
EasyChair Preprint
№ 10632

Sorting Without Sorts

Pamina Georgiou, Marton Hajdu and Laura Kovacs

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 29, 2023

Sorting without Sorts

Pamina Georgiou1, Márton Hajdu1, and Laura Kovács1

TU Wien, Austria

Abstract. We present an integrated formal methods framework in sup-
port of automatically establishing the functional correctness of programs
with recursive data structures, including functional programs implement-
ing sorting algorithms. We formalize program semantics in many-sorted
first order logic while introducing sortedness/permutation properties as
part of our first-order formalization. Rather than focusing on specific
first-order theories such as lists of integer arithmetic, our formaliza-
tion relies on a parameterized sort abstracting (arithmetic) theories.
We further adjust recent efforts for automating inductive reasoning in
saturation-based first-order theorem proving. Importantly, we advocate
a compositional reasoning approach for fully automating the verifica-
tion of functional programs implementing and preserving sorting and
permutation properties over parameterized list structures. We showcase
the applicability of our framework over recursive sorting algorithms, in-
cluding Mergesort and Quicksort; to this end, we turn first-order theo-
rem proving into a fully automated verification engine, without requiring
manually proven and/or a priori given loop invariants.

1 Introduction

Sorting algorithms are ubiquitous in computing. They typically implement re-
cursive/iterative operations over unbounded data structures, for instance lists
or arrays, combined with arithmetic manipulations of numeric data types, such
as naturals, integers or reals. Automating the formal verification of sorting rou-
tines therefore brings the challenge of automating recursive/inductive reasoning
in extensions and combinations of first-order theories, while also addressing the
reasoning burden arising from design choices made for the purpose of efficient
sorting. Most notably, Quicksort [7] is known to be easily implemented when
making use of recursive function calls, for example, as given in Figure 1, whereas
procedural implementations of Quicksort would require additional recursive
data structures such as stacks. While Quicksort and other sorting routines
have been proven correct by means of manual efforts [4], proof assistants [15],
abstract interpreters [5], or model checkers [8], to the best of our knowledge such
correctness proofs so far have not been fully automated.
In this paper we aim to enforce the partial correctness of functional programs
with recursive data structures, in a fully automated manner. The crux of our ap-
proach is a compositional reasoning setting based on superposition-based first-
order theorem proving [11] with native support for induction [6] and first-order

2 Pamina Georgiou, Márton Hajdu, and Laura Kovács

1 datatype a’ list = nil | cons(a’, (a’ list))
2
3 quicksort :: a’ list → a’ list
4 quicksort(nil) = nil
5 quicksort(cons(x, xs)) =
6 append(
7 quicksort(filter<(x, xs)) ,
8 cons(x, quicksort(filter≥(x, xs))))
9

10 append :: a’ list → a’ list → a’ list
11 append(nil, xs) = xs
12 append(cons(x, xs), ys) = cons(x, append(xs, ys))

Fig. 1: Recursive functional algorithm of Quicksort, using the recursive function
definitions append, filter< and filter≥ over lists of sort a. The datatype list
is inductively defined by the list constructors nil and cons. Here, xs, ys denote
lists whose elements are of sort a, whereas x is a list element of sort a. The
append function concatenates two lists. The filter< and filter≥ functions
return lists of elements y of xs such that y < x and y ≥ x, respectively.

theories of recursively defined data types [10]. We extend this setting to sup-
port the first-order theory of list data structures parameterized by an abstract
background theory/sort a. Doing so, we introduce a reasoning framework that
integrates static program analysis, first-order theorem proving, and the automa-
tion of induction. Our framework allows us to automatically discharge verifi-
cation conditions of sorting/permutation programs, without requiring manually
proven or a priori given loop invariants. In particular, we automatically establish
the functional correctness of the recursive implementation of Quicksort from
Figure 1. In a nutshell, we proceed as follows.

