
EasyChair Preprint
№ 5302

A Next Generation Data Language Proposal

Eugene Panferov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 8, 2021

A Next Generation Data Language Proposal

Eugene Panferov (e@bestmx.net)

Revision 2, 2021-02-20

Abstract

This paper analyzes the fatal drawback of the relational calculus not allowing rela-
tions to be domains of relations, and its consequences entrenched in SQL. In order
to overcome this obstacle we propose multitable index – an easily implementable
upgrade to an existing data storage, which enables a revolutionary change in the
field of data languages – the demotion of relational calculus and “tables”. We pro-
pose a new data language with pragmatic typisation where types represent domain
knowledge but not memory management. The language handles sets of tuples as
first class data objects and supports set operation and tuple (de)composition oper-
ations as fluently as basic arith. And it is equally suitable for building-into a general
purpose language as well as querying a remote DB (thus removing the ubiquitous
gap between SQL and “application”).

1 Introduction

In the year 1972 Edgar. F. Codd stated his anticipation as follows: In the near future, we
can expect a great variety of languages to be proposed for interrogating and updating data
bases. It is now 2021. The only data language of any significance is SQL. Something
clearly has gone wrong?

We attempt to analyze what aspects of SQL are holding back any development in the
area of data languages, and propose radical solutions in both abstraction layers: data
language and data storage. Back in 1970s data languages were seen as sub-languages
of general-purpose languages [2]. Instead something very opposite has grown – a com-
plete perfect isolation of general purpose languages from the database interrogation
language – splitting every program in two poorly interacting parts. Perhaps this venue
of development is “logical” for the language theorists (simpler formulated problems lead
to better written papers of carefully limited scope that are conducive of safer grants).
But in the real life what do you need a programming language for except for DATA PRO-
CESSING, and what do you interrogate a database for except for DATA PROCESSING.

That means the abyss between a data language (now standalone SQL) and a general
purpose language has to be bridged. The procedural sub-languages were developed
in the SQL environment, that could be thought of as such an attempt, that is so far

1

2 STATE OF THE ART

failed. We approach this abyss from the opposite direction, trying to develop a brand
new language that contains a native data sub-language, however the focus is on this
data sub-language as this is the bloody problem.

First of all, we focus on the fundamental drawback of the relational calculus: it does
not allow relations to be domains of relations [2, section 3]. Whereas addressing this
problem in the design of the language (section 4) provides valuable insights into possi-
ble significant improvements of underlying data storage (section 3).

The proposed language (section 5) attempts to overcome the following flaws of SQL:

• human language mimicking (which leads to inconsistent, completely inextensible,
and needlessly complicated syntax);

• mixing relational operations together and with the output formatting;

• imperative DDL;

• impossibility of relations between relations (which leads to non-homogeneous
representation and undermines the relation abstraction itself, lowering the level
of programming)

• separation of the data language from the application layer language (which results
in the development of a complete duplicate data scheme that exists outside the
relational database and suffers all the drawbacks that the relational database tried
to solve in the first place, besides doubling the development labour while adding
nothing)

The proposed language aims to integrate with a general purpose language used
for describing an application layer, in order to keep the relational data representation
throughout all processing stages as the primary and the only data-model for a given
program, accessible as first-class data-objects in a general purpose language (i.e. partic-
ipating as arguments in native expressions).

The proposed language abandons surrogate and foreign keys (thus making the level
of abstraction higher than SQL). The proposed data language is capable of dealing with
relations between relations uniformly, by utilizing the proposed mechanism of multi-
table index, that in turn eliminates the need for joins.

2 State Of The Art

We have no choice but to focus on SQL, since it is the uncontested data language nowa-
days. SQL is a huge, unbelievable success. It is the most successful non-imperative
algorithmic language ever existed [12]. Apparently, due to the lack of competition, but
the fact had to be stated. For the same reason SQL remains basically unchanged, keep-
ing initial imperfections and adopting only minor improvements (aka “features”). We
witness the lack of meaningful development in the entire field of data-languages both
within and outside SQL. SQL retains all its prime imperfections, and these are not im-
plementation imperfections nor any quantitative deficiency, SQL contains fundamental
mistakes in its very design stemming from its theoretical foundation, which turned sev-
eral pathological use-cases of the language into a necessity of life. So much so it will be
difficult to explain the severity of the pathology due to its prevalence in the population.

2

2.1 The Multitude Of Rivalling Representations 2 STATE OF THE ART

The apparent stagnation and growing malpractices gave rise to so called “noSQL”
movement. Which is a destructive cult founded on pure frustration and the lack of pos-
itive insight, of which the very name is telling. If your data language is unsatisfactory,
then by throwing it away you only solve the problems it created, but you do not solve
the problem of accessing your data, that you have BEFORE the adoption of the data lan-
guage. Nevertheless, this motion metastasized into the heart of SQL – ISO sanctioned
XML contamination [6], effectively creating a rivaling alternative to SQL within SQL –
an apparent sign of decay.

2.1 The Multitude Of Rivalling Representations

A very typical approach to database design is Entity-Relation diagrams. It is very intuitive
and informative way of visualizing data structure.

category item

In the example above we have two entities and one relation between them. Let us
map them into a relational database. The entities will be mapped as tables, and the
relation will be mapped as a foreign key. Note, we are doing the most typical design
procedure “by the textbook”.

category

id
name

item

cat id

id
name

By the same textbook, tables are supposed to represent relations! From the per-
spective of relational algebra1 the item and category are relations. So, we have three
relations: Category, Item, and the relation between them.

Why do we represent two of them properly (as it meant to be) and at the same time
simulate the third one by programming a foreign key? Is there a real need for a non-
homogeneous representation? Is the relation item− belongs− to− category any worse
or better than item or category? Can we define coherently a distinction between them?

For this particular disturbance of the representation we pay by lowering the level of
programming (as in “low-level programming”). Foreign keys are very low-level relatively
to tables. Compare a table representing a relation versus a foreign key representing a
relation:

CREATE TABLE category (
Id INT

, name TEXT);
1or relational calculus – at this point the distinction does not show up. Colloquially we say “alge-

bra” (because the textbooks were written before SQL) but all the practical implementations of relational
algebra replace it with relational calculus which is better readable in its written form

3

2.1 The Multitude Of Rivalling Representations 2 STATE OF THE ART

Here you simply declare: these two attributes constitutes a relation. You do not
care how the association between them will be built and maintained. You can freely
manipulate pairs (id, name) and apply relational operations to the relation category.

