
EasyChair Preprint
№ 6176

Scalar Actions in Lean’s Mathlib

Eric Wieser

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 28, 2021



Scalar actions in Lean’s mathlib

Eric Wieser
efw27@cam.ac.uk

Cambridge University Engineering Department

Abstract

Scalar actions are ubiquitous in mathematics, and therefore it is valu-
able to be able to write them succinctly when formalizing. In this
paper we explore how Lean 3’s typeclasses are used by mathlib for
scalar actions with examples, illustrate some of the problems which
come up when using them such as compatibility of actions and non-
definitionally-equal diamonds, and note how these problems can be
solved. We outline where more work is needed in mathlib in this area.

1 Introduction

In this paper, we explore some of the design decisions made in mathlib [mC20], a mathematical library for the
Lean 3 theorem prover [dMKA+15]. In particular, we look at the scalar action operator • as a case-study in how
typeclasses are used. In section 1.2 we introduce the typeclass which provides this notation, and some of the
hierarchy of stronger typeclasses that surround it. In section 2 we outline some basic actions, and in section 3
show how these are used to build more complex classes. In section 4 we show how some of the extra compatibility
typeclasses associated with these actions can be repurposed to work with various restricted versions of unital
associative algebras, referencing two recent contributions to mathlib that exploited this approach. In section 5
we provide a brief example of how typeclass diamonds can arise, and why they matter. We conclude in section 6
by discussing further work needed on mathlib, primarily regarding scalar right-actions.

1.1 Typeclasses

A central language feature used by mathlib in expressing algebraic structure is that of typeclasses [mC20, sec-
tion 4], which are used to equip types with canonical operators and properties of those operators. A simple
example is the typeclass semigroup M , which equips the type M with the operator * and an associativity axiom
mul_assoc . Working with typeclasses breaks down into three parts; declaring them with the class keyword,
providing them with the instance keyword, and consuming them with [ ] around a typeclass name.

The semigroup typeclass from mathlib is declared roughly as follows, which reads “a type G has a multipli-
cation if it has a binary operator called mul” and “a type G is a semigroup if it has a multiplication and that
multiplication is associative”. Note that the use of extends additionally tells Lean how to obtain an instance
of has_mul G if it has semigroup G .

class has_mul (G : Type*) :=

(mul : G → G → G)

infix * := has_mul.mul
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class semigroup (G : Type*) extends has_mul G :=

(mul_assoc : ∀ a b c : G, a * b * c = a * (b * c))

With this typeclass in place, we can write a theorem that applies to any semigroup by writing [semigroup G]

in our argument list, as we do in mul_assoc2 below. This tells Lean that whenever the mul_assoc2 lemma is
used on a type G , it should perform a typeclass search for a term of type semigroup G . In turn, it means that
inside mul_assoc2 we have access to the mul_assoc axiom of semigroups on G .

lemma mul_assoc2 {G : Type*} [semigroup G] (a b c d : G) : a * (b * (c * d)) = ((a * b) * c) * d :=

by rw [mul_assoc, mul_assoc]

The final piece of the puzzle is how to inform the typeclass search that semigroup G is available for a particular
type G . To demonstrate this, we define a structure opposite α that wraps a single element of an arbitrary
type α. Using the instance keyword, we then equip it with a reversed multiplication structure, and express
“For any type α such that α is itself a semigroup, opposite α is also a semigroup”. This method of “chaining”
instances is central to the power of typeclasses, and is used extensively by mathlib in situations like equipping a
product of groups with a group structure, or polynomials over a ring with a ring structure.

structure opposite (α : Type*) := (x : α)

instance (T : Type*) [semigroup T] : semigroup (opposite T) :=

{ mul := λ a b, 〈b.x * a.x〉,
mul_assoc := λ a b c, congr_arg opposite.mk (mul_assoc c.x b.x a.x).symm }