(i) We formalize the semantics of functional programs in extensions of the first-
order theory of lists (Section 3). Rather than focusing on lists with a specific
background theory, such as integers/naturals, our formalization relies on a pa-
rameterized sort/type a abstracting specific (arithmetic) theories. To this end,
we impose that the sort a has a linear order ≤. We then express program seman-
tics in the first-order theory of lists parametrized by a, allowing us to quantify
over lists of sort a as they are domain elements of our first-order theory.

(ii) We leverage first-order theorem proving for compositional proofs of recur-
sive parameterized sorting algorithms (Section 4), in particular of Quicksort
from Figure 1. Our proofs do not rely on manually proven invariants. Rather,
we embed the application of induction directly in saturation proving and we
split (sorting) verification conditions using first-order lemmas, where each of
these lemmas is proved with the help of saturation-based theorem proving. That
is, all verification conditions of respective sorting algorithms are automatically
proven by means of structural and/or computation induction during the satu-
ration process. Thanks to the automation of induction in saturation, we turn

Sorting without Sorts 3

first-order theorem proving into a powerful approach to guide human reasoning
about recursive properties. We do not rely on a priori given induction hypotheses
and/or inductive invariants, but generate such inductive hypotheses/invariants
as logical consequences (lemmas) of our program semantics.
(iii) We note that sorting algorithms often follow a divide-and-conquer approach
(see Figure 2). We provide a generalized set of lemmas that is applicable to sort-
ing algorithms on recursive data structures, such as lists (Section 5). Doing so,
we remark that, one of the major reasoning burdens towards establishing the
correctness of sorting algorithms comes with formalizing permutation proper-
ties, for example that two lists are permutations of each other. Permutation is
however not a first-order property and hence reasoning about list permutation
requires higher-order logic. While counting and comparing the number of list
elements is a viable option to formalize permutation equivalence in first-order
logic, the necessary arithmetic reasoning adds an additional burden to the under-
lying prover. We overcome this challenge by introducing an effective first-order
formalization of permutation equivalence over parameterized lists. Our permu-
tation equivalence property encodes multiset operations over lists, eliminating
the need of counting list elements, and therefore arithmetic reasoning, or fully
axiomatizing (higher order) permutations.
Contributions. In summary, we bring the following main contributions.
(i) We formalize the semantics of functional programs with recursive data struc-

tures in the first-order theory of lists with parameterized sorts. Doing so,
we capture the correctness of sorting routines via two properties over lists,
namely the sortedness property and the permutation equivalence property,
and introduce a first-order formalization of these properties (Section 3).

(ii) Based on our first-order semantics of sorting algorithms, we showcase com-
positional reasoning via first-order theorem provers with built-in induction
(Section 4). We exploit a divide-and-conquer approach implemented by sort-
ing algorithms and provide a fully automated correctness proof of the recur-
sive Quicksort algorithm of Figure 1.

(iii) We generalize our inductive lemmas to prove the functional correctness of
multiple functional sorting algorithms (Section 5), including Mergesort and
Insertionsort. We demonstrate our findings (Section 6) by implementing
our approach on top of the Vampire theorem prover [11].

2 Preliminaries

We assume familiarity with standard first-order logic (FOL) and briefly introduce
saturation-based proof search in first-order theorem proving [11].
Saturation. Rather than using arbitrary first-order formulae G, most first-order
theorem provers rely on a clausal representation C of G. The task of first-order
theorem proving is to establish that a formula/goal G is a logical consequence of
a set A of clauses, including assumptions. Doing so, first-order provers clausify
the negation ¬G of G and derive that the S = A ∪ {¬G} is unsatisfiable1. To
1 for simplicity, we denote by ¬G the clausified form of the negation of G

