi-GPUs. The dataset was used to train Extreme Gradient Boosting (XGBoost), Ran-
domForest Regressor, and Elastic Net models for trip fare predictions. Our models achieved
notable performance metrics. The XGBoost achieved a mean squared error of 11.38 and
R-squared of 0.9678. The model training and evaluation time took 38.51 seconds despite
the huge size of the training dataset, showing how computationally efficient the system
was. The model results for the RandomForest MSE was 21.96, and the R-squared was
0.9378. In the bid to show the scalability and versatility of our experimental design to
different machine learning domains, our GPU-accelerated training was extended to image
classification tasks by using MobileNet-V3-Large pre-trained architecture on a CIFAR-100
dataset. We achieved a ROC AUC of over 95% for the implementation. This work ad-
vances the state-of-the-art in parallel computing through implementation of RAPIDS and
DASK frameworks on a distributed data-parallel training platform making use of NVIDIA
multi-GPUs. The work is built on a well established theoretical framework using Am-
dahl and Gustafon’s laws on parallel computation.By integrating RAPIDS and DASK, we
contribute to advancing parallel computing capabilities, offering potential applications in
smart city development and the field of logistics and transportation management services
where rapid fare predictions are very important. The contribution could also be extended
to the field of image classification, vision systems, object detection and embedded systems
for mobile applications.
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1 Introduction

The field of scientific computing is replete with different GPU-powered parallel programming
models because they are very inevitable in the efficient processing of large datasets that are avail-
able in real-world use cases. They have a mathematical framework on Amdahl and Gustafson’s
equations [2][4] [8] which are expressed as:

S(n) =
1

(1− p) + p
n

(1)

and
S(n) = n− α(n− 1) (2)

Where:

• S(n) is the speedup achieved using n processors.

• p is the parallelizable portion of the program.

• 1− p is the sequential (non-parallelizable) portion of the program,

• n is the number of processors.

• α is the fraction of time spent on the serial (non-parallelizable) portion of the program
and

• n− 1 is the number of parallel workers relative to the serial execution.

They provide conceptual frameworks that influence the logical paths employed by program-
mers either during application or algorithm design or when fixing bugs in the system. The
models are multifaceted: ranging from shared memory, distributed memory, hybrid model,
data-parallel model, and many more. The focus of this work is on the use of RAPIDS, which
is an open-source library that unlocks the speed of GPU for cost-effective computations [21].
This open-source library is based on the data parallel model. When used within a single GPU,
it uses shared memory parallelism. It is built on the CUDA programming model [21]. Even
though RAPIDS itself does not implement distributed memory parallelism, as shown in this
work, it could be used alongside frameworks such as DASK for distributed computing across
several nodes and multiple GPUs.

The remaining part of this paper is structured as follows: Section 2 describes the method-
ologies that were used for the experiments. Section 3 addresses the results with a detailed
explanation of it. Section 4 discusses the conclusion inferred from the work and the focus for
future work.

2 Methodology

This work demonstrates sophisticated pipelines used in the two experiments where the RAPIDS
environment was used in conjunction with the DASK framework to enhance proper implemen-
tations of distributed data-parallel training. The work of [23] revealed the evolution of parallel
computing and talked about data parallelism, model parallelism, and pipeline parallelism; we
termed these DMP parallelisms. The methodology used in this work focused more on the data
and pipeline parallelisms where the DASK framework was used in conjunction with RAPIDS
for parallelism of data and pipelines across multiple GPUS.
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Beyond the theoretical framework in the literature, we provided some empirical data to show
the viability of these approaches.
Each of these experiments is analyzed below with their corresponding pipeline.

Experiment 1: Distributed Data-Parallel Training of New York City
Taxi Dataset using XGBoost with RAPIDS Integration

Figure 1: RAPIDS DASK Distributed Training Pipeline for NYC Taxi Data

In the first experiment, the popular New York City yellow taxi dataset https://www.nyc.

gov/site/tlc/about/tlc-trip-record-data.page, with records of 3,539,193 rows and 19
columns for June 2024, was used and trained with traditional machine learning algorithms
comprising XGBoost[5],that relies on this mathematical framework:

Obj(θ) = L(θ) + Ω(θ) (3)

.
Where:

• Obj(θ) is the objective function to minimize during training.

• L(θ): The loss function, representing the error of predictions.