1.2 The has_scalar typeclass

The typeclass we are most interested in this paper is has_scalar M α, which equips a type α with an action by
elements of M denoted m • a . In practice, this is almost always used for group actions, which are actions that
satisfies the additional fields in mul_action M α:

class has_scalar (M : Type*) (α : Type*) := (smul : M → α → α)

infixr ` • `:73 := has_scalar.smul

class mul_action (M : Type*) (α : Type*) [monoid M] extends has_scalar M α :=

(one_smul : ∀ a : α, (1 : M) • a = a)

(mul_smul : ∀ (x y : M) (a : α), (x * y) • a = x • y • a)

Note here that because we use [monoid M] instead of extends monoid M , we are stating that mul_action M α
requires M to already be equipped with a monoid structure, rather than allowing mul_action M α to itself
provide that structure.

mathlib extends these two typeclasses with a variety of additional axioms (i.e., fields holding proofs) for when
M and α are themselves equipped with extra structures, such as distributivity over addition and actions by zero.
The left hand side of fig. 1 shows the majority of these typeclasses, while details of their fields can be found
either in [mC20, section 5.1] or in the mathlib docs.
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Figure 1: Hierarchy of scalar action typeclasses

Arrows indicate implications. Grey arrows indicate implied
left-multiplication actions.
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Figure 2: Diamonds in typeclass search

Arrows indicate implications, showing the three
possible paths to resolve module N (A →+ B) .



2 Elementary actions

Scalar actions can be roughly divided into two types: elementary actions which are intrinsic to a particular
family of types, and derived actions which operate elementwise on “bigger” types built out of smaller types. We
will start by giving some examples of the former.

2.1 Left multiplication

One of the simplest actions we can construct is that of left-multiplication, with a * b = a • b , which mathlib
provides as follows.

instance has_mul.to_has_scalar (α : Type*) [has_mul α] : has_scalar α α := { smul := (*) }

As the properties of the multiplication on α becomes stronger, so do those of this scalar action on α; for
instance when we have monoid α we can deduce mul_action α α, and when we have semiring α we can
deduce module α α. The right-hand side of fig. 1 shows these available left multiplication structures with grey
arrows.

2.2 Repeated addition and subtraction

Another simple action we can construct is that of repeated addition when α is a commutative additive monoid,
an instance of module N α, which can be defined recursively for a natural number as (0 : N) • x = 0 and
∀ n : N, (n + 1) • x = n • x + x . A similar approach can be used to define a module Z α instance when
α additionally forms an additive group. These are respectively promoted to algebra N α and algebra Z α
structures when α forms a semiring or ring .

3 Derived actions

A typical example of a module action might be that of a scalar R on the vector space R3 (fin 3 → R), which
multiplies each component separately. After making the obvious generalization to an arbitrary type and index set,
the easy way to write this down would be as follows, where again we can provide a stronger module α (ι → α)
if we know α forms a semiring .

instance function.has_scalar (ι α : Type*) [has_mul α] : has_scalar α (ι → α) :=

{ smul := λ r v, (λ i, r * v i)}

This definition is perfectly fine for the action we wanted, but we can still generalize it much more.
Consider now the action on matrices ι1 → ι2 → R by their coefficients R . We would like to show
has_scalar R (ι1 → ι2 → R) , but that doesn’t match the function.has_scalar instance we just defined.
While we could obviously define this operation trivially just as we did there, we would have to do so again if
working with a vector of matrices or similar.

A better approach here is to exploit the chaining that occurs during typeclass search, and define our action
as:

instance function.has_scalar' (ι M α : Type*) [has_scalar M α] : has_scalar M (ι → α) :=

{ smul := λ r v, (λ i, r • v i) }

This instance is strictly more general—typeclass search will recover our original has_scalar α (ι → α)
instance by setting M = α and finding has_scalar α α from has_mul.to_has_scalar , but can also
find the has_scalar R (ι1 → ι2 → R) we wanted by setting M = R and α = (ι2 → R) , and finding
has_scalar R (ι2 → α) by recursive application of this instance. This approach is used extensively throughout
mathlib, for actions on

1. sets and products defined in terms of actions on their elements
2. polynomials defined in terms of actions on their coefficients
3. bundled homomorphisms defined in terms of actions on their codomain

Most of these actions propagate their axioms; for instance when we used [has_scalar M α] to define
has_scalar M (ι → α) , we can show that if we additionally have [module M α] to define module M (ι → α) .