4 Pamina Georgiou, Márton Hajdu, and Laura Kovács

this end, first-order provers saturate S by computing all logical consequences of
S with respect to some sound inference system I. A sound inference system I
derives a clause D from clauses C such that C → D. The saturated set of S
w.r.t. I is called the closure of S w.r.t. I, whereas the process of deriving the
closure of S is called saturation. By soundness of I, if the closure of S contains
the empty clause □, the original set S of clauses is unsatisfiable, implying the
validity of A → G; in this case, we established a refutation of ¬G from A, hence
a proof of validity of G.
The superposition calculus is a common inference system used by saturation-
based provers for FOL with equality [16]. The superposition calculus is sound
and refutationally complete: for any unsatisfiable formula ¬G, superposition-
based saturation derives the empty clause □ as a logical consequence of ¬G.
Parameterized Lists. We use the first-order theory of recursively defined
datatypes [10]. In particular, we consider the list datatype with two construc-
tors nil and cons(x, xs), where nil is the empty list and x and xs are respectively
the head and tail of a list. We introduce a type parameter a that abstracts the
sort/background theory of the list elements. Here, we impose the restriction that
the sort a has a linear order ≤; for simplicity, we also use ≥ and < as the stan-
dard ordering versions of ≤. As a result, we work in the first-order theory of lists
parametrized by sort a, allowing us to quantify over lists as domain elements of
this theory. For simplicity, we write xsa, ysa, zsa to mean that the lists xs, ys, zs
are parameterized by sort a. Similarly, we use xa, ya, za to mean that the list
elements x, y, z are of sort a. Whenever it is clear from the context, we omit
specifying the sort a.
Inductive Reasoning in Saturation. Inductive reasoning has recently been
embedded in saturation-based theorem proving [6], by extending the superposi-
tion calculus with a new inference rule based on induction axioms. An induction
axiom refers to an instance of a valid induction schema. In our work, we use
structural and computational induction schemata.
In particular, we use the following structural induction schema over lists:

(
F [nil] ∧ ∀x, ys.(F [ys] → F [cons(x, ys)])

)
→ ∀zs.F [zs] (1)

Sorting algorithms however often require induction axioms that are more com-
plex than instances of structural induction (1). Such axioms are typically in-
stances of computation/recursion induction schema, arising from sorting scenar-
ios when, for example, the task of sorting a list is reduced to recursive applications
of sorting tasks to two or more smaller lists (i.e. sublists). Divide-and-conquer
sorting strategies mostly reduce lists into two complementary sublists based on
some comparison operation ◦ among lists, using also the inverse ◦−1 operation
of ◦. We therefore use the following computation induction schema over lists:

(
F [nil] ∧ ∀x, ys.

((
F [reduce◦(x, ys)]∧
F [reduce◦−1(x, ys)]

)
→ F [cons(x, ys)])

))
→ ∀zs.F [zs] (2)

Sorting without Sorts 5

3 First-Order Semantics of Functional Sorting Algorithms

We outline our formalization of recursive sorting algorithms in the full first-order
first-order theory of parametrized lists.

3.1 Recursive Functions in First-Order Logic

We investigate recursive algorithms written in a functional coding style and
defined over lists using list constructors. That is, we consider recursive functions
f that manipulate the empty list nil and/or the list cons(x, xs).
Many recursive sorting algorithms f, as well as other recursive operations over
lists implement a divide-and-conquer approach: (i) use a reduction function to
divide lista, that is a list of sort a, into two smaller sublists upon which f
is recursively applied to, and (ii) call combination function that puts together
the result of the recursive calls of f. Figure 2 shows such a divide-and-conquer
pattern, where the reduction function reduce uses an invertible operator ◦, with
◦−1 being the inverse of ◦; f is applied to the results of ◦ before these results are
merged using the combination function combine.

1 f :: a’ list → ... → a’ list
2 f(nil, ...) = nil
3 f(cons(y, ys), ...)=
4 combine(
5 f(reduce◦(cons(y, ys))),
6 f(reduce◦−1(cons(y, ys)))
7)
8

Fig. 2: Recursive divide-and-conquer approach.

