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This paper explores the concept of Quasi Photons within the framework of a specific model.
The model is defined in terms of a field theory with two sectors: one representing a harmonic
oscillator with negative norm and the other capturing the dynamics of a massless scalar field with a
negative mass squared in the subspace with negative norm. The analysis focuses on the construction
of field operators, their harmonic oscillator representation, and their corresponding path integral
formulation. The paper further investigates the real-space expressions for the propagator in the case
where the mass parameter is zero. Explicit expressions for the propagator and its various components
are derived, shedding light on the behavior of the system in both the positive and negative norm
sectors. The exploration emphasizes the implications of this unique model, providing insights into
the nature of quasi photons and their characteristics. The results presented in this paper contribute
to our understanding of unconventional quantum field theories and open up avenues for further
research into the intriguing properties of quasi photons.

I. INTRODUCTION

The realm of quantum field theory continually unravels new facets of the quantum world, challenging our precon-
ceptions and expanding the boundaries of our understanding. In this pursuit, we delve into the intriguing concept of
”Quasi Photons,” a phenomenon that emerges from a unique model defined within the framework of a field theory.
This model involves two distinct sectors, one characterized by a harmonic oscillator with negative norm and the other
by the dynamics of a massless scalar field with a negative mass squared in the subspace with negative norm. As we
embark on this exploration, it becomes evident that the conventional notions of photons and their behavior undergo
a profound transformation within the confines of this unconventional model. The purpose of this paper is to elucidate
the intricate details of the ”Quasi Photon” phenomenon, offering a comprehensive analysis of the field operators, their
harmonic oscillator representations, and the associated path integral formulation. A particular focus is placed on the
case where the mass parameter is zero, unraveling the real-space expressions for the propagator. The derived explicit
expressions provide a nuanced understanding of the system’s dynamics, both in the positive and negative norm sectors.
This investigation promises to unveil the distinct characteristics of quasi photons, shedding light on their nature and
behavior within the framework of this unconventional quantum field theory.By presenting these results, this paper
aims to contribute to the broader discourse on unconventional quantum field theories, inviting further inquiry into
the implications of quasi photons and their role in shaping our understanding of the quantum landscape.

II. MODEL

The foundational structure of our quantum field theory model is succinctly described by the following action
functional:
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S0 =

∫
dx

(
−1

4
Fµνf(−□)Fµν − ξ

2
∂αAf(−□)∂αA

)
=

1

2

∫
dx [−∂µAνf(−□)∂µAν + ∂µAνf(−□)∂νAµ + ξAµf(−□)∂µ∂αA]

=
1

2

∫
dxAµ[g

µν□− (1− ξ)∂µ∂ν ]f(−□)Aν

=
1

2
AD−1

0 A, (1)

where the Feynman gauge condition is enforced (ξ = 1), and the propagator and self-energy tensor are defined as:

D−1
0 (p) = −gµνp2, (2)

Π++µν(q) = −gµνℓ2(q2)2, (3)

f(p2) = 1 + ℓ2(p2)2, (4)

D(k) =
1

k2 + iϵ
− 1

k2 + 1
ℓ2 − iϵ

=
1

k2 + iϵ

1

1 + ℓ2(k2 − iϵ)
=

1

k2 + ℓ2(k2)2 + iϵ
. (5)

In these expressions, □ denotes the D’Alembertian operator, and A, Fµν represent the vector potential and field
strength tensor, respectively. The parameter ξ governs the gauge-fixing term, while ℓ introduces a characteristic length
scale into the theory. The inverse propagator D−1

0 (p), self-energy tensor Π++µν(q), and form factor f(p2) elegantly
encapsulate the intricate dynamics of the quasi-photon within this unconventional quantum field theory.

III. FIELD OPERATOR

A. Harmonic Oscillator with Negative Norm

Consider a linear space H = H+ ⊕H−, where ηHσ = σHσ.
Matrix elements are given by ⟨m|A|n⟩ = (m, ηAn).
The adjoint is denoted as ⟨m|Ā|n⟩ = ⟨n|A|m⟩∗, where Ā = σAA and σ = ±1.
Eigenvalue equations are expressed as Aλ⟩ = λ|λ⟩ and Aρ⟩ = ρ|ρ⟩, subject to the constraint (λ − σAρ

∗)⟨ρ|λ⟩ = 0,
yielding a real spectrum for skew-adjoint operators with non-orthogonal, degenerate eigenvectors.

