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THE RIEMANN HYPOTHESIS

FRANK VEGA

Abstract. In mathematics, the Riemann Hypothesis is a conjec-
ture that the Riemann zeta function has its zeros only at the neg-
ative even integers and complex numbers with real part 1

2 . Many
consider it to be the most important unsolved problem in pure
mathematics. It is one of the seven Millennium Prize Problems se-
lected by the Clay Mathematics Institute to carry a US 1,000,000
prize for the first correct solution. In 1915, Ramanujan proved
that under the assumption of the Riemann Hypothesis, the in-
equality σ(n) < eγ × n × log log n holds for all sufficiently large
n, where σ(n) is the sum-of-divisors function and γ ≈ 0.57721 is
the Euler-Mascheroni constant. In 1984, Guy Robin proved that
the inequality is true for all n > 5040 if and only if the Riemann
Hypothesis is true. In 2002, Lagarias proved that if the inequality
σ(n) ≤ Hn + exp(Hn) × logHn holds for all n ≥ 1, then the Rie-
mann Hypothesis is true, where Hn is the nth harmonic number.
In this work, we show certain properties of these both inequalities.

1. Introduction

As usual σ(n) is the sum-of-divisors function of n [Cho+07]:∑
d|n

d.

Define f(n) to be σ(n)
n

. Say Robins(n) holds provided

f(n) < eγ × log log n.

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant, and log
is the natural logarithm. Let Hn be

∑n
j=1

1
j
. Say Lagarias(n) holds

provided
σ(n) ≤ Hn + exp(Hn)× logHn.

The importance of this property is:
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Theorem 1.1. [RH] If Robins(n) holds for all n > 5040, then the
Riemann Hypothesis is true [Lag02]. If Lagarias(n) holds for all n ≥ 1,
then the Riemann Hypothesis is true [Lag02].

It is known that Robins(n) and Lagarias(n) hold for many classes of
numbers n. We known this:

Lemma 1.2. [known] If Robins(n) holds for some n > 5040, then
Lagarias(n) holds [Lag02].

We recall that an integer n is said to be square free if for every
prime divisor q of n we have q2 - n [Cho+07]. Robins(n) holds for all
n > 5040 that are square free [Cho+07]. Let core(n) denotes the square
free kernel of a natural number n [Cho+07]. We can show this:

Theorem 1.3. [pi] Let π2

6
× log log core(n) ≤ log log n for some n >

5040. Then Robins(n) holds.

Moreover, we finally prove these theorems:

Theorem 1.4. [1-main] Robins(n) holds for all n > 5040 when qm - n
for qm ≤ 113.

Theorem 1.5. [2-main] Let n > 5040 and n = r × q, where q denotes
the largest prime factor of n and q is a sufficiently large number. If
Robins(r) holds, then Lagarias(n) holds.

2. Known Results

We use that the following are known:

Lemma 2.1. [sigma-formula]

σ(n) =
∏
pk‖n

pk+1 − 1

p− 1
[Cho+07]

Lemma 2.2. [sigma-bound]

f(n) <
∏
p|n

p

p− 1
. [Cho+07]

Lemma 2.3. [zeta]
∞∏
k=1

1

1− 1
q2k

= ζ(2) =
π2

6
. [Edw01]

Lemma 2.4. [log-bound]

Hn > log n+ γ = log(eγ × n). [Lag02]
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Lemma 2.5. [harmonic-bound]∏
p≤n

p

p− 1
< eγ ×Hn. [RS62]

Lemma 2.6. [down-bound] For x ≥ 286,∏
p≤x

p

p− 1
< eγ × (log x+

1

2× log x
). [RS62]

3. A Central Lemma

The following is a key lemma. It gives an upper bound on f(n) that
holds for all n. The bound is too weak to prove Robins(n) directly, but
is critical because it holds for all n. Further the bound only uses the
primes that divide n and not how many times they divide n. This is a
key insight.

Lemma 3.1. [pro] Let n > 1 and let all its prime divisors be q1 <
· · · < qm. Then,

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

Proof. We use that lemma 2.2 [sigma-bound]:

f(n) <
m∏
i=1

qi
qi − 1

.

Now for q > 1,

1

1− 1
q2

=
q2

q2 − 1
.

So

1

1− 1
q2

× q + 1

q
=

q2

q2 − 1
× q + 1

q

=
q

q − 1
.

Then by lemma 2.3 [zeta],

m∏
k=1

1

1− 1
q2k

< ζ(2) =
π2

6
.



