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Abstract—Fusing thermal and visible images is a recurring
challenge in computer vision, especially when the images of the
two modalities are not well registered. This registration problem
is traditionally solved by matching descriptors and depends on
the richness and discriminating power of the representation. En-
suring that detected features are dense and uniformly distributed
is not necessarily guaranteed. More recently, machine learning
methods addressed the issue of visible to visible matching, but
few address the multi-modality setting. In this paper, we propose
to address the special case of thermal-visible image registration
with small baseline parallax correction. Our deep homography
model is evaluated on an open thermal and visible dataset
with two training settings, unsupervised and supervised. Results
demonstrate the feasibility of the approach, and performances
comparison to state-of-the-art models is evaluated.

I. INTRODUCTION

The goal of multimodal image fusion is to improve image
rendering to expand one’s visual ability under varying illu-
mination conditions and support the decision making process.
This paper addresses multimodal image fusion where images
come from both infrared (IR) and visible cameras (VI). The
main challenge when performing IR/VI fusion is about ex-
tracting informative features from the visible and the thermal
sources and effectively combining the two to enhance the
content of the resulting composite image [24], [25], [36].

In the most general setting, the two cameras are not
visually aligned, i.e., the two central perspectives do not
emerge from the same projection centre causing perspective
parallax. Without loss of generalization, horizontal parallax is
usually observed while vertical offsets are also present, and
are directly related to object distances or object depths with
respect to the camera’s image plane [18].

Many registration methods have been developed to solve
this alignment problem [7], [17], [23], [35], [40], [65]. Here,
we focus on deep learning approaches to compute the residual
geometrical correction where features detection and descrip-
tions are learned from the input images. Deep homography
network is exploited [64] and adapted to multi-modality
imagery, with special attention to IR/VI (photoconductive and
photodiode devices) fusion.

II. PROBLEM STATEMENT

A perspective camera can reasonably approximate the image
formation with distortions [55]. When the IR and VI camera

do not share the same principal points, the world or object
points are related to the image pair by a direct mapping, which
results in recovering the depth information of the scene by
triangulation. A parallax encodes this depth information. It is
responsible for the misalignment of features in fused images
that sometimes create a ghosting effect. Some high constraint
designs that are not discussed here avoid parallax by using a
coaxial configurations [41], [53].

When world points lay on a planar surface, the relation
between corresponding points from the IR and VI images can
be described using homography, which is rarely the case. A
special case though is met when all the points lay beyond the
image resolution and are approximated by a plane at infinity. In
this special case, the homography between the two views can
be recovered up to a rotation (and camera internal parameters)
[18].

A. Parallax challenge

For objects with complex geometry close to the cam-
eras, parallax is observed and non-constant. Homographies
are good initial approximates to align local image regions
[18]. However, other mapping are possible depending on
the geometric local relation, i.e., pure rotation (d.o.f. = 1),
pure translation (d.o.f. = 2), similarity (d.o.f. = 4), affinity
(d.o.f. = 6) and finally 2D homography or projectivity (d.o.f.
= 8). Reducing the degree of freedom (d.o.f.) of geometric
relations permits constraining the problem to a few unknown
parameters, guaranteeing better convergence qualities. That
been said, those simplified geometric models with appealing
convergence property cannot fully capture the richness of the
geometry present in some scenes.

B. Multimodal challenge

Thermal imagery exhibits fundamental differences com-
pared to visible spectrum cameras. The detected signal is
essentially the emitted signal from the scene and employs
a different detector technology that measures the electric
fluctuation of a material in the presence of thermal radiation.
Another fundamental aspect with respect to parallax correction
is the low texture information content present in a thermal
scene, which reduces the possible number of matches between
visible and thermal. There is also a non-negligible potential



delocalization of features that may look similar in the two
modalities; however, thermal diffusion does not follow the law
of material reflections.

Most handcrafted approaches follow a detect-then-describe
process. While the description of image patches around the
feature brings the discriminative content and the local feature
location repeatability to ensure a correct mapping, they typi-
cally perform poorly under extreme appearance changes (day,
night, weak textures [14]). The lack of repeatability is the pri-
mary reason for the drop in performance; a small image region
only brings low-level information. In this case, a describe-
and-detect approach would be better, as the detection stage is
postponed at the same stage of finding good descriptors.