The following relations hold: q̄σ = σqσ, p̄σ = σpσ, and [qσ, pσ] = i.

The operators aσ are defined as aσ = (mωqσ + ipσ)/
√
2mω, with qσ = (aσ + σāσ)/

√
2mω, pσ = (aσ − σāσ)/

√
2i,

and [aσ, āσ] = σ.
The corresponding Hamiltonian Hσ is given by Hσ = σω(āσaσ + 1

2 ), where b = a+ or ā−, b̄ = ā+ or a−, and

[b, b̄] = 1.
The basis is formed by eigenstates such as b̄b|λ⟩ = λ|λ⟩, · · · , bn|λ⟩, · · · , b|λ⟩, |λ⟩, b̄|λ⟩, · · · , b̄n|λ⟩, · · ·.
Eigenvalues of b̄b are · · · , λ− n, · · · , λ− 1, λ, λ+ 1, · · · , λ+ n, · · ·.
For σ = +1, the spectrum stops at the left with λ ≥ 0, and sign⟨λ+ 1|λ+ 1⟩ = sign⟨λ|λ⟩.
For σ = −1, the spectrum stops at the right with λ ≤ −1, and sign⟨λ− 1|λ− 1⟩ = −sign⟨λ|λ⟩.
The eigenstates satisfy Hσ|λ+ σn⟩ = Eσ(n)|λ+ σn⟩, where Eσ(n) = n+ 1

2 + σλ.
The coordinate eigenvalue is q̄σ = σqσ.
The identity operator is expressed as 11 =

∫
dq|σq⟩⟨q| =

∫
dp|σp⟩⟨p|.

The total Hamiltonian is H = H+ +H−, with Hσ = σ
(

p2
σ

2mσ
+

mσω
2
σ

2 q2σ

)
.
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The classical Hamiltonian is given by

H(q, q′, p, p′) =
⟨q,−q′|H|p, p′⟩
⟨q,−q′|p, p′⟩

=
⟨q|H+|p⟩
⟨q|p⟩

+
⟨−q′|H−|p′⟩
⟨−q′|p′⟩

=
p2+
2m+

+
m+ω

2
+

2
q2+ −

p2−
2m−

−
m−ω

2
−

2
q2−.

The Lagrangian is L(q, q′, p, p′) =
q̇2+

2m+
− m+ω2

+

2 q2+ − q̇2−
2m−

+
m−ω2

−
2 q2−.

Convergence is achieved by ωσ → ωσ − σiϵ.

B. Field Operator

The field operator is described by the following equations:

M2 = ℓ−2 (6)

L =
1

2
∂µϕ+∂

µϕ+ − m2

2
ϕ2
+ − 1

2
∂µϕ−∂

µϕ− − M2

2
ϕ2
− (7)

Here, M2 represents a characteristic constant associated with the field.
The commutation relations for creation and annihilation operators are given by:

[a(p), a†(p′)] = (2π)32ωpδ(p− p′) (8)[
b(p), b†(p′)

]
= −(2π)32Ωpδ(p− p′) (9)[

a(p), b†(p′)
]
= [a(p), b(p′)] = 0 (10)

These relations govern the creation and annihilation of particles associated with the field.
The frequencies ωp and Ωp are defined as:

ωp =
√

m2 + p2, Ωp =
√
p2 −M2 (11)

The vacuum states for the operators are such that a(p)|0⟩ = b†(p)|0⟩ = 0.
The field ϕ(x) is decomposed into positive and negative norm subspaces:

ϕ+(x) =

∫
d4k

(2π)4
2πδ(k2 −m2)a(k)e−ikx

=

∫
m,k

[a(k)e−ikx + a†(k)eikx]

ϕ−(x) =

∫
d4k

(2π)4
2πδ(k2 +M2)b†(k)e−ikx

=

∫
M,k

[b(k)e−ikx + b†(k)eikx] (12)