3.1 More complex derived actions

In section 3, the action we describe contains no proof obligations—we did not need to know any properties
of [has_scalar M α] to define has_scalar M (ι → α) . Sometimes, the typeclasses in fig. 1 are enough



to resolve this—for instance, while we can’t conclude has_scalar R (M →+ N) from [has_scalar R N]

as we don’t know enough about this action to know if additive maps remain additive, we can conclude
distrib_mul_action R (M →+ N) from [distrib_mul_action R N] .

Once we start working with types that themselves ingrain a preferred action though, we need some additional
tools. For instance, the closely related types for R-linear maps M → l [R] N and R -submodules submodule R N

ingrain a preferred R -action. We can start by attempting to a general action by an arbitrary type α. If we do
this we find ourselves left with two proof obligations, indicated by the show ..., from syntax.

instance {α R M N : Type*}

[semiring R] [add_comm_monoid M] [add_comm_monoid N] [has_scalar α N] [module R M] [module R N] :

has_scalar α (M →l[R] N) :=

{ smul := λ a f, { to_fun := λ m, a • f m,

map_add' := λ m1 m2, (congr_arg _ $ f.map_add _ _).trans $

show a • (f m1 + f m2) = a • f m1 + a • f m2, from sorry,

map_smul' := λ r m, (congr_arg _ $ f.map_smul _ _).trans $

show a • r • f m = r • a • f m, from sorry } }

The goal in map_add' tells us we need to strengthen [has_scalar α N] to [monoid α]
[distrib_mul_action α N] .

The goal in map_smul' is more troublesome. The easy way out is to replace α with a commutative R so our
statement becomes

instance {α M N : Type*} [comm_semiring R] [add_comm_monoid M] [add_comm_monoid N] [module R M] [module R N] :

has_scalar R (M →l[R] N) :=

and the sorry can be closed with a • r • f m = (a * r) • f m = (r * a) • f m = r • a • f m which
follows from the axioms of mul_action and commutativity of R . Another approach would be to require R to be
an α-algebra [algebra α R] , and that the α-action on R and N is compatible with the R -action on N .

To best solve this problem, mathlib provides two additional typeclasses about scalar actions. The first expresses
the compatibility condition we would need to use [algebra α R] as mentioned above, as

class is_scalar_tower (M N α : Type*) [has_scalar M N] [has_scalar N α] [has_scalar M α] : Prop :=

(smul_assoc : ∀ (x : M) (y : N) (z : α), (x • y) • z = x • (y • z))

The name alludes to towers of algebras, which is described in more detail in [BDNN21, Section 3.2]. Our
particular problem can be solved more directly with the second typeclass, [smul_comm_class α R N] , which
expresses exactly the condition we require:

class smul_comm_class (M N α : Type*) [has_scalar M α] [has_scalar N α] : Prop :=

(smul_comm : ∀ (m : M) (n : N) (a : α), m • n • a = n • m • a)

After this typeclass was introduced in [Kud20], the author contributed and drove the review of a large number
of instances of it, most notably those for polynomials, product types, and the repeated addition actions in
section 2.2.

4 Algebras and not-quite-algebras

The mathlib algebra R A describes an associative unital R -algebra over A given a comm_semiring R and
semiring A . The definition is roughly

class algebra (R A : Type*) [comm_semiring R] [semiring A] extends has_scalar R A :=

(algebra_map : R →+* A)

(commutes : ∀ r x, algebra_map r * x = x * algebra_map r)

(smul_def : ∀ r x, r • x = algebra_map r * x)

which states that there is a canonical ring homomorphism from R to A which agrees with • and sends R to
the center of A . This parameterization of the axioms is difficult to generalize to A being nonunital and non-
associative ring. However, mathlib also provides this definition to construct an algebra from an alternate set of
axioms:

def algebra.of_module (R A : Type*) [comm_semiring R] [semiring A] [module R A]

(h1 : ∀ (r : R) (x y : A), (r • x) * y = r • (x * y))

(h2 : ∀ (r : R) (x y : A), x * (r • y) = r • (x * y)) : algebra R A := sorry



If we look carefully, we note that h1 and h2 closely resemble smul_assoc and smul_comm from section 3.1,
but with some *s substituted for • . But if we look back to section 2.1, we remember that when x and
y are the same type, x * y = x • y by definition! This means that h1 and h2 correspond directly with
is_scalar_tower R A A and smul_comm_class R A A , respectively.