• Ω(θ): Regularization term to control model complexity.
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Random Forest[3],mathematically represented by the equation:

ŷ =
1

M

M∑
m=1

fm(x) (4)

Where:

• ŷ is the Predicted value.

• M is the number of decision trees in the random forest.

• fm(x) is the prediction from the m-th decision tree.

and Elastic Net[24], architecturally described by this mathematical expression:

L(β) = ∥y −Xβ∥2 + λ1∥β∥1 + λ2∥β∥22 (5)

Where:

• L(β): Elastic net loss function.

• ∥y −Xβ∥2 is the Residual sum of squares.

• λ1∥β∥1 is the Lasso (L1) regularization term.

• λ2∥β∥22 is the Ridge (L2) regularization term.

XGboost has proven to be a reliable algorithm in this type of predictive task as shown by M.
Poongodi et al.[19] in their work. Even though the accuracy of their prediction was not explicitly
revealed in the literature, in our case, we were able to achieve above 99% for predictions of some
price ranges. The New York City yellow taxi dataset has been used widely in various machine
learning applications, particularly for fare prediction and trip duration estimation like in many
other works where taxi-related datasets have been used[6][14].

By taking advantage of cuPy, cuML, and cuDF libraries of the RAPIDS framework, the
models were trained over a distributed data-parallel system taking advantage of the recent
revolutionary trends in scalable general-purpose GPU computing [22]. The model was later
used to make fare predictions. The performances of the models were tracked for visualizations.
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Experiment 2: Distributed Data Parallel Training of CIFAR-100 on
MobileNet-V3-Large using PyTorch and DASK with RAPIDS Inte-
gration

Figure 2: RAPIDS DASK Distributed Training Pipeline

This setup utilizes some of the libraries that are provided by RAPIDS, which include cuDF
for GPU-accelerated data frame manipulations and computations. It also utilizes cuPy for
GPU-accelerated array operations. cuML was used as well, as the experiment is a rigorous
implementation of deep learning architecture [21].

The methodology further incorporates DASK for optimum parallelism of the data across
multi-GPUs, which in this experiment were eight.The speed-up gain[10] could be seen in this
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expression:

S =
T1

Tp
(6)

Where:

• S is the Speedup due to parallelization.

• T1is the Execution time of the sequential algorithm.

• Tp is the Execution time using p processors.

The PyTorch library was further used to complement the DASK framework for better acceler-
ation of the task [18].

The architecture used for the experiment was a pre-trained MobileNet-V3-Large[12], which
was further fine-tuned before the final classification layer with the introduction of 512 neurons
and a dropout normalization strategy to enhance better model performance and generalization
[11]. For the final classification into classes, the softmax[7] applied to the logits during the
loss calculation is used since it has been internally incorporated with the CrossEntropyLoss
function[16].

σ(z)i =
exp(zi)∑
j exp(zj)

(7)

Where:

• σ(z)i: Probability output for the i-th class.

• zi: Input score for the i-th class.

•
∑

j exp(zj): Sum of exponential scores for all classes.

H(p, q) = −
∑
x

p(x) log(q(x)) (8)

Where:

• H(p, q): Cross-entropy loss.

• p(x): True probability distribution.

• q(x): Predicted probability distribution.

A series of data augmentation techniques such as random crop, random horizontal flip, and
color jitter were used on the architecture. The AdamW optimizer was used and the model was
trained through 75 epochs [15].

3 Results and Discussion

Experiment 1 Results

The results obtained through the multi-GPU process using RAPIDS were very revealing. To
begin with, the RAPIDS performance analysis is a great testament to how efficient and com-
putationally fast a distributed system could be by leveraging RAPIDS’ capabilities [21]. Judg-
ing from the total execution time of 39.71 seconds for a dataset of 3,539,193 records with 19
columns(Figure 4a), the enormously great benefits inherent in this setup cannot be overstated.
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Also, the model training and evaluation dominated the execution time (38.51 seconds),
which clearly indicates effective parallelization of the computationally intensive steps of this
procedure. The timing results from the data preprocessing steps, which are splitting, scaling,
and feature engineering, showed that the operations were completed in milliseconds, showcasing
the power of GPU-accelerated operations.

The performance of XGBoost for trip fare prediction was superb(Figure 4b). The mean
squared error [9], expressed as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (9)

Where:

• MSE stands for the Mean squared error and represents a measure of prediction accuracy.