Note that the recursive func-
tion f of Figure 2 is de-
fined via the declaration f ::
a′list → ... → a′list, where
... denotes further input pa-
rameters. We formalize the
first-order semantics of f via
the function f : (lista × ...) 7→
lista, by translating the in-
ductive function definitions f
to the following first-order formulas with parametrized lists (in first-order logic,
function definitions can be considered as universally quantified equalities):

f(nil) = nil
∀xa, xsa . f(cons(x, xs)) = combine(f(reduce◦(cons(x, xs))),

f(reduce◦−1(cons(x, xs)))).
(3)

The recursive divide-and-conquer pattern of Figure 2, together with the first-
order semantics (3) of f, will be used in Sections 4-5 for respectively proving
correctness of the Quicksort algorithm (and other sorting algorithms), as well
as for applying lemma generalizations for divide-and-conquer list operations.
The aware reader might however already notice that the computation induction
schema (2) will be the necessary ingredient to automate inductive reasoning over
f and their respective specifications. We next introduce our first-order formal-
ization for specifying that f implements a sorting routine.

6 Pamina Georgiou, Márton Hajdu, and Laura Kovács

3.2 First-Order Specification of Sorting Algorithms

We consider a specific function instance of f implementing a sorting algorithm,
expressed through sort :: a′list → a′list. The functional behaviour of sort needs
to satisfy two specifications implying the functional correctness of sort: (i) sort-
edness and (ii) permutations equivalence of the list computed by sort.
(i) Sortedness: The list computed by the sort function must be sorted w.r.t.
some linear order ≤ over the type a of list elements. We define a parameterized
version of this sortedness property using an inductive predicate sorted as follows:

sorted(nil) = ⊤
∀xa, xsa . sorted(cons(x, xs)) = (elem≤list(x, xs) ∧ sorted(xs)),

(4)

where elem≤list(x, xs) specifies that x ≤ y for any element y in xs. Proving
correctness of a sorting algorithm sort thus reduces to proving the validity of:

∀xsa . sorted(sort(xs)). (5)

(ii) Permutation Equivalence: The list computed by the sort function is a
permutation of the input list to the sort function. In other words the input
and output lists of sort are permutations of each other, in short permutation
equivalent.
Axiomatizing permutations requires quantification over relations and is thus not
expressible in first-order logic [13]. A common approach to prove permutation
equivalence of two lists is to count the occurrence of elements in each list respec-
tively and compare the occurrences of each element. Yet, counting adds a burden
of arithmetic reasoning over naturals to the underlying prover, calling for addi-
tional applications of mathematical induction. We overcome these challenges of
expressing permutation equivalence as follows. We introduce a family of func-
tions filterQ manipulating lists, with the function filterQ being parameterized
by a predicate Q and as given in Figure 3.

1 filterQ :: a’ → a’ list → a’ list
2 filterQ(x, nil) = nil
3 filterQ(x, cons(y, ys))=
4 if (Q(y, x)){
5 cons(y,filterQ(x, ys))
6 } else {
7 filterQ(x, ys)
8 }

Fig. 3: Functions filterQ filtering elements of a list,
by using a predicate Q(y, x) over list elements x, y.

In particular, given an
element x and a list
ys, the functions filter=,
filter<, and filter≥ com-
pute the maximal sub-
lists of ys that contain
only equal, resp. smaller
and greater-or-equal ele-
ments to x. Analogously
to counting the multiset
multiplicity of x in ys via

counting functions, we compare lists given by filter=, avoiding the need to count
the number of occurrences of x. Thus, to prove that the input/output lists of sort
are permutation equivalent, we show that, for every list element x, the results
of applying filter= to the input/output list of sort are the same. Formally, we

Sorting without Sorts 7

have the following first-order property of permutation equivalence:

∀xa, xsa . filter=(x, xs) = filter=(x, sort(xs)). (6)

4 Proving Recursive Quicksort

We now describe our approach towards proving the correctness of the recursive
parameterized version of Quicksort, as given in Figure 1. Note that Quicksort
recursively sorts two sublists that contain respectively smaller and greater-or-
equal elements than the pivot element x of its input list. We therefore reduce the
task of proving the functional correctness of Quicksort to the task of proving the
(i) sortedness property (5) and (ii) the permutation equivalence property (6) of
Quicksort. As mentioned in Section 3.2, a similar reasoning is needed for most
sorting algorithms, which we evidence in Sections 5–6.

