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ABSTRACT

Visual odometry (VO) is one of the most challenging techniques in computer vision for autonomous vehi-
cle/vessels. In VO, the camera pose that also represents the robot pose in ego-motion is estimated analyzing
the features and pixels extracted from the camera images. Different VO techniques mainly provide different
trade-offs among the resources that are being considered for odometry, such as camera resolution, computa-
tion/communication capacity, power/energy consumption, and accuracy. In this paper, a hybrid technique is
proposed for camera pose estimation by combining odometry based on triangulation using the long-term period
of direct-based odometry and the short-term period of inverse depth mapping. Experimental results based on
the EuRoC data set shows that the proposed technique significantly outperforms the traditional direct-based
pose estimation method for Micro Aerial Vehicle (MAV), keeping its potential negative effect on performance
negligible.
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1. INTRODUCTION

Obtaining the position and orientation of a platform by analyzing images captured by single or multiple cameras,
i.e., visual odometry (VO), is becoming one of the most interesting and challenging topics in the field of machine
vision. VO techniques can be based on one camera or more than one camera. Monocular VO overcomes those
issues by analyzing the extracted features from images captured by a single camerasterio-camera.! Usually in
VO based on monocular camera, the pose of the camera is calculated by extracting some correspondent points
in consecutive camera frames, i.e., keyframe, while the camera is moving. The most common way to represent
points observed in images is using Euclidean XYZ coordinates and the depth of these points is computed using
the triangulation technique from two? or more! keyframes. Another important issue is the parallax angle that is
the angle between inclination of two lines of sight, i.e., ray, between the camera and a point in two consecutive
sample times. The measurement of parallar angle helps to estimate the distance of the point from the camera.

Using monocular camera has some well-known challenging drawbacks that increase the error of estimating
the pose based on one camera. For instance, newly observed 3D points initially have unknown depth until they
are observed in two or more keyframes. This procedure introduces a delay, which means the newly detected
points with highly uncertain depths cannot be immediately used to improve the camera motion estimation.
Another problem of using the euclidean representation is that in the case of 3D points that retain a low parallax
angle, i.e., the ones that are very far away from the camera, not many frames are included in the estimation of
the camera pose. In indoor applications, mostly few centimeters of movement is enough to measure sufficient
parallax. However, in very large-scale outdoor scenes, for distant points, it might take a few kilometers of
camera movement before their parallax is properly observed. Unlike the Fuclidean representation, inverse depth
can represent points with a low parallax angle and at infinity, i.e., p = 0. The only drawback of the inverse-depth
parameterization is that it needs six parameters to represent a point rather than the three points of the Euclidean
approach, which increases the computational load.

In this paper, we propose a hybrid parameterization technique by using both euclidean and inverse depth
approaches to to use both euclidean and inverse depth mapped point for the sake of odometry. We exploit
computational efficiency of the euclidean coordinates to connect newly observed points to the old observed
points of the same object. This finding the correspondence can be used for odometry. On the other hand, points
with low parallax angles are added to odometry via the inverse depth mapping. To increase the computational
efficiency of the proposed system, we switch all points with the linearity index below a threshold from inverse
depth to Euclidean coordinates.



We organize the remaining part of this paper as follows. In Section 2, we illustrate the overall system work
flow which consists of three steps: initialization, image alignment, and depth mapping. In Section 3, we present
the experimental results. Finally, in Section 4, we draw the conclusions.

2. SYSTEM OVERVIEW

The overall system architecture of the proposed approach is shown in Figure 1. The system contains two main
tasks concurrently running with each other, 1) the task for estimating the motion of the camera using a direct
method, i.e., image alignment and 2) the task for building a local 3D map of the surrounding. For estimating
the camera motion the incremental sequence of camera movements are estimated by minimizing the intensity
of pixel windows that observe the same 3D point. The 3D points stored in the local map are back-projected
into the image and a patch of 4x4 pixel window is selected around those points. The second task builds a local
3D map of the surrounding using two parameterization techniques. a) In case the current frame is selected as
a keyframe, the current and previous keyframes are triangulated and a set of new Euclidean points, which are
coded with three Cartesian coordinates (XYZ), are stored in the local depth map. b) Contrarily, if the captured
frame is not a keyframe, a feature-based algorithm, e.g, FAST, is applied to detect new features. These features
have a parallax angle (o« = 0) and initial depth equal to infinity. The inverse-depth technique is used to represent
these points, which are coded by 6-vector containing the Euclidean position of camera from which the feature
was observed, azimuth and elevation angles, and the inverse of the Euclidean distance from the camera to the
3D point.
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Figure 1: The general overview of the proposed hybrid monocular visual odometry using Euclidean and inverse-
depth parameterization.