CREATE TABLE item (
Id INT

, category INT REFERENCES category(id)
, name TEXT);

Here you have created a fake attribute item.category. You have defined its type which
have no correspondence to the domain knowledge – it is a surrogate type – whereas the
domain knowledge is “item belongs to category”, it is not integer. Then you command
your RDBMS to check your input in order to keep obvious garbage out (in other words,
this REFERENCES directive defines a subset of the integer, making the type of this
fake attribute more relevant). Thus you have manually created a relation! You involve
yourself in the very internals of its representation. The maintenance in principle is up
to you, although the machine agrees to assist by means of REFERENCES directive,
the interpretation, however, is entirely up to you – the system does not recognize this
relation as a relation. You can not apply relational operations to it.

A join creates a relation from existing relations. At first glance, it looks a reasonably
useful operation. But the decades of practice reveal that a resulting relation does always
pre-exist its formal “creation” by joining. Let us select something from the first example
item −→ category:

SELECT category.name, item.name
FROM category, item
WHERE category.id = item.category

This “newly created” relation (category.name, item.name) was already hidden inside
our database behind the foreign key (underlined). It is not new information created
inside the database, this information had been put inside the database on purpose. Every
pair of tables you ever join, you manually MADE JOINABLE! The join operator merely
legalizes a hidden foreign-key relation as a first-class relation. A join is nothing more
than A CONVERSION between these two ways of representing a relation.

But this trivial operation comes with nontrivial cost. First it takes a significant part
of programmer’s labor to make all joins precisely predictable. A programmer must make
sure all joins will result in a set of relations that are meant to be stored, and no join will
ever reveal any new information. Then a programmer is forced to codify the conversion
routine itself for many relations separately. And finally, in runtime, join is a resource
consuming operation, perhaps the heaviest operation in any typical usecase.

Multiply the runtime price for the amount of times you access those joins, because
the results are being thrown away every time. So you need to pay the price of join every
time you access such relation. You keep converting your hidden foreign-key relations
time and again.

And to add insult to injury, those costly results are already known to you! Your
database has been designed this way that you know what comes from a join. You pay
repeatedly for something you already have and always has had!

4

2.1 The Multitude Of Rivalling Representations 2 STATE OF THE ART

All this time a join solves a technicality problem that has nothing to do with the
domain knowledge. Some minor inconvenience of internal representation of relations
somehow became a significant part of supposedly high-level programming and legally
consumed a lion share of runtime.

Because foreign keys are not capable of representing many-to-many relations, there
is another alternative representation for relations: link-tables. It is also a low-level
simulation of relations, that compromises the idea of RDBMS, and it imposes some extra
cost. Here is the simplest case of a relation many-to-many:

book genre
book genre

The most recommended mainstream way to represent it in terms of tables is a link-
table:

book

id

title

author
...

book genre

book id

genre id

genre

id
name

Let us select genres of a book X:

SELECT genre.name FROM book_genre, genre, book
WHERE book.title = X

AND book_id = book.id
AND genre_id = genre.id

Nothing unusual, all three tables properly joined according to the foreign keys pro-
vided. But, look, book genre is a relation on the Cartesian product of book and genre. We
need to perform a search of the dimension (book, genre). What do we do in the select
above? We produce a Cartesian product of book, genre, and book genre itself. And then
we perform a search of the dimension (book, genre)2 – twice bigger search space than
needed!

What have we done?! We represented a relation book genre as THREE formally inde-
pendent relations. One proper table-relation plus two foreign-keys, that require special
costly treatment to be accessed at all. And this is formally the best practice, because it
is the only way to describe such a relation in terms of relations as implemented in SQL.
There are of course other methods, say arrays, that result in non-relational methods of
querying data, that a select does not cover.

Please note that in this representation the foreign keys on their own do not represent
any domain knowledge relation. It is semantically a different role of a foreign key – not
all your foreign keys correspond to a relation, and you must be aware of that – do you
have a facility in SQL to distinguish these important usecases? Ah! Sweet confusion
piles up!

5

2.2 The Price Of Tables 3 MULTITABLE INDEX

Some RDBMSes introduce subclasses and inheritance [9]. Needless to say that a
subclass is a relation on a class, therefore, we have another rival representation. How
many have you counted already?

Some RDBMSes introduce complex types, arrays, collections2 [11] which are relation
representations too. Take a look at oracle documentation:

---- a collection is defined as:
CREATE OR REPLACE TYPE emp AS OBJECT (

e_name VARCHAR2(53),
s_sec VARCHAR2(11),
addr VARCHAR2(113));

---- You can create a table with this object

This is a relation, no more and no less. So far we have SEVEN alternative representa-
tion for relations, of which only one enjoys availability of relational operations provided
by so called RDBMSes.

Which representation to choose for a particular relation? Is there any method to
choose representations from this multitude? Why so many representations after all?

The “why” question has an easy and obvious answer: because the notion of table was
never satisfactory for the role of a relation. All those “improvement” efforts had to be
strongly motivated by the need to represent relations – should table suffice, collections
would never be born.

2.2 The Price Of Tables

A typical RDBMS suggests the following mapping: relation→ table; domain→ attribute.
Note that a table can not adopt another table as an attribute. Therefore, there simply is
no room for relations between relations. Taking in account that a typical domain knowl-
edge contains a whole hierarchy of relations with the majority of them being relations
between relations, with tables we can represent only SOME of relations for any given
facet of knowledge. Once we represent a relation with a table we prevent table repre-
sentations for all relations that includes the current one in their domain, and all that are
included in the current one’s domain. The representation of the former takes link-tables
and foreign-keys. The representation of the latter takes complex types and collections.

This is why we are stockpiling alternative representations. And it is not a solution at
all. An RDBMS controls relations represented as tables, which are a mere part of a data
model, which consists of many more relations having alternative representations, so
that our data model resides partially (and mostly) outside a system designed for proper
maintenance of the data-model.

At this point the very name “RDBMS” loses its meaning.

3 Multitable Index

Any facet of real life knowledge is not a plain set of relations, it is always a hierarchy of
relations. Only a minority of relations are leaves of this hierarchy. Typically a majority

2collections a.k.a. “nested tables” NB!

6

3 MULTITABLE INDEX

of relations adopt other relations as domains. For a meaningful system of managing a
relational data model, first of all, we must make possible relations between relations.

Our language must contain the following closure (for definitions we use intuitive
BNF-like notation [5]):

relation ::= domains graph
domains ::= domain
domains ::= domains domain
domain ::= relation
domain ::= scalar_type
scalar_type // provided by an underlying system
graph // to be defined later

This is very important from the standpoint of the set theory that a relation (being
a set) might play a role of a domain. Exactly this is missed in relational calculus and
relational algebra as defined by Codd in [2] and [1] The scalar type is merely a pre-
defined set, provided by an underlying computational system, for example number or
stringofcharacters were considered basic types by E. F. Codd in his original definition
of the relational model of data. Everything is plain and clear in this definition except for
the mysterious graph3 that is about to be defined.