THE RIEMANN HYPOTHESIS 4

Putting this together yields the proof:

f(n) <
m∏
i=1

qi
qi − 1

≤
m∏
i=1

1

1− 1
q2i

× qi + 1

qi

<
π2

6
×

m∏
i=1

qi + 1

qi
.

�

4. A Condition on core(n)

4.1. A Particular Case. We prove the Robin’s inequality for this
particular case:

Lemma 4.1. [case] Robins(n) holds for all n > 5040 when core(n) ∈
{2, 3, 5, 6, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210}.
Proof. Let n > 5040. Specifically, let core(n) be the product of the
primes q1, . . . , qm, such that {q1, . . . , qm} ⊆ {2, 3, 5}. We need to prove
that

f(n) < eγ × log log n

that is true when
m∏
i=1

qi
qi − 1

≤ eγ × log log n

is also true, because of lemma 2.2 [sigma-bound]. Then, we have that
m∏
i=1

qi
qi − 1

≤ 2× 3× 5

1× 2× 4
= 3.75 < eγ × log log(5040) ≈ 3.81.

However, for n > 5040

eγ × log log(5040) < eγ × log log n

and hence, the proof is completed for that case. Hence, we only need
to prove the Robin’s inequality is true for every natural number n =
2a1 × 3a2 × 5a3 × 7a4 > 5040 such that a1, a2, a3 ≥ 0 and a4 ≥ 1 are
integers. In addition, we know the Robin’s inequality is true for every
natural number n > 5040 such that 7k | n and 77 - n for some integer
1 ≤ k ≤ 6 [Her18]. Therefore, we need to prove this case for those
natural numbers n > 5040 such that 77 | n. In this way, we have

m∏
i=1

qi
qi − 1

≤ 2× 3× 5× 7

1× 2× 4× 6
= 4.375 < eγ × log log(77) ≈ 4.65.
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However, we know for n > 5040 and 77 | n such that

eγ × log log(77) ≤ eγ × log log n

and as a consequence, the proof is completed. �

4.2. Main Insight. The next theorem is a main insight. It extends
the class of n so that Robins(n) holds. The key is that the class on n
depend on how close n is to core(n). The usual classes of such n are
defined by their prime structure not by an inequality. This is perhaps
one of the main insights.

Theorem 4.2. Let π2

6
× log log core(n) ≤ log log n for some n > 5040.

Then Robins(n) holds.

Proof. Let n′ = core(n). Let n′ be the product of the distinct primes
q1, . . . , qm. By assumption we have that

π2

6
× log log n′ ≤ log log n.

When n′ ≤ 5040, Robins(n′) holds if n′ /∈ {2, 3, 5, 6, 10, 30} [Cho+07].
However, we can ignore this case, since Robins(n) holds for all n > 5040
when core(n) ∈ {2, 3, 5, 6, 10, 30} because of lemma 4.1 [case]. When
n′ > 5040, we know that Robins(n′) holds and so

f(n′) < eγ × log log n′.

By previous lemma 3.1 [pro]

f(n) <
π2

6
×

m∏
i=1

qi + 1

qi
.

Suppose by way of contradiction that Robins(n) fails. Then

f(n) ≥ eγ × log log n.

We claim that
π2

6
×

m∏
i=1

qi + 1

qi
> eγ × log log n.

Since otherwise we would have a contradiction. This shows that

π2

6
×

m∏
i=1

qi + 1

qi
>
π2

6
× eγ × log log n′.

Thus
m∏
i=1

qi + 1

qi
> eγ × log log n′,
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and
m∏
i=1

qi + 1

qi
> f(n′),

This is a contradiction since f(n′) is equal to

(q1 + 1)× · · · × (qm + 1)

q1 × · · · × qm
.

�

5. On Possible Counterexamples

Lemma 5.1. [counter] Let n > 5040 and n = r × q, where q denotes
the largest prime factor of n. We have that q < log n, when Robins(r)
holds, but Robins(n) does not.

Proof. So assume that q ≥ log n. This implies that q× log q ≥ (log n)×
log log n > (log n)× log log r and hence

q

log n
>

log log r

log q
.

