
EasyChair Preprint

№ 759

NLSC: Unrestricted Natural Language-based

Service Composition through Sentence

Embeddings

Oscar Javier Romero López, Ankit Dangi and
Sushma Anand Akoju

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

January 30, 2019

NLSC: Unrestricted Natural Language-based
Service Composition through Sentence Embeddings

1st Author
Department
Organization
email address

2nd Author
Department
Organization
email address

3rd Author
Department
Organization
email address

Abstract—Current approaches for service composition (as-
semblies of atomic services) require developers to use: (a)
domain-specific semantics to formalize services that restrict the
vocabulary for their descriptions, and (b) translation mechanisms
for service retrieval to convert unstructured user requests to
strongly-typed semantic representations. In our work, we argue
that effort to developing service descriptions, request translations,
and matching mechanisms could be reduced using unrestricted
natural language; allowing both: (1) end-users to intuitively
express their needs using natural language, and (2) service devel-
opers to develop services without relying on syntactic/semantic
description languages. Although there are some natural language-
based service composition approaches, they restrict service re-
trieval to syntactic/semantic matching. With recent developments
in Machine learning and Natural Language Processing, we
motivate the use of Sentence Embeddings by leveraging richer
semantic representations of sentences for service description,
matching and retrieval. Experimental results show that service
composition development effort may be reduced by more than
44% while keeping a high precision/recall when matching high-
level user requests with low-level service method invocations.

Index Terms—Service composition, Middleware, Sentence Em-
beddings, Named-Entity Recognition, Effort Estimation

I. INTRODUCTION AND RELATED WORK

Service is any software component, data, or hardware re-
source on a device that is accessible by others [6]. Service
composition is the process of aggregating such reusable atomic
services to create complex compositions. Existing research
can be seen in two directions, where, (a) both atomic and
composite services are defined using description languages
(such as BPEL4WS, OWL-S, and WSDM) in terms of service
input/output, pre- and post-conditions, fault handling and invo-
cation mechanisms. Such service descriptions serve as inputs
to orchestration engines [30], [32] that generate declarative
specification of workflows to compose different services; and
(b) architectural middlewares [6], [14], [19], [25] that assume
a declarative specification of a composition. A substantial
amount of effort is required in both directions to define and
integrate services, mainly due to: (a) the use of domain-
specific languages and semantics for service descriptions and
compositions; (b) strongly-typed orchestration languages (e.g.,
BPEL, WSDL, OWL-S, etc.) restricting heterogeneous service
composition; (c) statically specified compositions that create
design-time couplings preventing dynamic adaptation; and
(d) there is more than one composite service description
languages: different ontologies have been designed resulting in

different vocabularies, thwarting true semantic interoperability,
so technologies have yet to converge and standardize [31]. In
natural language-based service composition middleware, end-
users interact instinctively with systems in natural language
and expect the system to identify services that meet their
goals. These kind of middleware can be broadly categorized
as those that: (a) apply restrictions on how the user expresses
the goal with sentence templates and then use structured
parsing to match against service descriptions [4], [23]; (b)
construct semantic graphs to represent service descriptions and
match against a lexical database such as WordNet to compute
concept similarity [9], [13], [26]; and (c) match partially-
observable natural language request with semantics of service
description expressed using semantic web services (OWL-S,
VDL) [8], [27]. Limitations with these approaches include: (a)
complex linguistic processing that requires additional natural
language processing (NLP) techniques: structured parsing,
extracting parts-of-speech, stop-word removal, spell-checking,
stemming, and text segmentation; (b) inclusion of lexical
databases such as WordNet or domain-specific ontologies; and
(c) a weaker concept representation and similarity score for
semantic matching that does not account for sentence context.

Research Questions: to overcome the above, we address:
RQ1: How to reduce the amount of development effort and
complexity to develop service compositions?
RQ2: How can both end-users and developers create service
compositions in an intuitive, efficient, and dynamic way using
natural language-based descriptions?

Main Contributions: we address RQ1 by removing effort-
consuming engineering practices, such as: (a) formal service
descriptions that use syntactic/semantic representations; and
(b) orchestration processes that use domain-specific languages.
Additionally, we provide an automated OSGi-based toolchain
for service modularity, service discovery, service deployment,
and service execution. Our toolchain allows transparently de-
ploying OSGi components to either cloud-based applications
or mobile Android-based apps. And we addresses RQ2 by
developing NLSC, a Natural Language-based Service Compo-
sition Middleware that: (a) allows users to express template-
free service requests using natural language without complex
linguistic processing; (b) avoids the need for lexical databases,
semantic graphs, and domain-specific ontologies; (c) generates
dynamic service compositions by directly binding high-level

user requests to low-level service invocations without having to
define ontological service descriptions or strongly-typed well-
defined interfaces; and (d) uses a stronger representation of
sentence semantics to characterize words and concepts that
account for word usage in context to the sentence by applying
a state-of-the-art pre-trained semantic representation model of
English language. The remaining of this paper is organized
as follows: Section II presents the background and motivating
example. Section III details the design and implementation
and Section IV reports the experimental results. We introduce
the related work and conclude the paper in Section V and
Section VI, respectively.