• n is the number of data points.

• yi is the actual value for the i-th data point.

• ŷiis the predicted value for the i-th data point

was 11.38, and the R2[17], given as

R2 = 1− SSres
SStot

(10)

Where:

• R2 is the coefficient of determination.

• SSres is the sum of squares of residuals.

• SStot is the Total sum of squares

The model’s R2 was computed as 0.9678, indicating that the model could explain nearly
97% of the variance in taxi fare data. The high accuracy (ranging from 97.63% to 99.45%)
within the $1 to $10 fare prediction range suggests its real-world applicability. The top three
features of importance identified by the model were trip distance, trip duration, and fare per
mile.

Based on the high accuracy of the model, especially from the Mean Squared Error (MSE),
we developed a 4Ps model to illustrate its relevance. Each P is explained below:
Planning: The model revealed a strong correlation between trip distance, trip duration, and
fare per mile. Transportation networks can utilize these features to forecast fares accurately,
facilitating better scheduling and resource allocation.
Pricing: The model’s accuracy ensures fair pricing for both passengers and drivers. Passengers
receive reliable fare estimates, while drivers can predict their earnings on a trip. With high
predictive accuracy for lower fares, such services remain accessible to lower-income earners. In
conclusion, all stakeholders benefit from fair pricing.
Prevention: Transportation companies can use the model’s accuracy to optimize fleet routes,
helping to control fuel costs and improve service efficiency.
Prediction: In smart cities, this predictive model can aid traffic flow management and resource
allocation, easing congestion issues.

7
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Table 1: Fare Distribution Analysis by Day of the Week

Fare Distribution Fea-
ture

Description and Analysis

The consistency of the
Median Fare

The median fare is notably stable for all the days of the week,
revealing a pattern that is uninfluenced by the erratic demand
pattern that does occur at weekends and some weekdays.

Outliers in High Fare
Trips

The long tails or whiskers extending upwards, particularly on cer-
tain days, reveal that high fares seldom occur. These might not
be unconnected with long-distance or some special cases.

Symmetry Across
Days

A unique and revealing pattern concerning the fare distributions
across the week’s days is noticed. A safe conclusion that could be
drawn from the pattern is that day-of-week factors do not influ-
ence fare pricing tremendously.

Uncommon High-Fare
Trips

The extended tops of the violins represent rarely occurring high-
fare trips (above $200), stretching the fact that the model is op-
timized for shorter, more common trips, with less accuracy in
high-fare predictions.

Table 2: Error Distribution Analysis of the XGBoost Model

Error Distribu-
tion Feature

Description and Analysis

Tight Distri-
bution Around
Zero

The majority of prediction errors are concentrated
around zero, indicating minimal bias and high accu-
racy in fare predictions for most cases.

Skewness of Er-
rors

Thin tails are observed extending to both nega-
tive and positive sides, indicating occasional under-
predictions and over-predictions, but large errors are
infrequent.

Absence of Sys-
tematic Bias

The symmetric shape of the error distribution sug-
gests that the model does not consistently overpre-
dict or underpredict fares, enhancing its reliability.

Extreme Out-
liers

A few outliers with prediction errors greater than
±300 are present, indicating that the model strug-
gles with infrequent, high-variance fare cases, such
as long trips or anomalies.

The violin plots (Figure 5b and Table 1) provided further insights into the model’s perfor-
mance. There were consistent median fares across all days, with fares ranging from $0 to $100.
The violins’ bulging at similar points suggested common fares for short trips.

These observations further confirm the model’s reliability. The correlations make this model
a valuable tool for transportation stakeholders in fare-related decision-making. Finally, the
dense clustering of data points along the dotted diagonal line (Figure 3b) demonstrates a strong
linear correlation between predicted and actual fares. The clustering also revealed near-perfect
accuracy for fares in the $0 to $200 range, with increased scatter for fares above $200, indicating
reduced accuracy for higher fares.
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(a) Feature Importance (XGBoost)

(b) Predicted vs Actual (XGBoost)

Figure 3: XGBoost Model Analysis

9
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(a) Training Time Stages

(b) Model Comparison

Figure 4: Training Performance and Model Comparison

10
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Figure 5: Error and Fare Distribution Analysis

Experiment 2 Results

For the CIFAR-100 dataset experiment, the distributed training on MobileNet-V3-Large showed
promising results. The training and validation losses, Figure 10, exhibited variances across the
training epochs. While the training losses dipped towards the minimum, the same was not true

11
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for validation losses as it played more in the region between 2.5 and 3.0. These loss performances
are ultimately reflected in the model’s accuracy as well as shown in Figure 11.