III. STATE OF THE ART

A. Visible to visible matching

Concerning the problem of image registration, some au-
thors focused on the generalization of different geometric
transforms [3], [27], [31], [38], [45], [63]. In contrast, others
concentrate on discriminative representations [13], [22], [50],
[59], or even run time [11], [42], [46], [51], [57] and compute
more simple geometric relations. Some authors calculate a
displacement field directly from neural networks [19], [39],
[56], [58] to approximate an elastic deformation. Note that
stereo matching is another problem that is essentially solved
by working on the matching cost. Some methods can handle
non-linear intensity mapping between images pairs [20].

Yang et al. [61] propose an incremental framework that
searches for coarse-to-fine correspondence. AANet [60] re-
places costly 3D convolutions with ingenuous multi-cost vol-
umes. MobileStereoNet [48] implements two light networks
based on MobileNet [21] blocks, one 2D and one 3D, signif-
icantly reducing computational expense. Finally, CFNet [49]
improves the robustness and generalization capacity by fusing
different low-resolution cost volumes.

B. Thermal to visible matching

Computing a local registration requires the association of
pairs of points. In the case of IR/VI image pairs, this associ-
ation is challenging [5], [9], [10], [29], [34], [62]. Although
Deep-Learning (DL) approaches have proved their efficiency
in many computers vision tasks, the advantages in using DL
have not yet been demonstrated in the specific field of image
matching and keypoint detection. First, defining a ground
truth is not straightforward as selecting a “good” feature. Sec-
ond, Convolutional Neural Networks (CNN) have difficulties
achieving good performances in terms of repeatability [26],
[33].

An influential subtask of thermal to visible matching
is patch matching, multiple works design CNNs based on
Siamese networks. Aguilera et al. [1] present three different
CNN architectures and show that CNNs outperform the state-
of-the-art methods. Q-Net [2] proposes a quadruplet network
where the inputs are two matching pairs. AFD-Net [43] capi-
talizes on feature learning, specifically the multi-level feature
differences. Two papers by Beaupre et al. [5], [6] work on the

design of Siamese network for disparity estimation, first using
a summation layer, and in the second work using a correlation
and a concatenation layer.

Other methods estimate the matching without using patches.
CMM-Net [52] presents a CNN designed to learn modality-
specific information. Deshpande et al. [10] propose a triplet
Siamese CNN where the three inputs are an anchor from
an RGB image and a positive and a negative patch from a
thermal image. Krishnan et al. [28] designed an intensity-based
cross-modality image registration technique. CMTR [30] uses
the vision transformer [12] network and adapts it to visible-
infrared person re-identification. In SuperThermal [34], the
authors propose a complete pipeline to learn a feature detector
and descriptor for thermal images.

Fig. 1. Network structure

IV. DEEP HOMOGRAPHY

Correcting parallax from two views is still a problem that
has not yet received a final complete solution. Employing
information taken solely from passive image sensors is a
challenge. Highly constrained geometrical detectors (points)
are needed to guarantee a robust estimation, and correctness
depends on their description richness for viewpoint invariance.
Keypoints with generalization representation capabilities are
usually exploited to cover as much as possible various scene
content at the expense of losing their unique description.

Recent work first proposed in [11] estimate a homography
to correct two visible images. Then [64] a non-supervised
homography learning was proposed. The originality of the
approach is that detectors and descriptors are learned from
the images to obtain an optimal alignment. The current work
also focuses on small baselines, i.e., viewpoints differences
are relatively small.

A. Deep Homography Estimation

The entire network architecture contains three sections (see
Figure 1); a feature extractor f(x), a mask predictor m(x)
and a mapping hir→vis, where x is a data vector of very high
dimension x ∈ Ω and {f,m, h} ⊂ K. The lower thermal
resolution guided our mapping direction, as no information is
loss during feature extraction in this way.

Neural networks provide approximate functions f̃ , m̃ and h̃
from q training samples, in high dimensions, regularities are
not well understood, and very often, the network architecture



is found by experiments [37]. The distance of the observed
values to the unknown parametrization is evaluated as an
optimization procedure implying strong assumptions, i.e., K
is a compact set (existence of a global optimum). This is
far from being the case, as parallax offsets are not constant,
and strong offsets may be significant in neighbouring regions,
hence exposing multiple local minima.

Furthermore, in the vicinity of the optimum, the gradient
descent requirement expressed as the Lipschitz condition [8]
is a strong assumption about the slope of the manifold.
Furthermore, when extracted features have naturally strong
intensity dissemblance with low discriminating textural dif-
ferences, the estimated set of points p do not necessarily
generalize the parallax, and an over-parametrization of the
manifold will diverge the search from the optimum. An under-
parametrization will promote local optima or convergence will
fail.