2.1 Initialization

The initialization phase in the proposed technique is based on the Nister five-point algorithm.? The first two
captured keyframes are used to compute the essential matrix. Subsequently, the rotation and translation of the
camera are determined from the QR-factorization of the essential matrix.? First, the features from the captured
images are extracted. To extract and track key points, i.e., corners and edgelets, from the captured images,
FAST* and Canny® algorithms are used, respectively. It is worth mentionning that the advantage of FAST,
compared with other feature extraction methods like SIFT,® is its computational efficiency and high speed.
To reduce the computational complexity, only a small part of the strong edges, i.e., edgelets, are processed.
Moreover, the limited number of keyframes are selected in the case there are too many extracted features. To
track the features from the first frame, the Kanade-Lucas-Tomasi (KLT) feature tracker is used. To label a
frame as the next keyframe, the number of trackable features among the current frame and next frame must be
more than 50, and the average disparity between features in the current frame and next frame must be more
than 50 pixels. By this, we make sure that most of the detected features have a large parallax angle. After
this, the five-point algorithm is used to obtain the essential matrix. Then, the initial transformation matrix is
decomposed from the essential matrix by using QR-factorization.

2.2 Image Alignment

In image alignment, the camera pose is estimated by minimizing the photometric error (intensity error) of
already extracted patches, in 4x4 pixels, of the observed similar 3D points in two frames as is shown in Figure 2.

First, the 3D points stored in the local map are projected into the reference and current frame using camera
projection matrix Mp. A Euclidean point P¥ € R3 in the world coordinate space can be projected to the image
coordinates w € R? using the camera projection model as follows:

w; = KRT(PF — 1) (1)



Figure 2: An example of Euclidean points that are shown in red and inverse depth points that are shown in
blue for two consecutive frames. A direct method is applied to obtain the transformation matrix, i.e., Ty x—1, by
minimizing the photometric error of the patches that are shown in green squares in the figure. As can be seen,
the method uses both Euclidean and inverse-depth points

Whereas inverse depth points P2 are coded by 6 parameters, which can be projected to the 2D image using
the following equation:

w; = KR" (m;(0;,¢;) — pi(t — pe)) (2)

where K denotes the intrinsic camera matrix, R and ¢ are the rotational matrix and translation vector,
respectively. For the inverse depth representation, p. denotes the camera position that is (z;y;2;) in which the
point is observed first. The unit directional vector is denoted by m, where 6; 1; are the azimuth and the elevation
in the world frame, respectively. The depth (d;) of the 3D point is encoded by its inverse p; = 1/d;.

After all 3D points have been projected into two consecutive frames, a patch of 4x4 pixels is selected around
each point. The current frame (Fy) is aligned with the previous frame (Fi_1) by minimizing the intensity residual
6. The intensity residual is defined as the photometric difference between the pixel patches that observe the same
point of P. The incremental motion of the camera is estimated by optimizing the intensity residual as follow:

n 2
. 1
T x—1 = argmin E §||5(Ik — 11, Py (3)

Tr—1 5—7

where Ty r_1 denotes the transformation matrix between the two consecutive frames Fj and Fj_, that
minimizes the photometric error between pixels observed in the same 3D point P;.

The residual is computed using the inverse compositional algorithm,” in which all the computationally de-
manding parts (e.g. the Hessian matrix) are computed only once in the pre-computational part to avoid over
computation. As shown in Algorithm 1, the alignment process is done in each pyramid level starting from the
smaller image size. In our case, the algorithm starts from the pyramid level 3 and ends with the pyramid level
0. The optimization stops at each pyramid level when the error increases or the algorithm detects convergence,
i.e., the obtained results are close tothe previous one. The bilateral filter, which is non-linear and non-iterative,®
is used in the algorithm to smooth images.

2.3 Depth Mapping

The mapping part builds a map of the 3D points observed by the camera. These points are used later to reduce
the searching region in the localization part. The uncertainty of the depth is reduced by updating the map with
each entering new frame. When the points are converged they are stored in the Local 3D Map data structure,
see Figure 1. To make the system more feasible for the resource-constrained embedded systems, only Euclidean
points observed in the set of keyframes and the highest score Inverse-depth points in the normal frames are
stored in the map. Moreover, when the keyframe queue is full, points extracted from the oldest keyframe are



Input: two consecutive frames Fj_1, F}
Result: Transformation matrix T} 1
initialization and compute T, ;
for Image pyramid < 3 to 0 do
pre-compute Jacby.y;
for iter < 0 to N do
for Fts + 1 to M do
initialization and compute bilateral filter;
for pizel < 0 to 15 do
| compute residual;
end
compute chi-squared, compute Jacobian, compute Hessian;
end
if converged then
| break ;
end
update T p—1 ;
end
end

Algorithm 1: Image alignment using direct-based method

deleted from the map to maintain a low computational time. A feature extraction procedure is performed on
each new keyframe, which increases the robustness of the system by inserting new 3D points in the map.

First, the local depth map must be initialized. From the first two keyframes selected at the beginning of
the pipeline, a large number of extracted and matched features are used to initialize the local depth map. The
two keyframes must share the same field of view and the displacement between these two keyframes must be
sufficiently large. Based on this local depth map initialization, the initial translation and rotation of the camera
are computed by decomposing the Essential matrix and the 3D point depth of the matched points and applying
triangulation based on this.