The model’s computational performance and efficiency were relatively stable throughout the
training epochs as could be deduced from the execution time (figure 8) that stayed within the
range of 9.5 to 12.5 seconds throughout the process. The dips and spikes notwithstanding, the
GPU utilization efficiency was still relatively stable.

From Figure 9, we summarized the distribution of the training and the validation loss
depicted by the violins using the table shown below.

Table 3: Comparison of Training and Validation Loss Distribution

Metric Training Loss Validation Loss
Range 1.5 to 4.5 2.0 to 2.5
Center Most values centered around 2.5 to 3.5 Most values centered around 2.0 to 2.5
Shape Wide distribution with significant fluc-

tuations and outliers
Narrower distribution with tighter vari-
ance

Implication Indicates the model is still learning but
may be overfitting in some cases

Consistent performance on validation
data, suggesting good generalization

Comparison Wider loss distribution than validation,
possible overfitting or instability

Indicates better generalization but re-
finement needed for training loss

The model performed well on the top 20 classes(figure 12) with predicted labels and true
labels being accurately the same in most cases as shown by the confusion matrix which is
mathematically represented as:

Cij =

n∑
k=1

1(yk = i ∧ ŷk = j) (11)

Where:

• Cij is the Confusion matrix entry for true label i and predicted label j.

• yk is the True label for the k-th sample.

• ŷk is the Predicted label for the k-th sample[20]

The radar plot, figure 7, gave significant insights into the accuracy level of the top 10 classes,
with classes 68 and 53 gravitating greatly towards the 90% accuracy point.

The Receiver Operating Curves(ROC), figure 6 gave another vivid revelation about this
distributed data-parallel (DPP) training model. The Area under the Curve(ROC-AUC) for
the model showed a predictive power about the model with a higher number of counts clus-
tering around 0.9 to close to 1.0. This means that the model classifies well above the random
classification.
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Figure 6: ROC Curves for 75 Epochs (AdamW)

Figure 7: Radar Plot for 75 Epochs (AdamW)
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Figure 8: Training and Validation Loss for 75 Epochs (AdamW)

Figure 9: Training and Validation Accuracy for 75 Epochs (AdamW)
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Figure 10: Training and Validation Loss Figure 11: Training and Validation Accuracy

Figure 12: Confusion Matrix for 75 Epochs (AdamW)

4 Conclusion

This work has revealed a great deal of information relating to parallel programming perfor-
mances in relation to efficiency, scalability, and adaptability while using RAPIDS libraries
across multiple GPUs.

The first experiment has shown that with proper experimental setup and relevant model
pipelines, parallel programming could be used to design scientific Models that would be robust
enough to have application in the real-world dataset, and as such, informative and impactful
details could be seen promptly from data points which might be very difficult to achieve when
working on only CPU-based Machine. This was aptly demonstrated with the large parquet
formatted dataset that was used for the trip fare prediction.
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The same is equally true for the complex CIFAR-100 dataset that has applications in real-
world scenarios in areas like object recognition, vision systems, image detection, mobile appli-
cations, and more. The parallelized model could be embedded in real-life gadgets for the use
of humanity.

This study demonstrates the effectiveness of using RAPIDS in conjunction with DASK for
distributed data-parallel training. The experiments with the NYC taxi dataset and CIFAR-100
showcased significant speedups in data processing and model training. The use of Parquet files
for data storage further enhanced the efficiency of our data handling pipeline[1].

The combination of RAPIDS, DASK, and PyTorch provided a powerful framework for han-
dling large-scale datasets and complex deep-learning models.

In our future work, we would explore how some complex datasets could be finely trained on
the parallel system with a control handle on overfitting. Equally, further work would be done
on much more efficient implementations of RAPIDS setup and DASK without Pytorch. This
is necessary in order to discover some inefficiencies that might be introduced into the system
during data transmission among the GPUS. By using the Karp-Flatt coefficient[13], we would
study the inefficiencies in the system during parallelization by also focusing on factors such as
communication and synchronization overheads.
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