II. BACKGROUND AND MOTIVATION

A. Service Composition Middleware Model

According to the Service Composition Middleware (SCM)
model [16] (a high-level abstraction model that does not
consider a particular service technology, language, platform
or algorithm used in the composition process), middleware for
service composition can be largely classified into four main
modules as follows: Translation, Generation, Evaluation, and
Execution. In SCM, applications may send requests to middle-
ware using diverse specification languages or techniques, and
the Translator converts these request descriptions into a system
comprehensible language (i.e., formal languages and models)
that can be used by the middleware. Once translated, the
request specification is sent to the Generator, which provides
the needed functionality by composing the available services,
and generating one or several composition plans. This service
composition is technically performed by chaining interfaces
using either a syntactic or semantic method matching (or both).
Then, the Evaluator chooses the most suitable composition
plan depending strongly on many criteria like application
context, the service technology model, the non functional
service QoS (Quality of Service) properties, etc. Finally, the
Builder executes the selected composition plan and produces
an implementation corresponding to the required composite
service. Once the composite service is available, it can be
executed by the application that required its functionality.

B. Motivational Example

Suppose the user is planning a trip to Paris on a specific
range of dates (main goal) using a smartphone that does not
have a trip planner service or app installed. This main goal
can be decomposed into sub-goals such as: (1) check schedule
availability on dates, (2) look for flights cheaper than $700, (3)
book the chosen flight, (4) search for hotels under $100/night
near downtown, (5) book the selected hotel, (6) check the
weather conditions for given dates, (7) if weather conditions
are bad, look for indoor activities to do, (8) otherwise, look for
outdoor activities to do. To address this scenario (see Figure 1),
a service developer would create atomic service interfaces
and implementations for services such as Maps, Calendar,
FlightBooking etc.; a service modeler would define the service
interface contracts using WSDL; an ontology engineer would
maintain the trip-planning ontologies and ensure consistency

Figure 1. Motivating Example: Plan a trip scenario

with OWL-S models; and a process flow designer would in-
vestigate explicit declarative alternatives to generate a service
composition that addresses user’s goal.

C. Problem Statement

In the example above, the total effort required is the
sum of partial efforts. Let ET =

∑n
i=1 Ei, where, Ei ∈

{Edev, Edesc, Eont, Ewf} such that Edev , Edesc, Eont, Ewf

are effort amounts to develop a service implementation, gen-
erate a WSDL service description, create/maintain an OWL-
S ontology, and maintain a BPEL4WS workflow, respectively
(for simplicity, we ignore additional efforts for testing, CI/CD,
etc.) These efforts increase exponentially when service re-
quirements change continuously, there are inconsistencies on
service contracts, or developers don’t have the proper skillset.

D. Goals

Our scientific intuition leads us to hypothesize that a data-
driven approach (using large text corpus and datasets of
common-sense sentences) not only could minimize the effort
of developing service compositions by removing the need
of specifying strongly-typed, syntactically/semantically well-
defined, domain-dependent service descriptions, but also could
outperform traditional semantic-driven approaches that require
continuous validation of consistency due to human designers’
biased models. Therefore, driven by our RQs, our goal is
two-fold: (a) to reduce the total effort of integrating new
services into a composition by merging/replacing some of
the development tasks previously described without affecting
either system performance or the quality of service com-
positions; and (b) to automatically bind unrestricted natural
language user requests to unstructured natural language service
descriptions with control structures for composition.

E. OSGi

OSGi (Open Services Gateway initiative) technology [1] is
a set of specifications that define a dynamic component system
for Java. These specifications enable a development model
where an application is composed of several components that
are packaged as bundles. Components communicate locally
and across the network through services. Services have an API
that is defined in a Java package. Some of the most known

OSGi-based middleware for service composition are: [15],
[20], [28], [29]. We use OSGi as a backbone for connecting
multiple service implementations, providing a mean for the
exchange of information between them.

III. APPROACH

A. Preliminaries

As it is generally considered in the literature [3], [32],
we distinguish two types of services [3], [32]: abstract and
concrete services. Formally, a concrete service csi is a tuple
〈csini , csouti , cspreci , cspostci , csQoS

i 〉 that performs a function-
ality by acting on input data (csini) to produce output data
(csouti), with pre-conditions (cspreci), post-conditions (cspostci)
and Quality of Service (csQoS

i) requirements. An abstract
service asi is a tuple 〈asini , asouti , ascsi 〉 realized by several
concrete services ascsi ∈ {cs(i,1), cs(i,2), ..., cs(i,n)} that offer
the same functionality with input parameters (asini), output
parameters (asouti) such that ∀cs(i,j), cs(i,k) ∈ ascsi /(asini =
csin(i,j) ∩ csin(i,k)) ∧ (asouti = csout(i,j) ∩ csout(i,k)).