Let’s say we have a binary relation ρ between sets A and B:

A B
ρ

keys

1

4

7

9

keys

2

3

8

9
relation graph

Assuming we already have sets A, B somehow represented, we need to represent
the legs of the graph. Apparently the relation graph’s legs comprise a finite set, and any
finite set can be represented as a set of integers, so we can represent our relation graph
as:

G(ρ) = {12, 13, 48, 49, 73, 99}
Nothing is easier than creating an index for a finite set of integers:

50

25 75

12; 13 48 49; 73 99

3by graph we literally mean the graph of a relation as in the definition of relation [13]

7

5 THE LANGUAGE

This index (by-design) represents the graph of the relation ρ. At the same time it is
merely a regular featureless index, like any other index in your RDBMS. Whereas ρ is a
“horrible” many-to-many relation. And it is being represented by a single trivial index.

From an alternative vantage point, the primary purpose of a relation graph is to an-
swer the question: whether a tuple is a member of the relation – this question an index is
supposed to answer too. A graph and an index share the purpose and share representa-
tion. For all practical intents and purposes: a relation graph IS an index.

Nothing prevents this index from holding data-storage node references. Nothing
prevents your RDBMS to maintain this index.

But we did not impose any restrictions on the domains A and B – these are just sets
(we merely enumerated them with integer keys) – therefore A,B can be relations.

Thus we have created a many-to-many relation between relations that does not re-
quire neither link-tables nor joins but a SINGLE INDEX.An index that possesses no single
feature impossible for any normal RDBMS.

The only special feature of this index is that it has to hold two storage-node refer-
ences at each leaf – nothing more. Generally these references point to different tables,
so we called this type of index “multitable index”.

Introduction of such index makes all the difference in the world for almost no price. A
multitable index allows to store relations between relations, treat them as first-class re-
lations,access them without joining (it basically stores the information a join re-calculates
at every call). At this point the restriction for indexes to be limited to a single table looks
ridiculously artificial and unjustified.

4 The Paradigm Shift

The language practices of SQL made relations so strongly associated with tables that the
notion of relation is totally replaced by table. You say relation you mean table. The word
relation has become a geeky euphemism for tables. It is grossly wrong, for all the reasons
exhaustively described above.

Therefore, a huge mental paradigm shift is required, in order to reflect the mathe-
matical reality inside a properly built RDBMS:

Tables aren’t relations! – Indexes are!

Indeed in PostgreSQL indexes internally ARE relations, already. Somewhat special,
but nothing should prevent you from using them as described above, since an index is
capable of storing all the information you demand from a very heavy join of two tables
together with a link-table.

5 The Language

We need a language to be pure, simple, and coherent. Its notation must be clear, un-
ambiguous, and intuitively human readable (but not mimicking a human language, in
fact resemblance of a human language does only complicate understanding [3]). Ideally,
similar objects must be described by similar sentences of the language, while dissimilar

8

5 THE LANGUAGE

ones be described by easily distinguishable sentences. Also, we want to keep a num-
ber of keywords and unique syntax constructs to the bare minimum. Since everything
has been already invented, we will try to stick with s-expressions [4] and follow the
functional style.

No more human language mimicking. Contrary to the creators’ intent, decades of hu-
man language mimicking, did not not make a single layman fluent in SQL. This handicap
should not be carried any farther.

Relational operations to be written separately. We do not want to mix projection
with other operation, and defer all the limits and orders up to the output formatting
phase. Hopefully it will make the notation of data manipulation cleaner, at the same
time the output formatting richer (as being freed from the limitations imposed by the
data manipulation context).

Declutter the notation. We will keep the notation free from meaningless variety of
separators – a space is enough. For example, if we want to construct a triple, we have to
provide triple members (and optionally their order), like this: (x1, x2, x3). The question
is what information the comma symbol adds to this notation? The only right answer is:
void. Because of this,we simply discard the garbage, so we got: (x1x2x3). This seemingly
superficial change in fact is a very significant improvement to the syntax. It effectively
removes the whole idea of “in between items”, which ordinarily causes whole series of
tiny annoying problems (particularly nasty in machine generated scripting (beginning
with “duplicate separator” (is a duplicate separator an error? could it have a meaning?))).

Make basic types and relations interchangeable. This is the pivot point of the lan-
guage. It makes the language capable of expressing relations between relations.

Introduce variables and assignments. SQL does not provide a room for assignments,
they are totally alien to the SQL’s structure, yet strongly demanded (recently introduced
WITH clause is a counter-intuitive assignment in essence). Our variables will be IM-
MUTABLE, will have a single transaction lifespan and visibility, will be interchangeable
with relations in every context except for data definition, and will represent only sets of
tuples. Perhaps, assignments have no need to be calculated immediately.

Make DML returning value. Since we have explicit output operations, and separated
relational operations, and we have assignments, then we can avoid the RETURNING
clause altogether by making DML return affected rows. And since we may utilize a return
value only explicitly, then we can just discard it by not utilizing it.

Respect the fact that a relation is a function of its primary key. Indeed we can treat
them as functions all the way long and that gives us an opportunity to create a proce-
dural language around the data sublanguage.

Keep types as few as possible. The epoch of counting bytes is over. There is no need in
keeping several different types for integers, also we do not see any high level application
for bitwise operations and related stuff. We now want computers to count their bytes
(if they are concerned). On the other hand we provide a useful tool for constructing
complex types of arbitrary complexity, namely relations – we do not need to anticipate
all possible user’s wishes by maintaining a library of fancy peculiar types which will
be rarely known and never used (because user’s wishes always prove themselves more
peculiar than our wildest anticipation).

9

5.1 Type System 5 THE LANGUAGE

5.1 Type System

The language is completely NULL-free. The only known legitimate usecase of NULLS is
an optional foreign key. But our language does not have foreign keys.