This implies that

q × (log log n− log log r)

log q
>

log log r

log q
,

where we used that

log log n− log log r

log q
=

1

log n− log r

∫ logn

log r

dt

t
>

1

log n
. [Cho+07]

This inequality is equivalent with (1 + 1
q
) × log log r < log log n. Now

we infer that

σ(n)

n
=
σ(q × r)
q × r

≤ (1+
1

q
)×σ(r)

r
< (1+

1

q
)×eγ×log log r < eγ×log log n

because of we know that Robins(r) holds and where we used that σ is
submultiplicative (that is σ(q × r) ≤ σ(q)× σ(r)) [Cho+07]. The last
inequality contradicts our assumption that Robins(n) does not hold. �

6. Robin’s Divisibility

Lemma 6.1. [up-bound] For x ≥ 11, we have∑
q≤x

1

q
< log log x+ γ − 0.12

where q ≤ x means all the primes lesser than or equal to x.
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Proof. For x > 1, we have∑
q≤x

1

q
< log log x+B +

1

log2 x

where

B = 0.2614972128 · · ·
is the (Meissel-)Mertens constant, since this is a proven result from the
article reference [RS62]. This is the same as∑

q≤x

1

q
< log log x+ γ − (C − 1

log2 x
)

where γ −B = C > 0.31, because of γ > B. If we analyze (C − 1
log2 x

),

then this complies with

(C − 1

log2 x
) > (0.31− 1

log2 11
) > 0.12

for x ≥ 11 and thus, we finally prove∑
q≤x

1

q
< log log x+ γ − (C − 1

log2 x
) < log log x+ γ − 0.12.

�

Theorem 6.2. [strict] Given a square free number

n = q1 × · · · × qm
such that q1, q2, · · · , qm are odd prime numbers, the greatest prime di-
visor of n is greater than 7 and 3 - n, then we obtain the following
inequality

π2

6
× 3

2
× σ(n) ≤ eγ × n× log log(219 × n).

Proof. This proof is very similar with the demonstration in theorem
1.1 from the article reference [Cho+07]. By induction with respect to
ω(n), that is the number of distinct prime factors of n [Cho+07]. Put
ω(n) = m [Cho+07]. We need to prove the assertion for those integers
with m = 1. From a square free number n, we obtain

σ(n) = (q1 + 1)× (q2 + 1)× · · · × (qm + 1)[eq : 1] 6.1

when n = q1 × q2 × · · · × qm [Cho+07]. In this way, for every prime
number qi ≥ 11, then we need to prove

π2

6
× 3

2
× (1 +

1

qi
) ≤ eγ × log log(219 × qi).[eq : 2] 6.2
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For qi = 11, we have

π2

6
× 3

2
× (1 +

1

11
) ≤ eγ × log log(219 × 11)

is actually true. For another prime number qi > 11, we have

(1 +
1

qi
) < (1 +

1

11
)

and

log log(219 × 11) < log log(219 × qi)
which clearly implies that the inequality 6.2 is true for every prime
number qi ≥ 11. Now, suppose it is true for m − 1, with m ≥ 2 and
let us consider the assertion for those square free n with ω(n) = m
[Cho+07]. So let n = q1×· · ·×qm be a square free number and assume
that q1 < · · · < qm for qm ≥ 11.

Case 1: qm ≥ log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
By the induction hypothesis we have

π2

6
×3

2
×(q1+1)×· · ·×(qm−1+1) ≤ eγ×q1×· · ·×qm−1×log log(219×q1×· · ·×qm−1)

and hence

π2

6
× 3

2
× (q1 + 1)× · · · × (qm−1 + 1)× (qm + 1) ≤

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1)
when we multiply the both sides of the inequality by (qm+1). We want
to show

eγ × q1 × · · · × qm−1 × (qm + 1)× log log(219 × q1 × · · · × qm−1) ≤

eγ×q1×· · ·×qm−1×qm×log log(219×q1×· · ·×qm−1×qm) = eγ×n×log log(219×n).

Indeed the previous inequality is equivalent with

qm×log log(219×q1×· · ·×qm−1×qm) ≥ (qm+1)×log log(219×q1×· · ·×qm−1)
or alternatively

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))
log qm

≥

log log(219 × q1 × · · · × qm−1)
log qm

.

From the reference [Cho+07], we have if 0 < a < b, then

log b− log a

b− a
=

1

(b− a)

∫ b

a

dt

t
>

1

b
.[eq : 3] 6.3
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We can apply the inequality 6.3 to the previous one just using b =
log(219 × q1 × · · · × qm−1 × qm) and a = log(219 × q1 × · · · × qm−1).
Certainly, we have

log(219 × q1 × · · · × qm−1 × qm)− log(219 × q1 × · · · × qm−1) =

log
219 × q1 × · · · × qm−1 × qm

219 × q1 × · · · × qm−1
= log qm.