) 3D point projection (b) Feature extraction in empty cells (c¢) Shi-Tomasi selection
Flgure 3 Depth map initialization and update. (a) stored points in the map are projected on the current
keyframe (green circles). (b) using the FAST detector, new features are extracted from empty cells (red circles).
(¢c) based on the Shi-Tomasi score, only one point is kept in each cell

After this, normal frames are split into small sub-images of a fixed size, in our experiment 30x30 pixels.
The 3D points already stored in the local depth map are projected to the frame and those sub-images that are
non-empty, i.e., some projected points are inside their area, are discarded (see Figure 3). Then, features are
extracted in empty sub-images using the FAST feature detector. If more than one features are detected in a
cell, the point with the highest Shi-Tomasi score” remains and the other points are deleted, see Figure 3c. The
formula to calculate the score is as follows:

R = ’ITL’L'TL(Al, )\2) (4)

where R denotes the score, A\; and A\ are the eigenvalues. Newly extracted points are represented by inverse



depth parametrization. A 3D point observed in a scene can be defined by a 6-D state vector:
Di = (xia Yi, Zis m(el ¢z), Pi )T (5)

The p vector denotes the ray from the camera position (z;y;2;) in which the point is firstly observed. The
uni-directional vector denoted by m, where 6; 1; are the azimuth and the elevation in the world frame. The
depth (d;) of the 3D point is encoded by its inverse p; = 1/d;. Unlike Euclidean points, inverse depth can
represent points in infinity when p = 0. The only drawback of inverse depth parametrization is its need for six
parameters to represent a point instead of the three points in Euclidean parametrization, which increases the
computational load. Therefore, in our algorithm, nearby and initialized points, with low uncertain depths, are
converted to Euclidean points to reduce the computational load. An inverse depth point can be converted to
Euclidean coordinates according to the following equation:

<Y¢> = (%) + —m(6;, 1)) (6)
Z; Zi Pi

Inverse-depth coordinates are used immediately at the time the point is observed, which is beneficial in
sudden camera movements as there is no delay between the feature detection and odometry. Moreover, points
with large uncertain depths can be used to improve gradually the orientation estimation. The depth of points
is refined with every new frame until the depth uncertainty is small enough. The linearity index pr is used to
determine at which time a point is converged and is calculated as follows:

Lp:ﬂﬂf@cosa (7)
Po di

where o-l% is the inverse-depth variance and pg—; 4, is the inverse-depth and do,d; are the distances between
the point and the current and next camera position, respectively. The parallax angle which is the angle between
the two cameras’ optic axes is denoted by «. When a feature is newly observed in the first few frames, the
parallax angle is likely to be very small and thus the linearity index L, is low (good) unlike the Euclidean
linearity index which is high (bad) for a small parallax angle. Proceeding with the estimation and increasing
the parallax angle lead to a lower depth uncertainty, and therefore it is more computationally efficient to switch
from inverse depth to Euclidean coordinates. A point is switched when the linearity index Ly is smaller than a

threshold, i.e., 0.1 in our experiments.

3. EXPERIMENTAL RESULTS

The proposed algorithm is tested on a Jetson TX2 board with a quad-core ARM Cortex-A57 CPU @ 2GHz
clock frequency. We use the EuRoC dataset to evaluate the efficiency of the technique.!! It is a visual-inertial
dataset collected on-board for a Micro Aerial Vehicle (MAV). Figure 4 shows the estimated camera pose using the
proposed technique in comparison against the real camera pose, the groundtruth in the figure, and the common
position estimation technique, EP in the figure. The results are reported separately for both X and Y dimensions
of the camera pose of a MAV. In the case where the number of features in a frame is too high, only the first 100
features are selected, see Section 2.1. For the camera calibration procedure, a target-based calibration method
is used.'? As can be seen, the EP+IDP method significantly outperforms the pose estimation nmthod based
on anly EP. This demonstrates the effect of using the contribution of inverse depth technique in increasing the
accuracy of pose estimation.

Table 1 shows the execution time of different parts of the algorithm. As can be seen, the mapping part, that
represents the extra processing the algorithm imposes on the traditional techniques, has only a small penalty on
the overall execution time, less than 2%.

4. CONCLUSION

Monocular visual odometry is a challenging technique for estimating the position and orientation of the camera
by moving a vehicle/vessel and by analyzing the features and pixels extracted from the camera images. This
paper proposed a hybrid technique to carry out odometry by combining pose estimation based on long-term
triangulation of direct-based odometry and short-term inverse depth mapping. Experimental results based on
the EuRoC data set show that the proposed technique significantly outperforms the traditional pose estimation
method, keeping its negative effect on performance negligible.
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Figure 4: The obtained results of the proposed hybrid technique. Normal estimated position, EP in the figure,
and the combination of invergse-depth mapping and EP, i.e., EP+IDP, are compared against the real position
of the camera, i.e., the groundtruth
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Table 1: Execution times of the different parts of the proposed algorithm

H Thread ‘ Time(ms) H
initialization 58.901 ms
image alignment | 8.79 ms
mapping 0.79 ms
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