This is a valuable insight, because it allows us to use the follow sequences of typeclass arguments interchange-
ably:

variables [comm_semiring R] [semiring A] [algebra R A]

variables [comm_semiring R] [semiring A] [module R A] [is_scalar_tower R A A] [smul_comm_class R A A]

Knowing this, it becomes immediately obvious how to generalize various statements to non-unital algebras (which
were needed in [Nas21]); we switch from from the first form to the second form, and then replace [semiring A]

with [non_unital_semiring A] , something which was not permitted on the unexpanded version. Another
generalization this permits is one that allows putting “most of” an R' -algebra structure on A when R' is only
a monoid, which comes up for instance when R' = units R . In this case, we replace [comm_semiring R]

[semiring A] [module R A] with [monoid R] [semiring A] [distrib_mul_action R A] . This generaliza-
tion was used when proving intermediate results needed for Sylvester’s law of inertia [Yin21].

5 Diamonds

Frequently, there are multiple ways for Lean to construct a typeclass. For instance, consider the problem:

example {ι A B} [add_comm_monoid A] [add_comm_monoid B] : module N (ι → A →+ B) := by apply_instance

Depending on the order of the search, Lean could take any of the paths in fig. 2. While Lean does not care
about the existance of multiple paths and will happily just pick one, for the typeclass to be useful we need it to
be predictable to the user—all they see is a • in the goal state. This means that whenever we have a diamond,
we want all the paths to produce the same • such that the actual path taken does not matter.

There are two relevant notions of “same” here. The first is propositional equality, which for the case in
fig. 2 is easy to show as roughly ∀ (M : Type*) [add_comm_monoid M], subsingleton (module N M) , that
is that all N -module structures are equal. This is enough to convince the user that the goal they’re looking at
is mathematically the one they’re interested in. The second is definitional equality, which is needed by Lean in
order to allow lemmas about one path for the tree in fig. 2 to apply for lemmas about another path.

In older versions of mathlib, the diamonds in fig. 2 resulted in paths creating instances that were propositionally
equal, but not definitionally equal. This was problematic, as lemmas about the natural N-action (blue path,
fig. 2) such as Σ x in s, c = s.card • c would fail to match goals containing a derived N-action (green and
red paths, fig. 2). This was fixed in [Gou21] by requiring the definition of add_comm_monoid M to include an
implementation of the N -module structure. While mathematically it is bizarre to say “a commutative additive
monoid has a zero, addition, and a scalar-multiplication by naturals, such that . . . ”, in Lean this is crucial to allow
manual control of definitional equality such that the green and blue paths in fig. 2 can be made definitionally
equal to the red path. This is analogous to the situation described in [mC20, section 4.1] for topologies associated
with metric spaces.

6 Future work

6.1 Right actions

The scalar action typeclass in mathlib is intended for left-actions, which is apparent both in the definition of the
mul_smul axiom, and in the order in which the arguments appear in the notation. However this does not mean
that right actions are impossible.

The author has introduced preliminary support for right actions in [Wie21], via the instance

instance monoid.to_opposite_mul_action [monoid α] : mul_action (opposite α) α :=

{ smul := λ c x, x * c.unop,

one_smul := mul_one,

mul_smul := λ x y r, (mul_assoc _ _ _).symm }

lemma op_smul_eq_mul [monoid α] {a b : α} : op a • b = b * a := rfl



Here, opposite α is a mathlib type built similarly to the pedagogical example in section 1.1 which reverses the
multiplication order. This permits us to write op a • b as a messy spelling for a right action on b by a . Similar
instances were introduced for the other stronger typeclasses in fig. 1. With these instances in place, it is possible
to express an R -S -bimodule structure over M as

variables [module R M] [module (opposite S) M] [smul_comm_class R (opposite S) M]

Future work in this area could go on to define a subbimodule R S M , and use this to define a
two_sided_ideal R = subbimodule R R R over a non-commutative ring R .