In this way, we obtain

qm × (log log(219 × q1 × · · · × qm−1 × qm)− log log(219 × q1 × · · · × qm−1))
log qm

>

qm
log(219 × q1 × · · · × qm)

.

Using this result we infer that the original inequality is certainly satis-
fied if the next inequality is satisfied

qm
log(219 × q1 × · · · × qm)

≥ log log(219 × q1 × · · · × qm−1)
log qm

which is trivially true for qm ≥ log(219×q1×· · ·×qm−1×qm) [Cho+07].
Case 2: qm < log(219 × q1 × · · · × qm−1 × qm) = log(219 × n).
We need to prove

π2

6
× 3

2
× σ(n)

n
≤ eγ × log log(219 × n).

We know 3
2
< 1.503 < 4

2.66
. Nevertheless, we could have

3

2
× σ(n)

n
× π2

6
<

4× σ(n)

3× n
× π2

2× 2.66

and therefore, we only need to prove

σ(3× n)

3× n
× π2

5.32
≤ eγ × log log(219 × n)

where this is possible because of 3 - n. If we apply the logarithm to
the both sides of the inequality, then we obtain

log(
π2

5.32
)+(log(3+1)−log 3)+

m∑
i=1

(log(qi+1)−log qi) ≤ γ+log log log(219×n).

From the reference [Cho+07], we note

log(q1 + 1)− log q1 =

∫ q1+1

q1

dt

t
<

1

q1
.

In addition, note log( π2

5.32
) < 1

2
+ 0.12. However, we know

γ + log log qm < γ + log log log(219 × n)
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since qm < log(219 × n) and therefore, it is enough to prove

0.12 +
1

2
+

1

3
+

1

q1
+ · · ·+ 1

qm
≤ 0.12 +

∑
q≤qm

1

q
≤ γ + log log qm

where qm ≥ 11. In this way, we only need to prove∑
q≤qm

1

q
≤ γ + log log qm − 0.12

which is true according to the lemma 6.1 [up-bound] when qm ≥ 11. In
this way, we finally show the theorem is indeed satisfied. �

Theorem 6.3. [btw2-3] Robins(n) holds for all n > 5040 when 3 - n.
More precisely: every possible counterexample n > 5040 of the Robin’s
inequality must comply with (220 × 313) | n.

Proof. We will check the Robin’s inequality is true for every natural
number n = qa11 × qa22 × · · · × qamm > 5040 such that q1, q2, · · · , qm are
prime numbers, a1, a2, · · · , am are natural numbers and 3 - n. We know
this is true when the greatest prime divisor of n > 5040 is lesser than or
equal to 7 according to the lemma 4.1 [case]. Therefore, the remaining
case is when the greatest prime divisor of n > 5040 is greater than 7.
We need to prove

σ(n)

n
< eγ × log log n

that is true when

π2

6
×

m∏
i=1

qi + 1

qi
≤ eγ × log log n

according to the lemma 3.1 [pro]. Using the equation 6.1, we obtain
that will be equivalent to

π2

6
× σ(n′)

n′
≤ eγ × log log n

where n′ = q1×· · ·×qm is the core(n) [Cho+07]. However, the Robin’s
inequality has been proved for all integers n not divisible by 2 (which
are bigger than 10) [Cho+07]. Hence, we only need to prove the Robin’s
inequality is true when 2 | n′. In addition, we know the Robin’s in-
equality is true for every natural number n > 5040 such that 2k | n
and 220 - n for some integer 1 ≤ k ≤ 19 [Her18]. Consequently, we only
need to prove the Robin’s inequality is true for all n > 5040 such that
220 | n and thus,

eγ × n′ × log log(219 × n′

2
) < eγ × n′ × log log n
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because of 219 × n′

2
< n when 220 | n and 2 | n′. In this way, we only

need to prove

π2

6
× σ(n′) ≤ eγ × n′ × log log(219 × n′

2
).

According to the equation 6.1 and 2 | n′, we have

π2

6
× 3× σ(

n′

2
) ≤ eγ × 2× n′

2
× log log(219 × n′

2
)

which is the same as

π2

6
× 3

2
× σ(

n′

2
) ≤ eγ × n′

2
× log log(219 × n′

2
)

that is true according to the theorem 6.2 [strict] when 3 - n′
2

. In addi-
tion, we know the Robin’s inequality is true for every natural number
n > 5040 such that 3k | n and 313 - n for some integer 1 ≤ k ≤ 12
[Her18]. Consequently, we only need to prove the Robin’s inequality is
true for all n > 5040 such that 220 | n and 313 | n. To sum up, the
proof is completed. �

Theorem 6.4. [btw5-7] Robins(n) holds for all n > 5040 when 5 - n
or 7 - n.