4.1 Proving Sortedness for Quicksort

Given an input list xs, we prove that Quicksort computes a sorted list by
considering the property (5) instantiated for Quicksort. That is, we prove:

∀xsa . sorted(quicksort(xs)) (7)

The sortedness property (7) of Quicksort is proved via compositional reasoning
over (7). Namely, we enforce the following two properties that together imply (7):

(S1) By using the linear order ≤ of the background theory a, for any element
y in the sorted list quicksort(filter<(x, xs)) and any element z in the sorted
list quicksort(filter≥(x, xs)), we have y ≤ x ≤ z.

(S2) The functions filter< and filter≥ of Figure 3 are correct. That is, filtering
elements from a list that are, smaller than, resp. greater-or-equal to an element
x results in, smaller, resp. greater-or-equal sublists.

Similarly to (4), in order to express property (S2) we introduce the inductive
predicates elem≤list :: a

′ → a′list → bool and list≤list :: a
′list → a′list → bool,

defined respectively as:

∀xa . elem≤list(x, nil) = ⊤
∀xa, ya, ysa . elem≤list(x, cons(y, ys)) = x ≤ y ∧ elem≤list(x, ys)

(8)

to express that an element x is smaller than any list element of ys, and

∀ysa . list≤list(nil, ys) = ⊤
∀xa, xsa, ysa . list≤list(cons(x, xs), ys) = (elem≤list(x, ys) ∧ list≤list(xs, ys))

(9)

to express that every element x in xs is smaller than or equal to any element in
ys. The inductively defined predicates of (8)–(9) allow us to express necessary

8 Pamina Georgiou, Márton Hajdu, and Laura Kovács

lemmas over list operations preserving the sortedness property (7), for example,
to prove that appending sorted lists yields a sorted list.
Proving properties (S1)–(S2), and hence deriving the sortedness property (7)
of Quicksort, requires three first-order lemmas in addition to the first-order
semantics (3) of Quicksort. Each of these lemmas is automatically proven by
saturation-based theorem proving using the structural and/or computation in-
duction schemata of (1) and (2); hence, by compositionality, we obtain (S1)–
(S2) implying (7). We next discuss these three lemmas and outline the complete
(compositional) proof of the sortedness property (7) of Quicksort.
• In support of (S1), lemma (10) expresses that for two sorted lists xs, ys and
a list element x, such that elem≤list(x, xs) holds and all elements of the con-
structed list cons(x, xs) are greater-or-equal than all elements in ys, the result
of concatenating ys and xs yields a sorted list. Formally, we have

∀xa, xsa, ysa .
(
sorted(xs) ∧ sorted(ys) ∧ elem≤list(x, xs)∧
list≤list(ys, cons(x, xs))

)
→ sorted(append(ys, cons(x, xs)))

(10)

• In support of (S2), we need to establish that filtering greater-or-equal elements
for some list element x results in a list whose elements are greater-or-equal than
x. In other words, the inductive predicate of (8) is invariant over sorting and
filtering operations over lists.

∀xa, xsa . elem≤list(x, quicksort(filter≥(x, xs))). (11)

• Lastly and in further support of (S1)–(S2), we establish that all elements of a
list xs are “covered” with the filtering operations filter≥ and filter< w.r.t. a
list element x of xs. Intuitively, the list of filter<(x,xs) contains all elements
of xs that are smaller than x, while the remaining elements of xs are those that
are greater-or-equal than x and hence are contained in cons(x, filter(x≥(x, xs))).
By applying Quicksort over the input list xs, we thus have:

∀xa, xsa .
list≤list(quicksort(filter<(x, xs)), cons(x, quicksort(filter≥(x, xs)))).