B. Reference Architecture

Figure 2 presents a reference architecture for service com-
position that will help highlight where our contributions lie.
Step 1: service developers continuously implement, integrate,
deploy and publish service components (either abstract or con-
crete). Developers add unstructured and unrestricted natural
language descriptions (in the form of plain code annotations)
to each single service component and its atomic methods. In
comparison, traditional approaches would include additional
steps (i.e., service description using WSDL, creation and
validation of OWL-S ontology, etc.). Step 2: an automated
process extracts those descriptions from the code annotations
and puts them on a separate repository. Step 3: the end-user,
an application developer, or a top-tier application makes a
service request (e.g., “I want to plan a trip to Paris from Sept.
29 to Oct. 11”). Step 4: a coordination system is in charge
of orchestrating the high-level assembly of abstract services
by chaining service pre- and post-conditions and matching
data types (traditional approaches would include additional
steps for creating complex graph-based, workflow-based or
rule-based plans). Step 5: the service matching is performed
using two NLP techniques: Sentence embeddings and Named-
Entity Recognition, and returns a set of abstract services and
their corresponding concrete service candidates. Steps 4 and
5 are repeated until a composition plan is tailored. Step 6:
a mechanism validates the QoS requirements by selecting a
sub-set of candidate concrete services that are to be executed.
Step 7: using a service discovery mechanism, the sub-set of
concrete service candidates are looked up in the registry and
service availability for those is confirmed. Step 8: lastly, a
composite service is generated and executed. Compared to
the SCM model, we suppress the Translator module and only
keep the remaining ones (Generator, Evaluator, and Builder).
We overcome the need for the Translator as our approach
does not use intermediate representations such as ontologies,
graph-based models, and so forth, rather, we provide a direct

Service	Composi-on	Middleware	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
Service	Registry	
	
	
	
	
	

	
	
	

Service	Repository	
(OBR)	
	
	

Service	Publica7on	
and	Service	Loca7on	

Service	
Matching	
(NLP)	

	
Unrestricted	NL	

Service	Descrip7ons	
	
	
	
	

extract	

match	{asi,	asn}	
match	{csi,	csn}	

Service	
Coordina7on	

QoS	aware	
Composi7on	

Service		
Discovery	&		
Execu7on	

1	 2	

user	
Request	

Composite	Service	 3	

5	

chaining	

4	67	

7	
execute		
{csi}	

8	

{csi,	csn}	{csi}	

Generator	
	
	
	
	

Evaluator	
	
	
	
	

Builder	
	
	
	
	

Figure 2. Reference Architecture for a NLSCM

correlation between the request and the service description
which are both expressed using unrestricted natural language.

C. Service Development Process

NLSC was architected to be deployed on distributed envi-
ronments and to support different kind of client applications
(e.g., standalone, web, mobile, etc.). This requirement, along
with dynamicity, low latency, high-performance, modularity,
and support to Android Runtime Environment (ART), were
the main architectural significant requirements we took into
consideration over its implementation. Extending our initial
definition of “service”, we consider that an Android-based
service can be a device sensor, a local service (installed on
the Android device), or an app, hence, we avoid making the
assumption that only a web service model should be applicable
to NLSC. Given these requirements, a suitable solution for de-
veloping dynamic service components for Android is the OSGi
technology [18]. Most of the OSGi-Android approaches [5],
[7], [11] are based on Apache Felix [2], an implementation
of the OSGi Framework and Service platform. In NLSC,
composite services are created from a dynamic assembly of
black box components, executing in a local Felix container,
which does not provide mandatory non-functional services.
Services do not contain any reference between them at design-
time, and respect black box and late-binding concepts. We
tried to keep the intervention of application developers to
the minimum, automating as much as possible the discovery,
composition, invocation and interoperability of services and,
therefore, reducing the development effort. To that purpose,
we developed a set of tools to simplify the process of service
development, and promote agile development and continuous
integration into NLSC. This process is depicted in Figure 3
and described below.

1) Abstract Services Description: Common OSGi-based
approaches for service composition provide modularity,
though still a Translator is required to guarantee interop-
erability between semantic and syntactic service description
languages that are both heterogeneous. Prior work shows
the heavy cost of the syntactic and semantic matching [16].
In our work, we replace effort-consuming syntactic/semantic
service descriptions (WSDL, OWL-S, etc.) by intuitive code

Figure 3. Workflow for Service Development using NLSC

annotations that allow developers to add unrestricted natural
language descriptions to each service component and its
methods. More specifically, we provide 2 code annotations:
@Description annotation allows developers to add a set of
possible capabilities for an atomic service method (in terms of
what the service method can do), and @ArgDesc let developers
add descriptions to method arguments that can be later used for
argument type disambiguation. Alternatively, NLSC can also
load these annotations from plain files in order to decouple
them from the programming language.

public interface CalendarService {
@Description(capabilities = {

"validates availability on calendar given a time slot",
"checks conflicts on calendar given a range of dates",
"checks calendar availability on a range of dates"

})
@ArgDesc(arguments = {

"fromDate : check calendar from date (yyyy-mm-dd)",
"toDate : check calendar to date (yyyy-mm-dd)"

})
Boolean checkAvailability(Date fromDate, Date toDate);

}

Listing 1: Abstract service description for CalendarService

From Listing 1, it is worth noting that: a) given an
abstract service asi exposes a set of methods mi =
{m(i,1)...m(i,n)}, where, a method is described as a tuple
〈capmi

, argsmi
, argdmi

〉 where capmi
is an arbitrary number

of capabilities such that |capmi | ≥ 1, argsmi is a set of
method arguments, and argdmi is a set of argument de-
scriptions corresponding to argsmi

, such that |argsmi
| =

|argdmi
| ≥ 0; b) the list of arguments in @ArgDesc maps

each description to a method argument using the name of the
argument, a description in natural language, and (optional) the
format or type of the argument (used to disambiguate with the
user or when using the Named-entity Recognition technique).
c) developer does not need to do extra effort defining a service
description or ontology using WSDL, OWL-S, etc. (especially
when developers are unfamiliar with such languages, but even
if they are, using unrestricted natural language descriptions is
more intuitive and easy-to-deploy).