The language contains the following predefined basic types:

time, timeinterval, text, int, real, bool

int is “infinite” as is a norm nowadays, no bytes counting, and such int effectively
replaces fixed points, so we don’t even bother about fixed point types.

real is a floating point type, and it approximates real numbers, sometimes this dis-
tinction matters, and you need a type that is not precise. So that the minimal set of
numeric types is still two very different types, which difference goes beyond hardware
limitations and software implementations.

text is “infinite” (as in PostgreSQL [8]) – no more “varchars”!!! – limitations that are
not related to a data-model itself should not be present in a data-model definition. A
difference for example between varchar(10) and varchar(11) does not represent suf-
ficient meaning – it must be explained why these are different types, as opposed to
different user-input-validation procedures on a client side – such explanation does not
exist. You can easily verify the insignificance of the said difference by recalling how
many times a typical varchar gets expanded in a typical production database per week.

time is an arbitrarily rounded reference to a point in time expressed in units of cur-
rently standard calendar. The closest comparison is the PostgreSQL’s timestamptz [10],
however, our time is much better. Postgres loses the timezone information and it does
not respect the fact that absolutely all timestamps are always rounded. Natural times-
tamp input is typically rounded coarser than an internal representation of a timestamptz
and the information of the user requirement for timestamp granularity is lost for Post-
gres.

Unlike Postgres, we preserve the timezone information, and we preserve the times-
tamp granularity. Our time stores the time, the timezone it was originally inputted in,and
its granularity –when it is “a year 1984”it does not become “1984-01-01 00:00:00.000000”,
it remains “a timestamp given to the accuracy of a whole year”.

timeinterval is analogous to PostgreSQL’s interval [10], but better – it does NOT
share a lexeme with text constants (see 5.2).

A calendar arithmetic should be stolen from Postgres because it is so far the only
proper implementation of our calendar in the entire software industry.

In addition to these basic types one complex type could be useful enough to define
him in the core language:

rational

Where rational is a pair (int, int) treated as a number by all numeric operations. Given
our “infinite” integers, a rational arithmetic covers literally all the holes between real
and int, because [7]. It is not complicated computationally, roughly twice the workload
of integers, plus some output simplification overhead. And the results could potentially
be presented neatly, striking balance between precision and simplicity.

Such type poses a question though: Shall we throw out int completely, in favour of
rational, since rational can do everything with the same precision?

10

5.1 Type System 5 THE LANGUAGE

5.1.1 Automagic: Mapping, Flattening, Tuple simplification

The language is thoroughly relational – all data objects in the language are4 sets of
tuples, all of them. From that follow certain decisions:

• The availability and the role and the appearance of Cartesian products and unions
5.3.3.

• Automagical mapping of functions [14]: a function (that is not defined as a folding
function) if given a set of arguments applies to each element producing a set of
results.

• Automagical list flattening, if a set is inserted into another set as an element a
concatenation takes place instead, which fact is not even hidden from a user, since
the only constructor of sets is the union operation. A set of sets has no meaning in
a relation context – if it does, there is a relational solution: tuples – a set contains
tuples and tuples can contain sets, no flattening is called for (see example below).

• Automagical tuple depth reduction: if a tuple contains a tuple as a single element
the inner tuple is consumed the depth is reduced (see example below). Otherwise,
tuples can contain tuples as elements, it is meaningful, no flattening occurs.

• Operations of aggregation/grouping and their opposites should be defined. A re-
sult of aggregation/grouping is still a valid relational data object enjoying all the
rights and opportunities.

Example list flattening
Apparently the following two sets:

[1 2 3 4]
[[1 2] [3 4]]

contain different information, even the amount of information differs (easy check: how
many permutations are allowed in each case). But what is a semantic of this distinction?

When using these sets you have to imply some meaning into the very fact of their
nestedness – meaningless structures are not allowed.

On the other hand, a relational language gives you means to write your ideas explic-
itly, by extending the members of the set, for example:

[
{"shots" [1 2]}
{"misses" [3 4]}
]

now the inner sets can not be flatten with the outer set; not technically,nor semantically;
members of inner sets differ in type from the members of the outer set.

Nevertheless a meaningful analogue of flattening is still possible, we can expand
this “aggregated” set into:

4they “are” in the sense of their treatment, you can safely assume a scalar is a set containing a single
tuple of a single element, but it does not mean we actually implement all the overhead internally

11

5.2 Lexic 5 THE LANGUAGE

[{"shots" 1} {"shots" 2} {"misses" 3} {"misses" 4}]

Thus both flat and compact forms are legal and all the meaning is preserved (“de-
spite” prohibition of sets of sets). In this light the abstract set of sets seems a mere
artefact of a language, nothing more than a distinction between a NULL pointer and an
empty array

Example depth reduction
Apparently nested tuples can express important meaning (as structuring a datum)

{"nominee" {"John Doe" 1976} 2020}

in this example the dates member in different tuples – they are dates of different things,
say a birth date and a nomination date.

Opposite to that, there exists meaningless configuration of nested tuples:

{"John Doe"}
{{"John Doe"}}
{{{"John Doe"}}}

Adding depth without adding attributes does not add any new information to the
original tuple. Therefore we perform automatic reduction of depth in this easily de-
tectable case. In return this simplification gives us two neat features:

• We can extract (with projection) individual elements (say a scalar) from deeply
nested relations, loosing the depth information (i.e. a scalar will appear as a scalar
regardless of the depth it was extracted from.

• We can re-use the tuple constructor for type casting, since enveloping a datum
into a tuple does not increase the depth, we can re-envelop a tuple into a tuple of
different type to the effect of type casting (see 5.3.2).

5.2 Lexic

The language is based on the following 11 lexemes: 7 literals, 4 pairs of brackets; and
2 separators.

Spaces and linebreaks are separators. Brackets separate lexemes too. A lexeme, un-
less quoted, can not contain separators or brackets. Beginning of an operator terminates
the previous lexeme. No other separators exist.

5.2.1 Literals

Identifiers aka names,are used to designate types (among which are all relations (among
which are all functions)). They are classical names with lowercase initials.

NAME = [a-z][a-zA-Z0-9_]*

Nominators (formerly known as variables) to designate named data objects. They are
classical names with uppercase initials.

VAR = [A-Z][a-zA-Z0-9_]*

12

5.3 Syntax 5 THE LANGUAGE

Numerals, that represent constants of numerical types. They traditionally bear digit
initials. Underscores are allowed to group digits.

NUM_DECIMAL = [0-9.][0-9._]*
NUM_BASE2TO9 = [2-9]#[0-9._]*
NUM_BASE10TO37 = [1-9][0-9]#[0-9a-zA-Z._]*
NUM_FLOAT = [0-9.][0-9.]*[Ee][+-][0-9][0-9]*

// 1984
// 2#100.000101
// 16#EF11_8766_AB00_001C
// .5e-189
// it is debatable if we should allow the leading "."
// mandating a leading 0 would FREE the "." for some other purpose.

Text literals in double quotes with traditional backslash escapes.