Unfortunately, mathlib does not have typeclasses for another common interaction of right actions with left
actions. Introducing briefly for clarity the notation a •> b for a • b and a <• b for op a • b , there is
no typeclass capable of expressing (a <• b) •> c = a •> (b •> c) . Some examples of when this situa-
tion arises are [monoid M] (a b c : M) (all three variables belong to the same non-commutative monoid),
[monoid M] (a c : M) (S : submonoid M) (b : S) (the second belongs to a submonoid of the monoid con-
taining the other two), and [monoid M] (a b : M) (c : ι → M) (the third variable is a coordinate vector).

The future of right actions in mathlib might be improved by the eventual switch to Lean 4 [MU21] (or the
backport of design decisions made there), which provides a new HMul A B C typeclass which makes the *

operator operate on fully heterogenous types. One possible design choice would be to eliminate the • operator
entirely and use * for both the left and right actions, which would make the expression above expressible as a
hypothetical heterogenous semigroup axiom that would subsume is_scalar_tower .

6.2 Further diamond definitional alignment

While [Gou21] fixes N-module diamonds (and a follow-up contribution fixes Z-module diamonds), these problem
still exist for N -, Z-, and Q-algebras. This could likely be resolved by adding the new data fields of_nat ,
of_int , and of_rat to semiring , ring , and division_ring respectively, along with corresponding proof
fields showing these satisfy suitable constraints.
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[Gou21] Sébastien Gouëzel. leanprover-community/mathlib#7084: kill nat multiplication diamonds.
GitHub, Apr 2021. URL: https://github.com/leanprover-community/mathlib/pull/7084.

[Kud20] Yury G. Kudryashov. leanprover-community/mathlib#4770: introduce smul comm class. GitHub,
Oct 2020. URL: https://github.com/leanprover-community/mathlib/pull/4770.

[mC20] The mathlib Community. The lean mathematical library. Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, Jan 2020. doi:10.1145/3372885.

3373824.

[MU21] Leonardo de Moura and Sebastian Ullrich. The lean 4 theorem prover and programming language.
In André Platzer and Geoff Sutcliffe, editors, Automated Deduction – CADE 28, pages 625–635,
Cham, 2021. Springer International Publishing.

[Nas21] Oliver Nash. leanprover-community/mathlib#7932: adjointness for the functor G ↦

monoid algebra k G when G carries only has mul. GitHub, Jun 2021. URL: https://github.
com/leanprover-community/mathlib/pull/7932.

[Wie21] Eric Wieser. leanprover-community/mathlib#7630: add has scalar (opposite α) α instances.
GitHub, May 2021. URL: https://github.com/leanprover-community/mathlib/pull/7630.

[Yin21] Kexing Ying. leanprover-community/mathlib#7416: complex version of Sylvester’s law of inertia.
GitHub, Apr 2021. URL: https://github.com/leanprover-community/mathlib/pull/7416.

http://arxiv.org/abs/2102.02600
https://doi.org/10.1007/978-3-319-21401-6_26
https://github.com/leanprover-community/mathlib/pull/7084
https://github.com/leanprover-community/mathlib/pull/4770
https://doi.org/10.1145/3372885.3373824
https://doi.org/10.1145/3372885.3373824
https://github.com/leanprover-community/mathlib/pull/7932
https://github.com/leanprover-community/mathlib/pull/7932
https://github.com/leanprover-community/mathlib/pull/7630
https://github.com/leanprover-community/mathlib/pull/7416

	Introduction
	Typeclasses
	The has_scalar typeclass

	Elementary actions
	Left multiplication
	Repeated addition and subtraction

	Derived actions
	More complex derived actions

	Algebras and not-quite-algebras
	Diamonds
	Future work
	Right actions
	Further diamond definitional alignment