2) Concrete Services Implementation: A concrete service
csi inherits method descriptions from abstract service asi.

It defines non-functional, platform-specific QoS requirements
for methods to guarantee service execution if and only if
they are met. For illustration purposes, let’s continue with
our motivating example and assume the platform is An-
droid. An abstract service could be CalendarService (ascal)
whereas concrete services could be GoogleCalendarService
(csgc) and YahooCalendarService (csyc). NLSC provides a
set of pre-defined QoS annotations for Android, though they
can extended: @BatteryQoS is a categorical value for bat-
tery level consumption that indicates whether the service is
battery-intensive (e.g., LOW BATTERY, HALF CHARGED,
FULLY CHARGED), @ConnectivityQoS is a categorical
value that determines whether the service requires deveice’s
wifi connection or if it runs locally, etc. From Listing 2, we
observe that YahooCalendarService will be executed only if
its QoS features are met, that is, the smartphone’s battery
has to be at least half charged and it should be connected to
the WiFi, otherwise, another concrete service that implements
CalendarService is discovered.

public class YahooCalendarService implements CalendarService{

@BatteryQoS(minBattery = Constants.REQUIRES_HALF_CHARGED)

@ConnectivityQoS(wifiStatus = Constants.REQUIRES_WIFI)

public Boolean checkAvailability(Date from, Date to) {

Log4J.info("Executing YahooCalendarService....");

}

Listing 2: QoS-awareness for YahooCalendarService

3) Service Descriptions Extractor: Using Java reflection,
this tool automatically generates a plain file with all service
method descriptions which is further used by the Service
Matching module (Section III-D). Additionally, it generates
a metadata file with method argument descriptions and QoS
values that are used at the time of service execution after
services are grounded (Section III-F).

4) OSGi bundle self-registration: Both abstract and con-
crete services are deployed as OSGi bundles. This tool au-
tomatically generates an implementation of a BundleActivator
(an OSGi interface that manages bundle’s lifecycle) and injects
code on the start() and stop() methods to self-register or self-
unregister the bundle against the Felix Framework.

5) Dexifying bundles: Android Runtime does not use Java
bytecode, instead, Android programs are compiled into .dex
(Dalvik Executable) files. Thus, we developed Dexer, a tool
that automatically transforms the Java class files compiled
by a regular Java compiler into a class file format that can
be executed on the Android runtime. In other words, Dexer
automatically converts an OSGi bundle into an executable Jar
that can be later executed on the Android platform.

6) OSGi Maven Deployer: Transforms application Jars to
OSGi bundles that are then automatically deployed to a remote
Maven repository, which makes the artifacts accessible to
application developers and service runtime environment.

7) TAMO: This is a tool that automatically transforms
artifacts from a Maven repository (that holds OSGi bundle
artifacts) to an OSGi Bundle Repository (OBR). Felix OBR

provides a service that can automatically install a bundle,
with its deployment dependencies, from a bundle repository,
enabling location and discovery of the participating services
during the composition process.

8) ARW: The Automatic Resource Watcher (ARW) pulls
data periodically from an OBR in order to find new available
services or updates for existing services. This functionality
is critical for the service discovery phase during service
execution because it allows re-configuration of services and
enables the generation of compositions on-demand.

D. Service Matching

Current approaches on service composition perform ser-
vice matching by doing syntactic and semantic interface
matching, then the service evaluation is performed upon the
input/output matching correctness. As we described before,
semantic matching though useful is expensive in terms of
effort (ontology designers have to validate the consistency
of semantic representations) and computing time (the larger
an ontology is, the longer it takes to perform semantic in-
ference or concept graph search). Instead of using syntactic
or semantic matching through the use of ontologies, we
propose semantic service matching through the use of Sentence
Embeddings. In linguistics, and more specifically in feature
learning techniques in natural language processing (NLP),
both word embeddings and sentence embeddings are discussed
in the research area of distributional semantics. Embeddings
aim to quantify and categorize semantic similarities between
linguistic items based on their distributional properties in large
samples of language data. Word embeddings capture the idea
that is possible to express “meaning” of words using a vector,
so that the cosine of the angle between the vectors captures
semantic similarity. (“Cosine similarity” property.) Sentence
embeddings and text embeddings extend word embeddings to
sentence and larger pieces of text: use a fixed-dimensional
vector to represent a short piece of text, e.g., a sentence or a
small paragraph. In order to perform text understanding using
sentence embeddings we use sent2vec [24], a model that can
be seen as an extension of the CBOW (Continuous Bag of
Words [21]) where the training objective is to train sentences
instead of word embeddings. Sentence embeddings account for
sentence context with the words in the sentence as compared
to previous natural-language based service matching where
only word-level matching is performed ignoring the context.
Such an embedding provides a richer semantic representation
that makes it a natural choice for using natural-language
descriptions for service matching.