TEXT = "[ˆ"]*" // with backslash escapes (not shown here)

Date, time, and interval literals, in “graves” without escaping. Easily distinguishable
from both numerals and texts by the leading character. The use of a quotation technique
allows for spaces to be used in date-time formats.

TIME = ‘[ˆ‘]*‘

// ‘1984‘ // it is now a year not an integer
// ‘456BC‘
// ‘+ 2days 7hours 11minutes‘
// ‘2021-02-20 18:41‘

The temptation was strong to avoid keywords completely, still there are two words
that are absolutely reserved forever and ever:

BOOL = true | false

Operators are brief cryptic names for frequently used functions. They must have
a non-alphanumeric initial that is not a quote-mark nor a bracket, they might contain
letters, but not digits. This distinctive shape allows them to appear on a non-leading
position in a s-expression, without being confused with arguments.

OPERATOR = [!@#\$\%\ˆ\&\?˜*+=<>:;,|\\/-][a-zA-Z_!@#\$\%\ˆ\&\?˜*+=<>:;,|\\/-]*

5.3 Syntax

In order to focus on the data sublanguage we omit for now the definition of a program in
the proposed language. Defining that, including the command grouping and structuring
into transactions and routines would be premature at this point, since the big picture of
the workflow is not complete yet.

13

5.3 Syntax 5 THE LANGUAGE

On the other hand we attempt to define as clear as possible how does the language
specify data structures and data access. Keeping in mind that all these “constructs”
should be equally applicable to remote and local data, and equally palatable for a lan-
guage with shared state data objects, as well as a language without state sharing.

Typographic Convention:
We will type literal value of terminals in ”doublequotes”.
We will type names of terminals UPPERCASE, if their value is variable.
We will give lowercase names for non-terminals.
For brevity of lists definitions we extend our BNF-like notation with symbols: ::=...
and ::=0... meaning arbitrary repetition of right-side, at least 1 or at least 0 times
respectively.

5.3.1 Data Definition

definition ::= "relation" { NAME domains }
definition ::= "domain" { NAME domains }
domains ::=... domain
domain ::= NAME:type // you can give names to domains
domain ::= type // domains may bear type-names
type ::= BASIC_TYPE_NAME
type ::= RELATION_NAME

There are three classes of relations: ordinary relation,domain,function–all of them
are first-class relations in every respect. A domain always contains all its possible tuples,
similarly to a user-defined type in procedural languages, although from our vantage
point a relation is also a user-defined data type of equal rights and opportunities, the
only difference is that relation represents a user-defined subset of its type (i.e. requires
a set of tuples to be added) and contains only those tuples that were added by a user.

A function is a relation that contains only tuples defined by the given expression
(i.e. calculated). The additional difference is that you can explicitly specify its co-domain
to be some arbitrary projection of the complete domain – i.e. a function represents a
“shorter” type5, similarly to “return type” of a function in a procedural language. For the
sake of completion, here is how we define functions:

definition ::= "function" { NAME domains -> domains } heads
definition ::= "fold" { NAME domains -> domains / init} heads
definition ::= "operator" { OPERATOR FUNC_NAME }
heads // to be defined later
init // to be defined later

A function that receives a set of its arguments automatically “maps” itself, producing
a set of results. To cover the opposite behaviour a fold is introduced. A “folding” function
(although enjoying equal rights and opportunities) if given a set of arguments always

5The explicit split of the formal “relation domain” into “argument type” and “result type” also reflects
the fact that in general a function specified as a computation procedure can not be reversed, thus mak-
ing regular “selects” (potentially retrieving values of “arguments”) impossible, whereas the “result” alone
retains full “selectability”.

14

5.3 Syntax 5 THE LANGUAGE

folds this set and produces a single result. Folds are to be used in aggregates. The init
condition contains a definition and an initial value of the accumulator that passes the
fold state between iterations. It is not supposed to be accessible from a call to a fold, a
fold participates in a program as a function with the specified domain and co-domain.

An open question is: (a) do we make a function’s domain type accessible by a name
derived from the function name? (b) do we require explicit names for the domain and
co-domain types to be defined prior to the function definition, so that a function always
refers to named types6?

Example
Let there be a tiny library:

genre book writer
book genre author

department
available

The definition of this library will look like:

domain {name first:text middle:text last:text}
relation {book title:text ISBN:text}
relation {writer name:text birthdate:time}
relation {genre text}
relation {department text}
relation {author book writer}
relation {book_genre book genre}
relation {available book department}

Now let us illustrate another usecase for domain definition:

domain {point2d x:real y:real}
domain {circle radius:real center:point2d}
relation {my_circle circle}

In the example above circle is a set of all possible circles. Domains play a role of
complex types. While my circle is a set of user defined circles — a user himself controls
which tuples belong to the set.

5.3.2 Constructors

We construct a tuple simply by listing all its components in special brackets designating
this is a tuple.

constructor ::= { tuple }
tuple ::=... value
value ::= expression

6For an example usecase of type names see 5.3.2

15

5.3 Syntax 5 THE LANGUAGE

value ::= label:expression
label ::= TYPE_NAME
label ::= NAME
expression // to be defined later

Tuples are allowed to have explicitly or implicitly named elements – exactly the
same as in a definition of a relation. Elements will be referred to by their labels, either
arbitrary names or their respective type names, for the purpose of unification7. This
allows us to abandon all traces of positional referencing in all contexts. Tuples are still
ordered but this order only manifests in its useful aspect: establishing correspondence
between elements of two tuples, and this is achieved with the aid of labels – the rest
of the information that an order of elements contains is not important for a user, and
removed out of sight.

In addition to that, you can ensure “compatibility” of a newly constructed tuple with
a predefined type:

constructor ::= { TYPE_NAME tuple }

If the given tuple fails to unify with the given type the constructor returns an error.
Apart from type assurance this form adds human readability in certain cases.

On top of it (due to automatic depth reduction) you can use the same type assuring
tuple constructor for type casts:

A := {int 1984}
B := {text A} // result "1984"
C := {time B} // result ‘1984‘

The second necessary constructor is a set. We construct a set by simply listing its
elements in brackets designating a declaration of a set.

constructor ::= [set]
set ::=0... expression

Our sets are relations, so that they imply that all their elements are of the same type.
In order to make this requirement more clearly visible we allow type assurance for sets
as well. This constructor will apply the type assurance to each element of the given set:

constructor ::= [TYPE_NAME set]

Counter-example
Let us highlight the importance of explicit tuple constructors by looking at SQL,

which is built around tuples but lacks syntax for constructing tuples. This situation
leads to queries like that:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary);

7in principle unification as in Prolog [15] and Erlang, but greatly enhanced with the tuples having
named elements

16

5.3 Syntax 5 THE LANGUAGE

it says:

x over w, y over w, z over w

because there is no way to say:

{x y z} over w

5.3.3 Basic Set Operations

A relational language can not survive without the basic set operations: Cartesian product
and union – being as easily available as arithmetic operations.

product ::= { expressions }
union ::= [expressions]
expressions ::=... expression

We use the same brackets here, respectively. A[] designates a set. A{} designates a
tuple. It must be obvious from the definition that the similarity goes beyond the syntax:
a tuple constructor performs Cartesian product of its elements, and a set constructor
performs a union of its elements – there is no need so far to invent any distinctions. Of
course you can specify type assurance too.