Finally, integrals involving functions fk are defined over momentum space:

∫
m,k

fk =

∫
d3k

(2π)32ωk
fωk,k,

∫
M,k

kk =

∫
k2>|M2|

d3k

(2π)32Ωk
fΩk,k (13)
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C. Path Integral

The path integral representation for the generating functional is given by:

eiW [ĵ] = TrT

[
e−i

∫ tf
ti

dt′[H(t′)−j+(t′)ϕ+(t′)]|0⟩⟨0|T̄ [ei
∫ tf
ti

dt′[H(t′)+j−(t′)ϕ−(t′)]]

]
=

∫
D[ϕ̂]e

i
2 ϕ̂·D̂

−1·ϕ̂+iĵ·ϕ̂

= e−
i
2 ĵ·D̂·ĵ (14)

Here, W [ĵ] represents the generating functional, H(t) is the Hamiltonian, and ϕ±(t) are field components.

The second functional derivative of W [ĵ] with respect to the source terms j±(t) gives the connected two-point
functions:

i
δ2W [ĵ]

δij+a δij+b
= iD++

ab (15)

i
δ2W [ĵ]

δij−a δij−b
= −iD++∗

ba (16)

i
δ2W [ĵ]

δij−a δij+b
= iD−+

ab (17)

i
δ2W [ĵ]

δij+a δij−b
= −iD−+∗

ab (18)

The commutation relations are expressed in terms of the correlation functions, and D++ and D−+ are components
of the Green’s function matrix.

The trace of time-ordered and anti-time-ordered products, as well as their difference, are defined as:

T [ϕaϕb] + T̄ [ϕaϕb] = ϕaϕb + ϕbϕa (19)

D −D† = D+− −D+−∗ (20)

The components of the matrix i

(
D D+−

D−+ D−−

)
are expressed in terms of correlation functions and imaginary parts:

i

(
D D+−

D−+ D−−

)j,k

x,y

= i

(
Dn + iℑD −Df + iℑD
Df + iℑD −Dn + iℑD

)j,k

x,y

(21)

The correlation functions are given by:

iDx,x′ = Θ(t− t′)⟨0|ϕxϕx′ |0⟩+Θ(t′ − t)⟨0|ϕx′ϕx|0⟩
2ℜDx,x′ = 2Dn

x,x′ = −ϵ(t− t′)i⟨0|[ϕx, ϕx′ ]|0⟩
2ℑDx,x′ = −⟨0|{ϕx, ϕx′}|0⟩
iD−+

x,x′ = ⟨0|ϕxϕx′ |0⟩

2ℜD−+
x,x′ = 2Df

x,x′ = −i⟨0|ϕxϕx′ |0⟩
2ℑD−+

x,x′ = −⟨0|{ϕx, ϕx′}|0⟩

iD
r
a
x,x′ = ±Θ(±(t− t′))⟨0|[ϕx, ϕx′ ]|0⟩

D
r
a(x) = ±Θ(±t)[D−+(x)−D−+(−x)] (22)
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D. Explicit Expressions

The explicit expressions for the Green’s functions are given by:

iD−+(x, x′) =
⟨0|ϕ(x)ϕ(x′)|0⟩

⟨0|0⟩

=

∫
m,k,k′

⟨0|[a(k)e−ik·x + a†(k)eik·x][a(k′)e−ik′·x′
+ a†(k′)eik

′·x′
]|0⟩

⟨0|0⟩

+

∫
M,k,k′

⟨0|[b(k)e−ik·x + b†(k)eik·x][b(k′)e−ik′·x′
+ b†(k′)eik

′·x′
]|0⟩

⟨0|0⟩

=

∫
m,k

e−iωk(t−t′)+ik(x−x′) +

∫
M,k

eiΩk(t−t′)−ik(x−x′) (23)

The corresponding function iD+−(x, x′) is simply the complex conjugate of iD−+(x′, x).
The causal and anti-causal parts of the Green’s functions are given by:

Θ(t− t′)D−+(x, x′) =

∫
ω

e−iω(t−t′)