Proof. We need to prove

f(n) < eγ × log log n

when (220 × 313) | n. Suppose that n = 2a × 3b × m, where a ≥ 20,
b ≥ 13, 2 - m, 3 - m and 5 - m or 7 - m. Therefore, we need to prove

f(2a × 3b ×m) < eγ × log log(2a × 3b ×m).

We know

f(2a × 3b ×m) = f(3b)× f(2a ×m)

since s is multiplicative [Voj20]. In addition, we know f(3b) < 3
2

for
every natural number b [Voj20]. In this way, we have

f(3b)× f(2a ×m) <
3

2
× f(2a ×m).

Now, consider

3

2
× f(2a ×m) =

9

8
× f(3)× f(2a ×m) =

9

8
× f(2a × 3×m)

where f(3) = 4
3

since s is multiplicative [Voj20]. Nevertheless, we have

9

8
× f(2a × 3×m) < f(5)× f(2a × 3×m) = f(2a × 3× 5×m)
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and
9

8
× f(2a × 3×m) < f(7)× f(2a × 3×m) = f(2a × 3× 7×m)

where 5 - m or 7 - m, f(5) = 6
5

and f(7) = 8
7
. However, we know the

Robin’s inequality is true for 2a × 3× 5×m and 2a × 3× 7×m when
a ≥ 20, since this is true for every natural number n > 5040 such that
3k | n and 313 - n for some integer 1 ≤ k ≤ 12 [Her18]. Hence, we
would have

f(2a×3×5×m) < eγ×log log(2a×3×5×m) < eγ×log log(2a×3b×m)

and

f(2a×3×7×m) < eγ×log log(2a×3×7×m) < eγ×log log(2a×3b×m)

when b ≥ 13. �

Theorem 6.5. [btw11-47] Robins(n) holds for all n > 5040 when qm - n
for 11 ≤ qm ≤ 47.

Proof. We know the Robin’s inequality is true for every natural number
n > 5040 such that 7k | n and 77 - n for some integer 1 ≤ k ≤ 6 [Her18].
We need to prove

f(n) < eγ × log log n

when (220 × 313 × 77) | n. Suppose that n = 2a × 3b × 7c ×m, where
a ≥ 20, b ≥ 13, c ≥ 7, 2 - m, 3 - m, 7 - m, qm - m and 11 ≤ qm ≤ 47.
Therefore, we need to prove

f(2a × 3b × 7c ×m) < eγ × log log(2a × 3b × 7c ×m).

We know

f(2a × 3b × 7c ×m) = f(7c)× f(2a × 3b ×m)

since s is multiplicative [Voj20]. In addition, we know f(7c) < 7
6

for
every natural number c [Voj20]. In this way, we have

f(7c)× f(2a × 3b ×m) <
7

6
× f(2a × 3b ×m).

However, that would be equivalent to

49

48
× f(7)× f(2a × 3b ×m) =

49

48
× f(2a × 3b × 7×m)

where f(7) = 8
7
. In addition, we know

49

48
×f(2a×3b×7×m) < f(qm)×f(2a×3b×7×m) = f(2a×3b×7×qm×m)

where qm - m, f(qm) = qm+1
qm

and 11 ≤ qm ≤ 47. Nevertheless, we know

the Robin’s inequality is true for 2a × 3b × 7 × qm × m when a ≥ 20
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and b ≥ 13, since this is true for every natural number n > 5040 such
that 7k | n and 77 - n for some integer 1 ≤ k ≤ 6 [Her18]. Hence, we
would have

f(2a×3b×7×qm×m) < eγ×log log(2a×3b×7×qm×m) < eγ×log log(2a×3b×7c×m)

when c ≥ 7 and 11 ≤ qm ≤ 47. �

Theorem 6.6. [btw53-113] Robins(n) holds for all n > 5040 when
qm - n for 53 ≤ qm ≤ 113.