5.3.4 Unification

The type assurance, and function calls, and the pattern matching in selections (see 5.3.6),
are based on unification. Our unification procedure utilizes both labels and types of
the tuple, ignoring the order, and in some cases ignoring arity.

domain {name first:text middle:text last:text}
// unifies with:
{first:"John" middle:"Enoch" last:"Doe"}
{first:"John" last:"Enoch" middle:"E."}
{first:"John" middle:"Enoch" "Doe"} // the last is implied
{"Doe" first:"John" middle:"Enoch"} // the last is still implied

domain {point x:real y:real name:text}
// unifies with
{x:10 {real "19"} "point 10;19"} // type matters
{x:"10" y:"19" "point 10;19"} // but labels take precedence

// abbreviations are allowed
{name f:"John" l:"Doe"} // is valid
// as long as abbreviations are unambiguous

Label abbreviations are possible because of the very narrow scope of the labels,
ambiguity is easily detectable. Since labels are used profusely, this feature becomes
extremely time-saving. At the same time it allows to avoid abbreviating “field names” at

17

5.3 Syntax 5 THE LANGUAGE

the definition phase. You can afford names as verbose as necessary without cluttering
the text of a program referring to verbose names.

The unification algorithm
Elements are consumed in the order from the highest to lowest priority:

Label and Type match exactly
Label match exactly and type casts
Label abbreviates and Type matches
Label abbreviates and Type casts
Label empty and Type matches to a single element
Label empty and last element and Type casts to the last remaining element.

Error is thrown:
more elements in the given pattern than in the target
a label in the pattern does not match nor abbreviate any target
a label matches and the type fails to cast

5.3.5 Nominators

Giving names to subselects is a massive convenience, so much so SQL is developing this
aspect for its entire history up to the “WITH” control structure. We decide from the start
to structure the language is such a manner that a sequence of “assignments” is legal
without any special tricks excusing such “assignments” from a context that prohibits
them.

assignment ::= NOMINATOR := expression

Example

MYlist := [1 9 8 17]
MYtuple := {"John" "Doe"}
B := (book title:"1984") // B now represents this selection

After these assignments (within their visibility scope) you can treat the nominators
MY list, MY tuple, B as the objects they represent and put them in any appropriate
context.

An assignment sentence DOES NOT necessitate execution of the right-side expres-
sion! The compiler knows if and when the assignment is used, keeping in mind the
transactional context of the runtime, the necessity to execute anything occurs at well
defined moments.

For purely aesthetic purposes, in case programs in our language eventually grow a
habit for large multiline expressions, we must keep in mind the possibility to add postfix
assignments:

postfix_assignment ::= expression =: NOMINATOR

In a lengthy statement such assignment allows to put the NOMINATOR on the
very last line where it is most relevant for reading the text right below.

18

5.3 Syntax 5 THE LANGUAGE

case of
a very lengthy

expression
that itself
could be a control structure
that returns a result
and you want this result to be named
and by the time
you finished reading
this expression
the variable name it is assigned to
goes far above...
INSTEAD
you can provide this name
right AFTER the present expression
exactly at the moment
when you finished learning
the result of this expression
and so timely you learn the name too

end-case =: MYresult

B := (foo MYresult)

5.3.6 Selection

When you write:

SELECT * FROM book;

What information exactly does this sentence contain? The right answer: book –
nothing else. In this sentence you point to a certain relation by name (the result could
be directed to the output or another select, but this information is not contained within
the sentence itself)

Since we know the information content of this sentence, we know how to say it in
our language:

(book)

This is how you access a relation – you simply call it by its name. Parenthesis here
makes it an expression that is a data object as opposed to a type object.

selection ::= (NAME)
selection ::= (NAME pattern)
pattern ::=... filter
filter ::= conjunction
filter ::= disjunction
filter ::= value
filter ::= func

19

5.3 Syntax 5 THE LANGUAGE

value ::= LABEL:expression
value ::= expression
func ::= LABEL:curry
curry ::= (FUNCTION args)
args ::=... value
conjunction ::= { pattern }
disjunction ::= [pattern]

A pattern attempts to match against the elements of the relation. If a value is pro-
vided it matches with the corresponding field iff equal. If a function is provided it
matches if computes to true, but this function must be curried down to the arity 1, and
return boolean result. A set of filters matches as “OR”. Whereas a tuple of filters matches
as “AND”.

example

Dawkins := (writer {first:"Richard" last:"Dawkins"})
John_OR_Mary := (person first:["John" "Mary"])
Elder_J_OR_M := (John_OR_Mary birthdate:(earlier than:‘1990‘))
// same as
Elder_J_OR_M := (person first:["John" "Mary"] birthdate:(earlier than:‘1990‘))

X := (person [{first:"John" birthdate:(earlier than:‘1990‘)} {first:"Mary"}])
//same as
X := [(person first:"John" birthdate:(earlier than:‘1990‘)) (person first:"Mary")]

// provided a predefined BIF
function {earlier x:time than:time -> bool} ((x - than) < 0)

A patternmust represent a volume in the domain space of the given relation. A selec-
tion expression returns all the elements that happen inside this volume. The simplest
form of a pattern (apart from the empty pattern) is a tuple. A tuple-pattern unifies with
some elements of relation, these elements will be returned. A complete tuple of the
relation-type represent a point in the domain space and unifies with 1 or 0 elements.
A tuple of a single element represents a hyperplane. A tuple of multiple elements rep-
resents an intersection of hyperplanes. Whereas a set within a pattern represents a
disjunctive match (analog of SQL’s: “OR“, “IN”).