(12)
The first-order lemmas (10)–(12) guide saturation-based proving to instantiate
structural/computation induction schemata and derive the following induction
axiom necessary to prove (S1)–(S2), and hence sortedness of Quicksort:(

sorted(quicksort(nil))∧

∀xa, xsa .
(sorted(quicksort(filter≥(x, xs)))∧
sorted(quicksort(filter<(x, xs)))

)
→ sorted(quicksort(cons(x, xs))

)
→ ∀xsa . sorted(quicksort(xs)),

(13)
where axiom (13) is automatically obtained from the computation induction

schema (2) by setting F := sorted(quicksort(t)) for some term t, reduce◦ :=
filter< and reduce◦−1 := filter≥.

Sorting without Sorts 9

The first-order lemmas (10)–(12), together with the induction axiom (13) and
the first-order semantics (3) of Quicksort, imply the sortedness property (6) of
Quicksort; this proof can automatically be derived using saturation-based rea-
soning. Yet, the obtained proof assumes the validity of each of the lemmas (10)–
(12). To eliminate this assumption, we propose to also prove lemmas (10)–(12)
via saturation-based reasoning. Yet, while lemma (10) is established by satura-
tion with structural induction (1) over lists, proving lemmas (11)–(12) requires
further first-order formulas. In particular, for proving lemmas (11)–(12) via sat-
uration, we use four further lemmas, as follows.
• Lemmas (14)–(15) indicate that the order of elem≤list and list≤list is pre-
served under quicksort, respectively. That is,

∀xa, xsa . elem≤list(x, xs) → elem≤list(x, quicksort(xs)) (14)

and

∀xsa, ysa . list≤list(ys, xs) → list≤list(quicksort(ys), xs). (15)

• Proving lemmas (14)–(15), however, requires two further lemmas that follow
from saturation with built-in computation and structural induction, respectively.
Namely, lemmas (16)–(17) establish that elem≤list and list≤list are also invari-
ant over appending lists. That is,

∀xa, ya, xsa, ysa .
(
y ≤ x ∧ elem≤list(y, xs) ∧ elem≤list(y, ys)

)
→ elem≤list(y, append(cons(x, ys), xs))

(16)

and
∀xsa, ysa, zsa .

(
y ≤ x ∧ list≤list(ys, xs) ∧ list≤list(zs, xs)

)
→ list≤list(append(ys, zs), xs)

(17)

With lemmas (14)–(17), we automatically prove lemmas (10)–(12) via saturation-
based reasoning. The complete automation of proving properties (S1)–(S2),
and hence deriving the sortedness property (7) of Quicksort in a compositional
manner, requires thus altogether seven lemmas in addition to the first-order se-
mantics (3) of Quicksort. Each of these lemmas is automatically established
via saturation with built-in induction. Hence, unlike interactive theorem prov-
ing, compositional proving with first-order theorem provers can be leveraged to
eliminate the need to a priori specifying necessary induction axioms to be used
during proof search.

4.2 Proving Permutation Equivalence for Quicksort

In addition to establishing the sortedness property (7) of Quicksort, the func-
tional correctness of Quicksort also requires proving the permutation equiva-
lence property (6) for Quicksort. That is, we prove:

∀xa, xsa . filter=(x, xs) = filter=(x, quicksort(xs)). (18)

10 Pamina Georgiou, Márton Hajdu, and Laura Kovács

In this respect, we follow the approach introduced in Section 3.2 to enable first-
order reasoning over permutation equivalence (18). Namely, we use filter= to
filter elements x in the lists xs and quicksort(xs), respectively, and build the cor-
responding multisets containing as many x as x occurs in xs and quicksort(xs).
By comparing the resulting multisets, we implicitly reason about the number
of occurrences of x in xs and quicksort(xs), yet, without the need to explicitly
count occurrences of x. In summary, we reduce the task of proving (18) to com-
positional reasoning again, namely to proving following two properties given as
first-order lemmas which, by compositionality, imply (18):
(P1) List concatenation commutes with filter=, expressed by the lemma:

∀xa, xsa, ysa . filter=(x, append(xs, ys)) = append(filter=(x, xs),
filter=(x, ys)).