Let’s return to our motivating example. Assume that one of
the steps for achieving user’s goal (“plan a trip to Paris...”) is
the user request “check what’s on my schedule from Sept. 29
to Oct. 11?” as shown in Figure 4. In order to find the nearest
neighboring sentence feature (the optimal match in terms of a
higher sentence embedding match), it is necessary to provide
both a pre-trained model learned using unsupervised learning
over a large dataset of sentences (19.7 billion sentences)
and a corpora in which it is possible to search for the

What's	on	my	schedule		
from	Sept.	29	to	Oct.	11?	

User	request	
Embedding	
Method	

(Transducer)	

Pre-trained	model	learnt		
from	a	large	text	corpus	

using	Unsupervised	Learning	 Corpora	
(Service	descripBons)	

book	a	flight…	

Check	calendar		
availability…	

What’s	on	my	
schedule…	

Vector	RepresentaBon	

Downstream	
ClassificaBon	

Check	calendar	availabili…	
Book	a	flight…	

Figure 4. Pipeline for the Service Matching using Text Embedding

nearest neighboring sentence to the given input sentence (user
request). This corpora corresponds to the service descriptions
that have been previously extracted (see Section III-C3). Input
sentences (both user requests and services descriptions) are
represented in the vector space and the semantic similarity
is computed after executing the downstream classification,
that is, similar sentences such as user request “what’s on my
schedule...” and a service description “check calendar avail-
ability on dates...” for method checkAvailability() (in abstract
service CalendarService) will be closer whereas the similarity
between the same user request and method description “book
a flight...” from FlightReservationService will be farther (the
mathematical model can be found in [24]).

E. Service Coordination

The Service coordination comprises three mechanisms: a
rule-based system that allows creating high-level assemblies of
abstract services by chaining pre/post-conditions, a short-term
(working) memory where results are stored temporarily, and
a Named-entity extractor for data types and entity matching.
As a rule-based system we use easy-rules [10], a lightweight
yet powerful Java rule engine that can be executed in a wide
variety of platforms, including Android. easy-rules also sup-
ports MVEL (MVFLEX Expression Language [22]), a hybrid
dynamic/statically typed, embeddable Expression Language
and runtime for the Java Platform. MVEL is typically used
for exposing basic logic to end-users and programmers through
weakly-typed (or non-typed) expressions. MVEL is dynami-
cally typed (with optional typing), meaning type qualification
is not required in the source, which confers significant flexi-
bility to our purpose of creating dynamic compositional rules
based on unrestricted language descriptions. For example,
Listing 3 demonstrates that when user says “search flights
to Paris for less than $700” then it is possible to dynamically
create an if/then rule where some object called “flight” should
have both “destination” and “price” attributes. These types are
resolved at run-time using the Named-entity recognizer and
the short-term memory, otherwise, if no valid resolution can
be performed, then disambiguation with user will be sought.
If conditions are met, object “flight” is put into the short-
term (working) memory – wm. The flexibility of this approach
allows us to discover and re-configure types at runtime without
linking to specific classes and objects at design-time.

For Named-entity recognition, we use Stanford NER [12],
a Java implementation that labels sequences of words in a text

that are names of things, such as person and company names.
It provides well-engineered feature extractors that annotates
sentences with labels such as: NOUN, PERSON, COMPANY,
NUMBER, MONEY, TIME, DATE, and LOCATION, how-
ever, since it provides a general implementation of (arbitrary
order) linear chain Conditional Random Field (CRF) sequence
models, it is possible to train customized models on labeled
data extracted from service descriptions. In the example shown
in Listing 3, NER is able to infer that “Paris” is a LOCATION,
“$700” is MONEY, and “flight” is a NOUN. Service Matching
module outputs a set of one or more abstract services with a
similarity score associated to each service. Now, suppose that
the highest similarity given the user request “search flights to
Paris...” corresponds to the method searchForFlights() defined
by FlightReservationService, and using the method argument
descriptions (specified with @ArgDesc annotation) is possible
to map the method arguments to the entities recognized by
NER. The short-term memory (wm) is collecting not only the
partial results and inferences produced by the forward chaining
process of the rule engine but also keeps updated information
collected from sensors (in the case of an Android phone), user
preferences, service status, and QoS features.

MVELRule rule = new MVELRule()
.name("rule-search-cheap-flights")
.description("search flights to Paris for less than 700 US")
.when("flight.destination == 'Paris' && flight.price < 700")
.then("wm.put(flight); ");

Listing 3: Excerpt for Compositional rule expressed in MVEL

F. QoS Aware Composition

Developer may define a set of QoS features for each
concrete service. Using a similar approach as described in the
previous section, we define a set of heuristics (rules) that are
later validated using the rule engine. Every QoS has different
triggering priorities, so for instance, battery consumption has
higher priority than connectivity (since some services can
still work locally even when there is no connectivity, but no
services may work when battery is drained), which in turn has
more priority than, let’s say accuracy (since two high-accuracy
services may compete to be selected, however if they do not
run locally but remotely and WiFi connection is disabled, then
neither of them can be executed). After the rule engine fires
the heuristics and validates the QoS features of the concrete
service candidates generated by the Service Coordinator, then
a new subset of pre-selected service candidates is generated
and passed to the Executor.

