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Proposed Proof of the Riemann Hypothesis
Frank Vega

Abstract. For every prime number qn, we define the inequality
∏

q≤qn

q
q−1

> eγ × log θ(qn),
where θ(x) is the Chebyshev function and γ ≈ 0.57721 is the Euler-Mascheroni constant.
This is known as the Nicolas inequality. The Nicolas criterion states that the Riemann hypoth-
esis is true if and only if the Nicolas inequality is satisfied for all primes qn > 2. We prove
indeed that the Nicolas inequality is satisfied for all primes qn > 2. In this way, we show that
the Riemann hypothesis is true.

1. INTRODUCTION The Riemann hypothesis is a conjecture that the Riemann zeta
function has its zeros only at the negative even integers and complex numbers with real
part 1

2
[1]. In mathematics, the Chebyshev function θ(x) is given by

θ(x) =
∑
q≤x

log q

where q ≤ x means all the prime numbers q that are less than or equal to x. We define
a sequence based on this function.

Definition. For every prime number qn, we define the sequence of real numbers:

Xn =

∏
q≤qn

q+1
q

log θ(qn)
.

Say Nicolas(qn) holds provided∏
q≤qn

q

q − 1
> eγ × log θ(qn).

The constant γ ≈ 0.57721 is the Euler-Mascheroni constant and log is the natural
logarithm. The importance of this inequality is:

Theorem 1. [4]. Nicolas(qn) holds for all prime numbers qn > 2 if and only if the
Riemann hypothesis is true.

We use this limit superior,

Theorem 2. [2].

lim sup
n→∞

Xn =
eγ × 6

π2
.

Besides, we define the following value,

Theorem 3. [3].
∞∏
k=1

q2k
q2k − 1

= ζ(2) =
π2

6
.

Putting all together yields the proof that the Nicolas inequality is satisfied for all
prime numbers greater than 2. Consequently, we prove that the Riemann hypothesis is
true.
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2. A CENTRAL LEMMA The following is a key lemma.

Lemma 1. There exists a natural number N such that Xn < eγ×6
π2 + ε for all natural

numbers n > N and ε ≤ 6
π2 .

Proof. The limit superior of a sequence of real numbers yn is the smallest real number
b such that, for any positive real number ε, there exists a natural number N such that
yn < b + ε for all natural numbers n > N . Therefore, this is a consequence of the
theorem 2.

3. PROOF OF MAIN THEOREM

Theorem 4. The Riemann hypothesis is true.

Proof. From the lemma 1, we know that there exists a natural number N such that
Xn < eγ×6

π2 + ε for all natural numbers n > N and ε ≤ 6
π2 . We multiply the both

sides of the inequality ∏
q≤qn

q+1
q

log θ(qn)
<

eγ × 6

π2
+ ε

by

∏
q≤qn

q2

q2 − 1

to obtain that ∏
q≤qn

q
q−1

log θ(qn)
<
∏
q≤qn

q2

q2 − 1
× 6

π2
× (eγ + c)

for the constant c = ε× π2

6
due to

q

q − 1
=

q2

q2 − 1
× q + 1

q
.

From the theorem 3, we note that
∏

q≤qn
q2

q2−1
× 6

π2 is strictly increasing as qn in-
creases. Besides, we have that

lim
n→∞

6

π2
×
(∏

q≤qn

q2

q2 − 1

)
= 1.

Proposition. We state the following proposition S: There exists a natural number m
such that ∏

q≤qm

q2

q2 − 1
× 6

π2
≤ eγ

eγ + c

for a sufficiently small constant 0 < c ≤ 1.
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Hence, we could have∏
q≤qm

q
q−1

log θ(qm)
<

eγ × d

eγ + c
× (eγ + c)

for some small constant 0 < d ≤ 1. This implies that∏
q≤qm

q

q − 1
< (eγ × d)× log θ(qm) ≤ eγ × log θ(qm).

Hence, Nicolas(qm) would not hold.

Proposition. We state another proposition T : The Riemann hypothesis is false.

So, we would have the implication S ⇒ T should be true because of the theorem
1. However, we know that∏

q≤3

q2

q2 − 1
× 6

π2
≤
∏

q≤qm

q2

q2 − 1
× 6

π2

and thus, we would get ∏
q≤3

q2

q2 − 1
× 6

π2
≤ eγ

eγ + c
.

Following the previous steps, we would obtain that Nicolas(3) does not hold. In this
way, we obtain a contradiction since Nicolas(3) holds indeed. Consequently, the im-
plication S ⇒ T cannot be true. If the implication S ⇒ T is false, then T is also false.
So, the proposition T which exactly states that:

The Riemann hypothesis is false

cannot be true. By contraposition, we can conclude that the Riemann hypothesis is
indeed true.
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