An important class of shapes can be expressed by means of adding up and intersect-
ing such volumes –those boundaries can utilize indexes. It is huge class covering almost
all usecases of a typical bureaucratic database, However, it is far from being complete,
for example this selection can not express a half plane on a real plane that is bounded
by x+y = const. This problem is still solvable, because there is no compulsion to put ev-
erything inside a “where” clause. You can define a function that computes x+ y = const
(or any other hyperplane for that matter) taking the entire relation as an argument.

relation {plot x:real y:real}
function {foo p.plot -> plot c:real} {p (+ p.x p.y)}

F := (foo (plot))
HALFPLOT := (F c:(greater than:0))

20

5.3 Syntax 5 THE LANGUAGE

5.3.7 Data Management

command ::= "add" content
command ::= "remove" content
command ::= "abolish" content
command ::= "update" content replacement
content ::= constructor
content ::= selection
replacement // to be defined later

This weird triviality comes from the fact that a constructor specifies type –so that the
relation to which the command is issued is known from the type. In case a given tuple
(say, passed from some previous routine) is not labeled with a type, it is always possible
to do inline by wrapping it into a type-assuring constructor. Therefore the syntax of the
command itself does not need to mention the type, it is either known or can be made
known by treating the argument of the command.

And of course, a set is acceptable argument.
And of course, a command returns a result: the affected subset of the affected rela-

tion.

B := add {book title:"1984" isbn:"094885858"}
G := add [genre {"fiction"} {"sci-fi"} {"memoir"} {"documentary"} {"bore"}]
PEOPLE := [{first:"George" last:"Orwell"} {first:"Richard" last:"Dawkins"}]
W := add {writer PEOPLE} // adds all people as writers
A := add {author B (W last:"Orwell")}
S := add {book title:"The Selfish Gene" isbn:"098765"}

Similarly, a remove command needs to know “which records”, and since there is no
preference as to how exactly they must be specified, as long as the provided datum
unifies with the relation... The most straightforward way is to specify a selection.

TRACE := remove (author (name [first "Mary" "Jane"]))
// removes all authors with first names "Mary" OR "Jane"

abolish is a recursive version of remove. It removes members of relations referring
to removed members, instead of throwing an error.

The update is exceptionally cluttered and burdensome with all its references to new
and old. By no means the proposed syntax is final. Please consider it as a suggestion.

command ::= "update" content replacement
replacement ::= constructor
replacement ::= expression_with_special_namespace

Example

update (writer {name last:"Dawwkins"}) {name last:"Dawkins"}
// only the unified elements get replaced

// referring "old"
update (writer birth:(earlier than:1500)) {writer birth:(+ ‘13 days‘ <birth old>)}

21

5.3 Syntax 5 THE LANGUAGE

5.3.8 Projections

Projections are also brackets. In the simplest case:

projection ::= < fields expression >
fields ::=... field
field ::= NAME
// where expression is typically a selection

Unlike other brackets, unlike selections themselves, the subject expression enters a
projection at the last position. Is it inconsistency? No! In a selection the first word within
its bracket designates the type of the result. Same with constructors, the type enters in
the first position. A projection effectively alters the type of the subject expression, and
the formulation of this new type is written in the fields clause. So that in the proposed
syntax of projections the type again is the leading member within the bracket. That
adds some regularity for the reader, a human reader.

B := (book title:"1984")
W := <writer (author book:B)>
N := <name W> // the type is now {name first middle last}

T := {x:10 y:19 name:"point" ref:‘1546-12-12AD‘}
P := <x y name T> // dropped the "ref" field

// nesting
F := <first <name <writer (author book:B)>>>

// more complex
K := {name f:"J" m:"J" l:"Doe"}
Q := {x:10 y:19 who:K} // type is {real real {text text text}}
// let’s extract x and m (from name)
Mpart := <m <who Q>>
Xpart := <x Q>
R := {x:Xpart m:Mpart}
// pretty complicated

In order to fight this complication it is enough to allow the field specifications within
projections to refer to subtype labels:

projection ::= < fields expression >
fields ::=... field
field ::= NAME
field ::= NAME.field
// where expression is typically a selection

So the last example (that explicitly flattens a nested-tuple type) will look like:

K := {name f:"J" m:"J" l:"Doe"}
Q := {x:10 y:19 who:K}
R := <x name.m Q>

22

5.3 Syntax 5 THE LANGUAGE

There is nothing wrong with the dot-notation for nested namespaces. Also we allow
abbreviations in this context too.

5.3.9 Grouping And Aggregation

If you aggregate something in SQL and forget to “GROUP”unaggregated fields, it will very
precisely report an error: “the fields x y z are not aggregated and should be grouped”. It
knows exactly what fields must be grouped!!! Therefore, we must pursue some aggre-
gation and grouping notation that does not demand this redundancy from a user.

It turns out, grouping snugs comfortably into the projection context.

grouping ::= < fields \ fields expression >

We simply specify two subsets of fields: first those being grouped, then those that
group them. From the information content perspective, we specify a subset of fields
(same as in projection) plus a single split among them. The question which part of the
slit should come first in the notation is open.

domain {my_book title:text year:int author:writer}
[my_book
{t:"a book 1" 2021 (writer "Dawkins")}
{t:"a book 4" 2024 (writer "Dawkins")}
{t:"a book 5" 2025 (writer "Orwell")}
] =: B
G := <title year \ author.name.last B>
// [
// { [{t:"a book 1" 2021}
// {t:"a book 1" 2024}
//] "Dawkins"
// }
// { [{t:"a book 5" 2025}
//] "Orwell"
// }
//]

Since we successfully grouped certain projections into sets, and we already have
folding functions, then an aggregation is merely an application of a folding function to
certain elements of a grouping result. It can be done by means of regular function calls
and does not require any special syntax.

5.3.10 Connections

Instead of useless joins, we offer so called connections – a way of writing a selection
from a whole hierarchy of relations, without explicitly mentioning each of them. The op-
portunity stems from the fact that the data scheme already contains all the information
how relations relate to each other, how they are connected.

connection ::= (RELATION -><- selection)

23

5.3 Syntax 5 THE LANGUAGE

It results in a subset of the given relation, but the selection criteria are formulated
for another relation (implied in the given selection). The system scans the data scheme
to find a path between two relations involved. And then connects the elements of the
given selection with the elements of the queried selection along the found path.

W := (writer -><- (genre "bore"))
// all writers connected to the given genre
// same as
G := (genre "bore")
B := <book (book_genre G)> // projecting book_genre on book
A := (author B) // author is a relation between book and writer
W := <writer A>

5.3.11 Expressions

Finally. For a good closure.

expression ::= CONST
expression ::= NOMINATOR
expression ::= selection
expression ::= projection
expression ::= connection
expression ::= constructor
expression ::= arith
expression ::= funcall

5.3.12 Composite Types

On one hand, having strictly typed functions makes perfect sense in a language where
all data objects are strictly typed. When we query a book:

(book title:"1984")

we know the record type we got – the same knowledge of the type when querying a
function is convenient. On the other hand a function does not always return a result,
could be an error. Setting aside the exceptions (which remain an open question), we still
need some means of handling non-exceptional results...