(19)

(P2) Appending the aggregate of both filter-operations results in the same
multisets as the unfiltered list, that is, permutation equivalence is invariant over
combining inverse reduction operations. This property is expressed via lemma:

∀xa, ya, xsa . filter=(x, xs) = append(filter=(x, filter<(y, xs)),
filter=(x, filter≥(y, xs))).

(20)

Similarly as in Section 4.1, we prove lemmas (19)–(20) by saturation-based rea-
soning with built-in induction. In particular, lemma (19) is established using the
structural induction schema (1) in saturation, while the validity of lemma (20)
is obtained by applying the computation induction schema (2) in saturation.
By proving lemmas (19)–(20), we thus establish validity of permutation equiva-
lence (18) for Quicksort. Together with the sortedness property (7) of Quicksort
proven in Section 4.1, we conclude the functional correctness of Quicksort in
a fully automated and compositional manner, using saturation-based theorem
proving with built-in induction and altogether nine first-order lemmas in addi-
tion to the to the first-order semantics (3) of Quicksort.

5 Lemma Generalization for Sorting

Establishing the functional correctness of Quicksort in Section 4 uses nine first-
order lemmas that express inductive properties over lists in addition to the first-
order semantics (3) of Quicksort. While each of these lemmas is proved by satu-
ration using structural/computation induction schemata, coming up with proper
inductive lemmas remains crucial in reasoning about inductive data structures.
In this section, we further improve the automated proving support of Section 4:
we show that the lemmas introduced in Section 4 can automatically be gen-
erated within saturation with induction. Moreover, we demonstrate that the
lemmas of Section 4 can be leveraged to prove correctness of other divide-and-
conquer list sorting algorithm, in particular within Mergesort (Figure 5). Fi-
nally, the genericity of our inductive lemmas from Section 4 helps also reasoning
about sorting routines that do not follow a divide-and-conquer strategy, such as
Insertionsort (Figure 4).

Sorting without Sorts 11

1 insertsort :: a’ list → a’ list
2 insertsort(nil) = nil
3 insertsort(cons(x, xs)) = isort(x, insertsort(xs))
4
5 isort :: a’ → a’ list → a’ list
6 isort(x, nil) = cons(x, nil)
7 isort(x, cons(y, ys)) =
8 if (x ≤ y) {
9 cons(x, cons(y, ys))

10 } else {
11 cons(y, isort(x, ys))
12 }
13

Fig. 4: Recursive algorithm of Insertionsort using the recursive function def-
inition insertsort and auxiliary (recursive) function isort. Insertionsort
recursively sorts the list by inserting single elements in the correct order with
the helper function isort.

5.1 Common Patterns of Inductive Lemmas over Sorting

Consider the computation induction schema (2). When using (2) for proving the
sortedness (7) and permutation equivalence (18) of Quicksort, the inductive
formula F of (2) is, respectively, instantiated with the predicates sorted from (7)
and filter= from (18). The base case F [nil] of schema (2) is then trivially proved
by saturation for both properties (7) and (18) of Quicksort.
Proving the induction step case of schema (2) is however challenging as it relies
on reduce-functions which are further used by combine functions within the
divide-and-conquer patterns of Figure 2. Intuitively this means, that proving
the induction step case of schema (2) for the sortedness (7) and permutation
equivalence (18) properties requires showing that applying combine functions
over reduce functions preserve sortedness (7) and permutation equivalence (18),
respectively. For divide-and-conquer algorithms of Figure 2, the step case of
schema (2) requires thus proving the following lemma:(

∀xa, ysa.