G. Service Discovery and Execution

Service execution selects the more appropriate concrete
service based on the following criteria: if the subset of
concrete service candidates contains only one element, then
this service is executed, otherwise, a similarity-based selection
is performed as described on the pseudocode listing below.
Basically, in order to be selected, a service must have the
highest similarity, which should be above an upper threshold
(0.6), if not, services that are in the range (t2 ≥ cs ≥ t1) and

if their similarities differ in less than delta (0.01) then they
need to be disambiguated by the user, otherwise the similarity
between user request and service description is too low that
no service can be selected and user needs to re-phrase the
request. Values for thresholds and delta have been discovered
empirically and have demonstrated satisfactory results. Finally,
service discovery is performed by the OSGi Felix framework
based on the selected concrete service, and if the service is
available, then it is executed.
algorithm execute is

input: Set of concrete services CS
output: selected concrete service cs
t1 := 0.6 //upper threshold
t2 := 0.2 //lower threshold
delta := 0.01
cs := CS[0]
for each pair of services (s1, s2) in CS do

sim1 := s1.similarity
sim2 := s2.similarity
if sim1 >= t1 and abs(sim1 - sim2) <= delta then

cs := max(cs.similarity, sim1, sim2)
else if sim2 >= t1

cs := s2
else if sim1 >= t2 or sim2 >= t2 then

cs := user_disambiguate(s1, s2)
else

cs := nil //service does not exist
end for

return cs

Listing 1. Pseudocode for Service Execution

IV. EVALUATION

We evaluated NLSC from two different perspectives in order
to address the initial research questions: a precision/recall
analysis to measure the performance of our system in real
scenarios with users, and a metric-based analysis to estimate
the amount of effort (person/day) that may be minimized when
using our approach vs. using a conventional approach.

A. Performance: Recall, Precision and F1-Score

Setup: for this experiment, we conducted a user study via
Amazon Mechanical Turk where 20 users participated. We
provided users 15 different services and 3 scenarios (plan
a trip, plan a romantic dinner, and plan a party at home
next weekend). Users were asked to describe what kind of
requests and questions (using unrestricted natural language)
they would ask to their phones in the three different scenarios.
Conversations were logged and analyzed through a confusion
matrix to determine the recall, precision and F1-score metrics.
For this experiment, we used 2 pre-trained models, one uses
19.7B words from 700 dimensions trained on English tweets,
and and the other uses 1.7B words from 700 dimensions
trained on Wikipedia entries.

Results: For the Actual Class, we defined two values: 1)
YES: user’s sentence is well structured, has meaning, can be
understood, and should lead to the activation of a service and
a specific method, and 2) NO: user’s sentence is ambiguous,
or out of context, or incomprehensible, or should not lead
to the activation of a service (method is not available or do
not exist). For the Predicted Class, we defined two values: 1)
YES: NLSC has correctly identified the method and service
OR if user sentence was ambiguous, then it should ask to

re-phrase the sentence, and 2) NO: NLSC selected a wrong
service and method OR id did not ask user to re-phrase the
sentence. Results are summarized in table I. Since we have
an uneven class distribution, that is, false positives and false
negatives are very different, then Accuracy metric is not of
too much help, thus we need to rely on F1-score instead
due to it computes the weighted average of Precision and
Recall. Generally speaking, values results demonstrate a good
performance since the recall, precision an F1-Score are above
0.5. However, it is worth noting that these values can vary
significantly from one experiment to the other since they rely
on human judgment, which is bias-prone.

Table I
CONFUSION MATRIX FOR 3 SCENARIOS AND 20 PARTICIPANTS

Metric: Confusion Matrix Predicted Class
YES NO

Actual Class YES 341 109
Actual Class YES 162 76
Accuracy 0.60
Recall 0.67
Precision 0.81
F1-Score 0.74

B. Effort Estimation

Setup: for this experiment, we performed an analysis using
Funtion Points (FP), a widely accepted industry standard
(ISO/IEC 20926:2009) for functional sizing. FP are units of
measurement that express the amount of business functionality
that an information system provides to a user. FP are estimated
in terms of both data and transaction functions. As data
functions, this metric estimates the amount and complexity
of Internal Logical Files (ILF) and External Interface Files
(EIF), and as transaction functions it estimates External Inputs
(EI), External Outputs (EO) and External Inquiries (EQ).
The corresponding FP’s for each function have associated a
complexity measure that can be Low (L), Average (A) or High
(H). We compared (analytically) the effort to develop a service
composition for the “plan a trip to Paris” goal using 8 differ-
ent services (FlightReservation, HotelReservation, Calendar,
Weather, GroundTransportation, Messaging, LeisureActivities,
and Maps) and using 2 different development approaches:
NLSC vs. a conventional service composition schema that
uses WSDL templates for service descriptions, OWL-S for
semantic matching, and BPEL4J for service coordination.