B. Network Architecture
The network structure takes two grayscale images Iir and

Ivis and produce a set of points pi where i = 4. This set of
points compute a mapping hir→vis, where |hir→vis| = {4, 8}.
Thus, the minimum number of points is always insured to
compute a mapping, constraining the network to discard
spurious matches. The network architecture is taken from [64],
and modified to accommodate multimodal inputs.

TABLE I
FEATURE EXTRACTOR f

Layer 1 2 3
Type conv conv conv
Kernel 3 3 3
Stride 1 1 1
Channel 4 8 1

TABLE II
MASK PREDICTOR m

Layer 1 2 3 4 5
Type conv conv conv conv conv
Kernel 3 3 3 3 3
Stride 1 1 1 1 1
Channel 4 8 16 32 1

TABLE III
POINT ESTIMATOR h

Layer 1 2 3 4 5
Type conv pool conv pool fc
Kernel 7 3 3 - -
Stride 2 2 1 1 -
Channel 64 - 1024 - 8

1) Feature Extractor: The feature extractor is a small
subnetwork composed of five identical blocks. Each block is
built with one fully convolutional layer of kernel size three by
three, followed by one batch normalization layer and a ReLU
(see Table I) and [64].

2) Mask Prediction: The mask prediction sub-network is
similar to the feature extractor, see Table II. The mask
prediction layers serve as an attention map and an outliers’
removal operator by learning to weight the extracted features
accordingly. The weighted feature map is expressed as:

g(x) = m(x)� f(x) (1)

3) Interest Points Calculation and Mapping Computation:
Once the weighted feature maps are calculated, a final network
h that follows a ResNet backbone (see Table III) computes
the coordinates of the projected point from the initial four
corner points coordinates defining the ROI of the input mask
(eight coefficients in total). It contains two layers of strided
convolutions followed by a global average pooling layer. The
homography is found by solving a direct linear transform
(DLT) [55].

C. Unsupervised Learning

The network can learn without explicit knowledge, by
minimizing the loss, features are automatically selected and
extracted. The alignment of the two images serves as a
constraint to specify features of interest.

1) Loss Expression: Our loss expression is the same as in
[64].

min
f,m,h

Ln(I ′ir, Ivi) + Ln(I ′vi, Iir)− λL+ µ||H − I|| (2)

where I ′ir and I ′vi are the projected feature masks of the
visible and thermal image respectively and Iir and Ivi the
original images. H is the product of homographies to insure
their symmetry when compared to identity matrix I. The
parameters are set to λ = 2.0 and µ = 0.01. L is a loss that
maximize discriminative features and Ln is the loss between
the warped I ′ and I (see [64]).

D. Supervised Learning

We selected homologous points for each sequence to eval-
uate our results, allowing us to compute a ground-truth
homography. These annotations are used in the loss in the
supervised learning setting. Since the network’s output is
four points with four corresponding offsets, our approach
consists of calculating the homography associated with them
and comparing them with the homography associated with our
ground-truth points and offsets of homologous points. It results
in a loss closer to our desired result, especially in a multi-
modality world.

1) Loss Expression:

Lrmse = RMSE(h′ir→vis, hir→vis) (3)

Where h′ir→vis is the homography computed with the
network’s output of the points and offsets, and hir→vis is the
one computed with our ground-truth homologous points.



Laboratory Camouflage

Trees Bay

Fig. 2. For each scene results of the thermal to visible registration, thermal image (left), visible image (middle), ground truth (right).

Laboratory Camouflage

Trees Guanabara Bay

Fig. 3. For each scene, thermal-visible fusion without registration (left), with the proposed registration (right).

Laboratory Camouflage

Trees Guanabara Bay

Fig. 4. For each scene, intermediate results of the thermal to visible alignment: thermal features (left), visible features (middle), mask image (right). See text
for details.



Laboratory Camouflage

Trees Guanabara Bay

Fig. 5. For each scene, thermal to thermal fusion without registration (left), with the proposed registration (right).

Laboratory Camouflage

Trees Guanabara Bay

Fig. 6. For each scene, intermediate results of thermal to thermal registration: thermal features from an uncalibrated image (left), thermal features from a
calibrated image (middle), mask image (right).See text for details.

V. EXPERIMENTS

A. Datasets

The data used is from the Visible-Light and Infrared Video
Database (VLIRVDIF) [15]. This dataset was initially con-
ceived for image fusion but can also be used for image
registration. It is composed of six scenes with multiple takes
each. In the context of this paper, we use five of these six
scenes (detailed in table IV), one of them not having enough
thermal features to be usable for our task. Each scene is filmed
in very different contexts (static/dynamic, indoor/outdoor,
close/distant foreground), making this dataset suitable for
thoroughly evaluating an image registration method. Both
modalities are available in unsynchronized and unregistered,
synchronized and unregistered, and finally synchronized and
registered. The focus of this work is finding the homography
to match an unregistered IR to a registered VI image.