Since our functions return tuples, it is always sufficient to return a type such as

domain {foo_result result:int error:text}

Although being sufficient and very convenient in certain cases of error-prone function
calls, such as calls to a filesystem that potentially return plentiful non-exceptional er-
rors, this solution entails the burden of repetitive projections, e.g. always extracting the
actual result from a return-tuple

<result (foo arg)>

24

6 IN THE CONCLUSION’S STEAD

a return-tuple can not be used in its raw form.
For example Erlang (despite the capability of returning tuples!) utilizes untyped

functions for returning error values: a function can return a result of some known type
or an error of another distinct type, the type of the result tells the fact of error.

Without forcing our users to adopt either strategy we may make both of them imple-
mentable in our language, by introducing composite types, a type that represents a union
of several other types. Such a type represents a compromise between strict typisation
and the Erlangish approach. Such a disjunctive type remains strict, it predicts exactly
the variety of expected results, still it allows to transcend pre-existing types.

type ::= "domain" {NAME domains} // a tuple of its domains
type ::= "domain" {NAME [domains]} // either one of the domains
domains ::=... domain
domain ::= TYPE
domain ::= LABEL:TYPE

For example a value of the type point can be either a 2D or 3D point:

domain {point2d x:real y:real}
domain {point3d x:real y:real z:real}
domain {point [point2d point3d]}

In a less abstract venue, it allows us cater to some very practical usecases:

domain {birthdate [date text]} // date OR text
relation {person name:text birthdate}
add {person "John Doe" ‘1976-01-01‘}
add {person "Ali ibn Hattab" "the user refused to reveal his birthdate"}

Although this example puts another important nail in the NULL’s coffin, still more
practical usecases are possible:

relation {prose_genre text}
relation {poetry_genre text}
domain {literature_genre [prose_genre poetry genre]}

This example strikingly resembles PostgreSQL’s inheritance [9]. Although in Postgres
it is defined in reverse order, a supertype first. You can clearly see that a composite type
can be a supertype in the exact same sense as in Postgres. And thus it covers all the
legitimate usecases for Postgres’s inheritance and subtypes. And we only assumed here
that Postgres along with Oracle share some strong meaningful real-life motivation to
invent supertypes and squeeze them into their existing RDBMs.

6 In The Conclusion’s Stead

We have got a world’s first language with pragmatic typisation – the types represent
your domain knowledge, and refuse to represent memory management – a choice of

25

6 IN THE CONCLUSION’S STEAD

a type is solely dictated by a given problem but not the implementation of the data
storage.

The language handles sets of tuples as first class data objects (as “variables” in ar-
chaic terms) and supports set operation as fluently as arithmetic operations. The oper-
ations of tuple composition and decomposition can be expressed in the same manner
(basic arith). And to achieve that we cleansed the language from any traces of positional
referencing – all tuple entries are named.

Let’s summarize the secondary features of the language so far described.

• Full utilization of the information provided by the data scheme (see connections
5.3.10)

• Concise formulations of queries

• Textual compatibility of relational data manipulations with general purpose func-
tional languages

• Higher-order relations not requiring any special treatment, nor causing any confu-
sion

• Comfortable and straightforward laziness

• Bare minimum of syntax constructs: re-using and re-using “homomorphic” struc-
tures for “homomorphic” purposes

• Bare minimum of basic types

• Comfortable handling of types of arbitrary complexity

• Named parameters, free from positional references, name abbreviations

• Same full toolbox for querying and constructing “Local” and “Temp” data, using the
predefined data scheme

• The SQL’s basic operations decomposed into more basic parts and reorganized
more logically

• Several improvements were made in general readability (see postfix assignments)

Many questions remain open. Is there a way to economize bracket types and reduce
the zoo by one animal? Perhaps a bracket role can be unambiguously told by the first
member class (e.g. a type as opposed to a nominator, etc)? There is room for ambiguity
in unification of patterns containing curried functions. We have not defined any control
structures, not even decided about grouping of commands. There must be subprograms,
call them procedures or routines,or “saved transactions” if you will, as opposed to already
defined functions that are pure. The type of the connection operation is not yet settled,
it could be anything from the type of the queried relation to the Cartesian product of all
types along the connecting path.

26

REFERENCES REFERENCES

References

[1] E.F.Codd, A Relational Model Of Data For Large Shared Data Banks, IBM Research Lab,
1970,
https://cs.uwaterloo.ca/d̃avid/cs848s14/codd-relational.pdf

[2] E.F.Codd,Relational Completeness Of data Base Sublanguages, IBM Research Lab,1972,
https://www.rjerz.com/c/infosys/support/Codd-Relational Completeness Article.pdf

[3] E.W.Dijkstra, On The Foolishness Of Natural Language Programming, 2005,
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD06xx/EWD667.html

[4] M.Sperber et al, Revised6 Report on the Algorithmic Language Scheme, 2007,
http://www.r6rs.org/final/r6rs.pdf

[5] T.R.N.Rao, The Panini-Backus Form in Syntax of Formal Languages, 1998,
https://www.infinityfoundation.com/mandala/t es/t es rao-t syntax.htm

[6] ISO/IEC 9075-14, XML-Related Specifications (SQL/XML), 2011,
http://www.iso.org/iso/iso catalogue/catalogue tc/catalogue detail.htm?csnumber=53686

[7] The Density of the Rational/Irrational Numbers, Math Online,
http://mathonline.wikidot.com/the-density-of-the-rational-irrational-numbers

[8] The Oversized-Attribute Storage Technique (TOAST), PostgreSQL documentation,
http://www.postgresql.org/docs/8.3/static/storage-toast.html

[9] Inheritance, PostgreSQL documentation,
https://www.postgresql.org/docs/9.1/tutorial-inheritance.html

[10] Date And Time Types, PostgreSQL documentation,
https://www.postgresql.org/docs/9.1/datatype-datetime.html

[11] Collections, Oracle documentation,
http://docs.oracle.com/cd/B10501 01/appdev.920/a97269/pc 18col.htm

[12] TIOBE index,
https://www.tiobe.com/tiobe-index/

[13] A Relation: Formal Definition, The Definitive Glossary Of Higher Math Jargon,
https://mathvault.ca/math-glossary/#relation

[14] Map (A Higher-Order-Function), Infogalactic,
https://infogalactic.com/info/Map (higher-order function)

[15] Unification in Prolog,
https://cse3521.artifice.cc/prolog-unification.html

27