Results: Based on the results presented on Table II, we
can observe that the main difference between both imple-
mentations was an increment of 9 FPs (for data functions)
when using the conventional approach, which means that
our approach reduced the amount of data functionality to be
developed in 75%. On the other hand, we can observe an
increment of 4 FPs (for transaction functions) when using
the conventional approach, which means that our approach
reduced the amount of data functionality to be developed
in ∼= 45%. The Total Function Point measure (TFP), which
represents the total number of FPs after applying both an
adjustment and a calibration factor (we used a conservative
low factor of 7), reflects that the whole app is ∼= 41% smaller
in functionality (meaning that less functionality has to be

implemented to meet the same system’s requirements) when
using NLSC instead of the conventional approach, which in
turns represents a drop in effort in the same proportion.

The Effort Person/Day (EPD) estimation is computed as
EPD = TFP/DR ∗ DPM , where DR is the delivery rate
(in average, an Android developer can implement 10 FPs per
month [17]) and DPM is days per person-month (21.5 business
days per month). EPD can be better understood in terms of
time and number of persons required to develop the app, let’s
say we have a team of 5 persons, using the conventional
approach it would take 31.8 days (159/5) while using NLSC
would take 17.8 days (89/5), which means a reduction of ∼= 44
of the required effort when using our approach.

Table II
EFFORT ESTIMATION FOR NLSC VS. CONVENTIONAL APPROACH

Function Points Estimation
Metric NLSC Conventional Improvement
ILF + EIF (FP) 3 12 75.00%
EI + EO + EQ (FP) 5 9 44.44%
TFP (FP) 23 39 41.02%
EPD (person/day) 89 159 44.02%

V. RELATED WORK

Users interact instinctively with the system in an easily
expressible natural language and thus expect the system to
identify the set of services that are required to achieve the
user’s goal. In our study, we review natural language-based
approaches for dynamic service composition. If we consider
an user’s natural language description at one end of the
problem and services at the other end, then, we find that
existing literature can be broadly categorized as approaches
that a) apply restrictions on how the user expresses the goal
using sentence templates and/or user utterances and then
use structured parsing techniques to parse the sentences to
match against service names and descriptions [4] [23]; b)
construct semantic graphs that represent the service description
[13] such that those could be matched with the natural lan-
guage descriptions using a lexical database such as WordNet,
that groups words based on their meanings, to calculate a
conceptual distance metric between concepts at both ends,
[26] [9]; and c) match partially-observable natural language
description with that of the semantics of the service described
using semantic web services such as OWL-S and VDL [27]
[8]. Categorical limitations of existing approaches include, (i)
complex linguistic processing that employs several NLP tech-
niques: structured parsing, extracting parts-of-speech tokens,
stop-word removal, spell-checking, stemming, and text seg-
mentation, (ii) inclusion of lexical databases such as WordNet
or domain-specific ontologies that represents domain lexicons,
and (iii) a weaker concept representation and similarity score
for semantic matching that does not account for sentence
context. To overcome the above limitations, in our work, we
(a) allow users to express their sentences template-free and use
their natural language description without complex linguistic
processing by aligning it with service descriptions using Sen-
tence embeddings, (b) avoid the need for lexical databases and

ontologies by relying on the automatically extracted corpora
of service descriptions which would otherwise be provided by
service developers as code comments on services; this reduces
the need to construct semantic graphs of concepts and domain-
specific ontologies, and (c) use a stronger representation of
words, concepts and natural language sentences that account
for word usage in context to user’s sentence by applying a
state-of-the-art pre-trained semantic representation model of
English language.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented NLSC, a Dynamic Ser-
vice Composition Middleware based on unrestricted Natural
Language service descriptions. Using our approach, we have
demonstrated that total effort (in terms of person/day) for
service composition and service integration can be dramati-
cally reduced up to 44% thanks to we eliminated the Transla-
tion phase proposed by the Service Composition Middleware
(SCM) model and substituted it by an intuitive mechanism for
service description, discovery, and retrieval. We also demon-
strated that Service Composition using Sentence Embeddings
and Named Entity Recognition techniques alleviate the bur-
densome task of writing boilerplate code, strictly defining
well-defined hard-typed interfaces, validating ontology models
and representations, and creating ad-hoc semantic reasoning
mechanisms for service matching

Future Work: we plan to improve the precision of our
model by training custom service description models in ad-
dition to common-sense pre-trained models as Wikipedia or
Twitter entries. Also, we plan to extend our approach so it can
discover third-party services published in well-known public
repositories such as ProgrammableWeb.com and GitHub.

Discussion: data-driven ML and NLP approaches raise sev-
eral open questions including learning with limited data. For
instance, a) learning QoS-aware models that introduce model
sparsity, b) inferring custom entities using reinforcement and
online learning, with initial disambiguations by user, to im-
prove service matches, c) learning context-sensitive models
with working memory for better entity resolution, and d) one-
shot learning from descriptions for service disambiguation.

REFERENCES

[1] O. Alliance. (2018, Aug.) The dynamic module system for java.
[Online]. Available: https://www.osgi.org/

[2] Apache. (2015, Nov.) Apache felix framework. [Online]. Avail-
able: http://felix.apache.org/documentation/subprojects/apache-felix-
framework/apache-felix-framework-and-google-android.html

[3] S. Balzer and T. Liebig, “Bridging the gap between abstract and concrete
services a semantic approach for grounding owl-s,” in Semantic Web
Services:Preparing to Meet the World of Business Applications, 2004.