B. Implementation details

We implement our model in Pytorch, using Pytorch Light-
ning for training and Hydra to set up our configuration files.

TABLE IV
AN OVERVIEW OF THE SEQUENCES FROM THE VLIRVDIF [15] DATASET

Name Distance People Light Environment
Laboratory Near X Artificial Indoor
Camouflage Near & Far X Sunlight Outdoor

Trees Far X Sunlight Outdoor
Guanabara Bay Far X Night Outdoor

Patio Far X Twilight Outdoor

An adam optimizer is used with a learning rate of 1e-4 and a
batch size of 16.

To train and evaluate our model, a small training and
testing sets for each sequence are used, of length 200 and
50, respectively. Each sequence has a calibration phase at the
beginning, which is skipped. The training and testing images
are randomly selected in the remainder of the sequence.
For more information about the exact list of training and
testing images, please contact the authors. The default image
resolution is 160x120, and patch size is 120x80. Several scales
were tested, and these resolutions worked best.

Ground truthed homographies were computed from pairs



of four points correspondences. Our evaluation metric is
the average reprojection error between the ground truth and
predicted homologous points. Using random homographies to
train was not possible in our case, since rectified thermal and
visible images are not available in this dataset.

The training speed is fast, averaging 0.03 seconds per image
with a low-end GPU (4GB of memory). The inference speed
on the other end averages 0.027 seconds per image.

VI. RESULTS AND DISCUSSION

A. Comparisons with existing solutions

Table V and VI show reprojection errors (reported as root
mean square error or RMSE) for different thermal to visible
sequences, respectively for a homography and an affine map.
Table VII gives the reprojection errors for a homography for
thermal to thermal sequences. Several sub experiments were
conducted based on a different region of interest or patch
size (120x80 and 120x95 pixels). Those regions are randomly
selected during the training process to increase generalization
performance.

As a baseline and comparison to our approach, we imple-
mented and tested several existing solutions and compared
them in the same settings. Four methods were used to perform
point matching: SIFT [32], ORB [47], SOSNet [54] and CNN
matching [14]. Then, three different approaches were used to
select the best points to keep: RANSAC [16], USAC [44] and
MAGSAC [4]. Results are shown in table V. Due to the multi-
modality nature of our experiments, these baselines often fail
to find any matches in the images. When this happens, **
appears in the cell V. ORB did not find any matches inside
our twenty pixels threshold to be considered inliers, and so
was not reported.

B. Comparison Supervised Vs Unsupervised

Generally speaking, our method converge but within a few
pixels and sometimes less. Offsets can reach four pixels for
more complex, textured, and panoramas scenes. See Figure 2,
Figure 3 and Figure 5 for a visual appreciation on anaglyphs
showing residuals offsets. The supervised homography solu-
tion gives the best results for small patches, but loses its preva-
lence for locations with short distances. The possible causes
may come from finer details that may be better expressed
with the unsupervised loss under more substantial geometric
constraints. Thermal-to-thermal matching is better solved in
an unsupervised fashion, where the expressiveness of thermal
feature produce more straightforward gradient directions. It
also proves that such registration approach is possible with
thermal scenes.

C. General discussion on experiments

In most cases, the algorithm can learn similar features and
put a degree of importance on each, as seen in Figure 4.
However, explaining the discrepancy between thermal and
visible features is complex. One possible explanation to ho-
mography estimates with high errors is combining the same
feature extraction network for different modalities is harder to

solve. However, trials not reported here demonstrate that it is
not the case. We believe that a deeper analysis is needed to
explain this behaviour fully.

VII. CONCLUSION

This paper addressed the challenge of registering thermal
and visible images with small baseline parallax correction.
A supervised and an unsupervised deep homography models
are presented and evaluated on an open thermal and visible
dataset. Comparisons to thermal to thermal registration and
affine estimation is reported as a comparative study. The
primary advantage of deep homography approaches is an
improved spatial stability, ensuring almost imperceptible jitters
(less than a pixel) when images are fused.

Future work will include a study of network convergence in
the context of a multi-scale variant of the proposed network.
Also, an analysis of the network parts that learn invariant
feature will be conducted, to understand better what image
content is most influential in the homography estimation.
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