ω + iϵ

∫
m,k

e−iωk(t−t′)+ik(x−x′)

+

∫
ω

eiω(t−t′)

−ω + iϵ

∫
M,k

eiΩk(t−t′)−ik(x−x′)

=

∫
m,k,ω

e−i(ωk+ω)(t−t′)+ik(x−x′)

ω + iϵ

−
∫
M,k,ω

ei(ω+Ωk)(t−t′)−ik(x−x′)

ω − iϵ
(24)

Similarly, for the anti-causal part:

Θ(t′ − t)D+−(x, x′) = −
∫
m,k,ω

e−iω(t−t′)+ik(x−x′)

ω + ωk − iϵ

+

∫
M,k,ω

eiω(t−t′)−ik(x−x′)

ω +Ωk + iϵ
(25)

The complete Green’s function D(x, x′) is obtained by combining these causal and anti-causal parts:

D(x, x′) = Θ(t− t′)D−+(x, x′) + Θ(t′ − t)D+−(x, x′)

=

∫
k

[
e−ik·x

k2 −m2 + iϵ
− Θ(k2 −M2)e−ik·x

k2 +M2 − iϵ

]
(26)

Finally, the real and anti-chronological parts D
r
a(x) are given by:

D
r
a(x) = ±Θ(±t)

∫
k

e−ik·x
[

1

(k0 ± iϵ)2 − k2 −m2
− Θ(k2 −M2)

(k0 ± iϵ)2 − k2 +M2

]
= ±Θ(±t)

∫
k

e−ik·x
[

1

(k0 ± iϵ− ωk)(k0 ± iϵ+ ωk)
− Θ(k2 −M2)

(k0 ± iϵ− Ωk)(k0 ± iϵ+Ωk)

]
= ±Θ(t)i

∫
k

eik·x
[
eiωkt − e−iωkt

2ωk
−Θ(k2 −M2)

eiωkt − e−iωkt

2Ωk

]
(27)

These expressions provide a detailed insight into the structure and behavior of the Green’s functions in the given
quantum field theory.
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E. Real Space Expressions for m = 0

For the case of m = 0, where the mass term is absent, the contribution at large k is negligible in a cutoff theory.
Let’s examine the expressions for the Green’s functions in this scenario:

The propagator D(x) is given by:

D(x) = Dx0 →
∫
k

eik·x−ϵ′k

∫
ω

e−iωt

ω2 − k2 + iϵ

= − i

4π2

∫
dk k2 dc eik(rc+iϵ′)

(
Θ(t)e−i(k−iϵ)t

2k − iϵ
+

Θ(−t)ei(k−iϵ)t

2k − iϵ

)
= − i

8π2r

∫ ∞

0

dk k
eik(r−iϵ′)

k − iϵ
e−i(k−iϵ)|t|

= − 1

4π2(r2 − (|t| − iϵ′)2)

=
i

4π2x2 − iϵ′

= P
i

4π2x2
− 1

4π
δ(x2), (28)

where P denotes the principal value of the integral.

Similarly, for D
r
a(x):

D
r
a(x) = D

r
a
x0

= − Θ(t)

2(2π)2r

∫
dkk2

eikr − e−ikr

ikr

e−ikt − eikt

2k

− Θ(−t)

2(2π)2r

∫
dkk2

eikr − e−ikr

ikr

e−ikt − eikt

2k
e−ϵ|t|

= − 1

8πr

∫ ∞

−∞

dk

2π
(eik(r−t) + eik(−r+t) − eik(−r−t) − eik(r+t))(Θ(t)−Θ(−t))e−ϵ|t|

= −Θ(t)δ(r − t) + Θ(−t)δ(r + t)

4πr
e−ϵ|t|

= −Θ(±t)δ(t∓ r)

4πr
e−ϵ|t|

= −Θ(±t)
δ(t2 − r2)

2π
e−ϵ|t|. (29)

Finally, the regular and non-regular parts are:

Df (x) =
1

2
(D

r
a(x)−D

r
a(x)) = − 1

4π
δ(x2)ϵ(x0), (30)

Dn(x) =
1

2
(D

r
a(x) +D

r
a(x)) = − 1

4π
δ(x2). (31)

These expressions unveil the structure of the Green’s functions in a massless theory, particularly emphasizing the
behavior of the propagator in real space.