[4] A. Bosca, F. Corno, G. Valetto, and R. Maglione, “On-the-fly construc-
tion of web services compositions from natural language requests,” JSW,
vol. 1, no. 1, pp. 40–50, 2006.

[5] S. Bouzefrane, D. Huang, and P. Paradinas, “An osgi-based service
oriented architecture for android software development platf.” 11 2011.

[6] D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha, “Service composition
for mobile environments,” Mob. Netw. Appl., vol. 10, pp. 435–451, 2005.

[7] T.-W. Chang, “Android/osgi-based vehicular network management sys-
tem,” in 2010 The 12th International Conference on Advanced Commu-
nication Technology (ICACT), vol. 2, Feb 2010, pp. 1644–1649.

[8] Y. Charif and N. Sabouret, “An overview of semantic web services
composition approaches,” Theo. CS, vol. 146, no. 1, pp. 33–41, 2006.

[9] M. Cremene, J. Tigli, S. Lavirotte, F. Pop, M. Riveill, and G. Rey,
“Service composition based on natural language requests,” in Int. Conf.
on Services Computing, 2009, pp. 486–489.

[10] Easy-Rules. (2018, Aug.) A simple rule-based system. [Online].
Available: https://github.com/j-easy/easy-rules

[11] C. Escoffier. (2008, Oct.) ipojo on android. [Online]. Available:
http://ipojo-dark-side.blogspot.de/2008/10/ipojo-on-android.html

[12] J. R. Finkel, T. Grenager, and C. Manning, “Incorporating non-local
information into information extraction systems by gibbs sampling,” in
Computational Linguistics, 2005, pp. 363–370.

[13] K. Fujii and T. Suda, “Semantics-based dynamic service composition,”
Communications, vol. 23, no. 12, pp. 2361–2372, 2005.

[14] E. Hadj, “A language-based approach for web service composition,”
Ph.D. dissertation, Universite de Bordeaux, France, Nov. 2017.

[15] N. Ibrahim, F. Le Mouël, and S. Frénot, “MySIM: A spontaneous
service integration middleware for pervasive environments,” in Pervasive
Services. ACM, 2009, pp. 1–10.

[16] N. Ibrahim and F. L. Mouël, “A survey on service composition middle-
ware in pervasive environments,” CoRR, vol. abs/0909.2183, 2009.

[17] IFPUG. (2018, Jul.) Function point metrics. [Online]. Available:
http://www.ifpug.org/isbsg/

[18] J. Kalinowski and L. Braubach, “Integrating application-oriented mid-
dleware into the android operating system,” in UBICOMM, 2015.

[19] R. Karunamurthy, F. Khendek, and R. H. Glitho, “A novel architecture
for web service composition,” NCA, vol. 35, no. 2, pp. 787–802, 2012.

[20] C. Lee, S. Ko, S. Lee, W. Lee, and S. Helal, “Context-aware service
composition for mobile network environments,” in Ubiquitous Intelli-
gence and Computing, 2007, pp. 941–952.

[21] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” in NIPS, 2013, p. 3111–3119.

[22] MVEL. (2018, May) Mvel guide. [Online]. Available:
https://github.com/imona/tutorial/wiki/MVEL-Guide

[23] A. Ordoñez, J. C. Corrales, and P. Falcarin, “Natural language processing
based services composition for environmental management,” in System
of Systems Engineering (SoSE), 2012, pp. 497–502.

[24] M. Pagliardini and P. Gupta, “Unsupervised learning of sentence em-
beddings using compositional n-gram features,” in Com. Ling,, 2018.

[25] I. Paik, W. Chen, and M. N. Huhns, “A scalable architecture for
automatic service composition,” TSC, vol. 7, no. 1, pp. 82–95, 2014.

[26] F. Pop, M. Cremene, M. Vaida, and M. Riveill, “On-demand service
composition based on natural language requests,” in Wireless On-
Demand Network Systems and Services, 2009, pp. 45–48.

[27] F.-C. Pop, M. Cremene, M. Vaida, and M. Riveill, “Natural language ser-
vice composition with request disambiguation,” in SOCo, P. P. Maglio,
M. Weske, J. Yang, and M. Fantinato, Eds., 2010, pp. 670–677.

[28] H. Pourreza and P. Graham, “On the fly service composition for local in-
teraction environments,” in Pervasive Computing and Communications,
2006, pp. 6 pp.–399.

[29] R. P. D. Redondo, A. F. Vilas, M. R. Cabrer, J. J. P. Arias, and M. R.
Lopez, “Enhancing residential gateways: Osgi services composition,” in
Conf. on Consumer Electronics, 2007, pp. 1–2.

[30] E. Sirin, B. Parsia, D. Wu, and J. Hendler, “HTN planning for web
service composition using shop2,” WS, vol. 1, pp. 377–396, 2004.

[31] T. G. Stavropoulos, D. Vrakas, and I. Vlahavas, “A survey of service
composition in ambient intelligence environments,” Artificial Intelli-
gence Review, vol. 40, no. 3, pp. 247–270, Oct 2013.

[32] K. Tari, Y. Amirat, A. Chibani, A. Yachir, and A. Mellouk, “Context-
aware dynamic service composition in ubiquitous environment,” IEEE
International Conference on Communications, pp. 1–6, 2010.