Proof. We know the Robin’s inequality is true for every natural number
n > 5040 such that 11k | n and 116 - n for some integer 1 ≤ k ≤ 5
[Her18]. We need to prove

f(n) < eγ × log log n

when (220 × 313 × 116) | n. Suppose that n = 2a × 3b × 11c ×m, where
a ≥ 20, b ≥ 13, c ≥ 6, 2 - m, 3 - m, 11 - m, qm - m and 53 ≤ qm ≤ 113.
Therefore, we need to prove

f(2a × 3b × 11c ×m) < eγ × log log(2a × 3b × 11c ×m).

We know

f(2a × 3b × 11c ×m) = f(11c)× f(2a × 3b ×m)

since s is multiplicative [Voj20]. In addition, we know f(11c) < 11
10

for
every natural number c [Voj20]. In this way, we have

f(11c)× f(2a × 3b ×m) <
11

10
× f(2a × 3b ×m).

However, that would be equivalent to

121

120
× f(11)× f(2a × 3b ×m) =

121

120
× f(2a × 3b × 11×m)

where f(11) = 12
11

. In addition, we know

121

120
×f(2a×3b×11×m) < f(qm)×f(2a×3b×11×m) = f(2a×3b×11×qm×m)

where qm - m, f(qm) = qm+1
qm

and 53 ≤ qm ≤ 113. Nevertheless, we

know the Robin’s inequality is true for 2a × 3b × 11 × qm × m when
a ≥ 20 and b ≥ 13, since this is true for every natural number n > 5040
such that 11k | n and 116 - n for some integer 1 ≤ k ≤ 5 [Her18]. Hence,
we would have

f(2a×3b×11×qm×m) < eγ×log log(2a×3b×11×qm×m) < eγ×log log(2a×3b×11c×m)

when c ≥ 6 and 53 ≤ qm ≤ 113. �
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7. Proof of Main Theorems

Theorem 7.1. Robins(n) holds for all n > 5040 when qm - n for
qm ≤ 113.

Proof. This is a compendium of the results from the Theorems 6.3
[btw2-3], 6.4 [btw5-7], 6.5 [btw11-47] and 6.6 [btw53-113]. �

Theorem 7.2. Let n > 5040 and n = r×q, where q denotes the largest
prime factor of n and q is a sufficiently large number. If Robins(r)
holds, then Lagarias(n) holds.

Proof. We need to prove

σ(n) ≤ Hn + exp(Hn)× logHn.

We know if Robins(n) holds for n > 5040, then Lagarias(n) holds be-
cause of lemma 1.2 [known]. In addition, Lagarias(n) has been checked
for all n ≤ 5040. Now suppose that Robins(r) holds, but Robins(n)
does not. Let’s multiply by eγ the both sides of inequality and thus,

eγ × σ(n) ≤ eγ ×Hn + eγ × exp(Hn)× logHn.

If we apply the lemma 2.5 [harmonic-bound], then we obtain that∏
p|n

p

p− 1
≤

∏
p≤n

p

p− 1
< eγ ×Hn.

Hence, we obtain that

eγ × σ(n)−
∏
p|n

p

p− 1
≤ eγ × exp(Hn)× logHn.

That would be equivalent to∏
p|n

p

p− 1
× (eγ × σ(n)×

∏
p|n

p− 1

p
− 1) ≤ eγ × exp(Hn)× logHn.

We know that

σ(n) =
∏
pk‖n

pk+1 − 1

p− 1

because of lemma 2.1 [sigma-formula] and therefore

σ(n)×
∏
p|n

p− 1

p
=

∏
pk‖n

pk+1 − 1

p

=
∏
pk‖n

(pk − 1

p
)

< n.
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In this way, we can see that∏
p|n

p

p− 1
× (eγ × n− 1) ≤ eγ × exp(Hn)× logHn.

If we apply the lemma 2.4 [log-bound] to the previous inequality, then
we obtain that∏

p|n

p

p− 1
× (eγ × n− 1) ≤ eγ × (eγ × n)× log log(eγ × n).

If we use the lemma 2.6 [down-bound], then we have that

eγ × (log q +
1

2× log q
)× (eγ × n− 1) ≤ eγ × (eγ × n)× log log(eγ × n)

where q is the largest prime factor of n and q is a sufficiently large
number. In addition, if we introduce the lemma 5.1 [counter], then we
have

log(q × e
1

2×log q )

log(q + γ)
≤ eγ × n
eγ × n− 1

.

However, we know that

lim
q→∞

log(q × e
1

2×log q )

log(q + γ)
≤ 1 ≤ eγ × n

eγ × n− 1

for enough large values of q and therefore, the proof is completed. �
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