F. Real Space Expressions for m ̸= 0

For a non-zero mass term (m ̸= 0), the propagator D(k2) is given by:

D(k2) = −i sign(ϵ)

∫ ∞

0

dsei sign(ϵ)s(k
2−m2+iϵ). (32)
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Utilizing the result that is analytic for Im eiθ > 0:

∫
dxe

i
2ae

iθx2

=

√
2π

a
ei(

π
4 − θ

2 ), (33)

and for real a:

∫
d4k

(2π)4
e(ia−ϵ)k2−ikx = − i sign(a)

32π2a2
e−

ix2

4a , (34)

the expression for D(x) becomes:

D(x) = −i sign(ϵ)

∫
d4k

(2π)4

∫ ∞

0

dsei sign(ϵ
′)s(k2−m2+iϵ)−ikx

= − 1

32π2

∫
da

a2
e−i sign(ϵ)a(m2−iϵ)− ix2

4a

=
1

8π2

∫ ∞

−∞
dαe−

im2−iϵ
4α −ix2α

=
1

4π2

∫ ∞

0

dα cos

(
m2

4α
+ x2α

)
=

1

4π2
∂x2

∫ ∞

0

dα

α
sin

(
m2

4α
+ x2α

)
=

Θ(x2)

4π2
∂x2

∫ ∞

−∞
dθ sin(

√
(m2 − iϵ)x2 cosh θ)

=
Θ(x2)

4π
∂x2J0(

√
(m2 − iϵ)x2), (35)

where J0 is the Bessel function of the first kind with order 0.

Now, considering D
r
a(x) for positive mass square:

D
r
a(x) = − Θ(t)

2(2π)2r

[∫ ∞

m

dkk

ωk
(eikr − e−ikr)(e−iωkt − eiωkt)− i

∫ m

0

dkk

ωk
(eikr − e−ikr)e−ωkt

]
. (36)

For negative mass square, where ω̃k = +
√

|m2 − k2| > 0:

Dr(x) = − Θ(t)

2(2π)2r

[∫ ∞

m

dkk

ω̃k
(eikr − e−ikr)(e−iω̃kt − eiω̃kt)− i

∫ m

0

dkk

ω̃k
(eikr − e−ikr)e−ω̃kt

]
. (37)

These expressions provide insights into the behavior of the propagators for non-zero mass in real space.

IV. CONCLUSION

In conclusion, the exploration of Quasi Photons within the framework of an unconventional quantum field theory has
unfolded intricate mathematical facets, reshaping our conceptual understanding of the quantum realm. The model,
characterized by a harmonic oscillator with negative norm and a massless scalar field with negative mass squared in
the subspace with negative norm, challenges conventional notions of photons, ushering in a profound transformation.

The real-space expressions for the propagator, particularly in the limit of zero mass (m = 0), reveal captivating
mathematical structures. The resulting expression for the propagator D(x) embodies both principal value and delta
function terms, exemplifying the rich interplay between mathematical sophistication and physical insight:

D(x) = P
i

4π2x2
− 1

4π
δ(x2).
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Furthermore, the real-space representation of the advanced and retarded propagators, denoted as Dr(x) and Da(x)
respectively, showcases intricate mathematical features:

D
r
a(x) = − i

4π2(x2 − iϵ′)
+

1

4π
δ(x2)−Θ(t)R+Θ(−t)A,

where R and A encapsulate the intricacies of the advanced and retarded contributions, each exhibiting a delicate
balance of mathematical elegance and physical significance. In summary, the mathematical tapestry woven in the
exploration of Quasi Photons not only enriches our understanding of unconventional quantum field theories but also
beckons further inquiry into the profound interplay between mathematical formalism and the nature of quantum
phenomena. This endeavor prompts a reassessment of our conceptual framework, urging us to perceive the quantum
world through a lens that embraces both mathematical sophistication and physical insight.
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