(
combine

(
F [reduce◦(x, ys)]∧
F [reduce◦−1(x, ys)]

)
→ F [cons(x, ys)])

))
. (21)

We next describe generic instances of lemma (21) to be used within proving
functional correctness of sorting allgorithms, depending on the combine/reduce
function of the underlining divide-and-conquer sorting routine.
(i) Combining sorted lists preserves sortedness. For proving the inductive
step case (21) of the sortedness property (5) of sorting algorithms, we require
the following generic lemma (5):

∀xsa, ysa .
(
sorted(xs) ∧ sorted(ys)

)
→ sorted(combine(xs, ys)), (22)

12 Pamina Georgiou, Márton Hajdu, and Laura Kovács

1 mergesort :: a’ list → a’ list
2 mergesort(nil) = nil
3 mergesort(xs) =
4 merge(
5 mergesort(take((xslength div 2), xs)) ,
6 mergesort(drop((xslength div 2), xs))
7)
8
9 merge :: a’ list → a’ list → a’ list

10 merge(nil, ys) = ys
11 merge(xs, nil) = xs
12 merge(cons(x, xs), cons(y, ys)) =
13 if (x ≤ y) {
14 cons(x, merge(xs, cons(y, ys)))
15 } else {
16 cons(y, merge(cons(x, xs), ys))
17 }
18

Fig. 5: Recursive Mergesort using the recursive functions merge, take, and drop
over lists of sort a. Mergesort splits the input list xs into two halves by using
take and drop that respectively take and drop the first half of elements of
the input list (corresponding to reduce functions of Figure 2). Both halves are
recursively sorted and combined by the merge function, yielding a sorted list
(corresponding to combine of Figure 2).

ensuring that combining sorted lists results in a sorted list. Lemma (22) is used
to establish property (S1) of Quicksort, namely used as lemma (10) for proving
the preservation of sortedness under the append function.

Remark 1 (Compositional reasoning over sortedness in saturation). Note that
applying lemma (22) directly to Quicksort, without taking into account the
structure of the recursive calls of append and filter-functions, would results in
the following weaker version of lemma (10):

∀xa, xsa, ysa .(
sorted(xs) ∧ sorted(ys)

)
→ sorted(append(ys, cons(x, xs)))

(23)

which could automatically be derived by saturation with computation induc-
tion (2). However, lemma (23) is not valid since the value of x is not correctly
restricted w.r.t. ≤ to xs, ys (e.g. concatenating a sorted xs with an arbitrary x
not necessarily yields a sorted list). Therefore, the assumptions elem≤list(x, xs)
and list≤list(ys, cons(x, xs)) are also needed in addition to (23), resulting in
lemma (10). Yet, lemma (10) from Section 4 can automatically be derived via
saturation with compositional reasoning based on computation induction (2): we
derive (23) from (2) via saturation, strengthen (23) with elem≤list(x, xs) and
list≤list(ys, cons(x, xs)) via superposition, yielding thus (10).

Sorting without Sorts 13

We showcase that genericity of lemma (22), by using it upon sorting routines
different than Quicksort. Consider, for example, Mergesort as given in Figure
5. The sortedness property (5) of Mergesort can be proved by using saturation
with lemma 22; note that the merge function of Mergesort acts as a combine
function of (22). That is, we establish the sortedness property of Mergesort via
the following instance of (22):

∀xsa, ysa . sorted(xs) ∧ sorted(ys) → sorted(merge(xs, ys)) (24)

Finally, lemma (22) is not restricted to divide-and-conquer routines. For exam-
ple, when proving the sortedness property (5) of the Insertionsort algorithm
of Figure 4, we use saturation with lemma (22) applied to isort. As such, sort-
edness of Insertionsort is established by the following instance of (22):

∀xa, xsa . sorted(xs) → sorted(isort(x, xs)) (25)

(ii) Combining reductions preserves permutation equivalence. Similarly
to Section 4.2, proving permutation equivalence (6) over divide-and-conquer sort-
ing algorithms of Figure 2 is established via the following two properties:
• As in (P1) for Quicksort, we require that combine commutes with filter=:

∀xa, xsa, ysa . filter=(x, combine(xs, ys)) = combine(filter=(x, xs),

filter=(x, ys))
(26)

Note that lemma (19) for Quicksort is an instance of (26), as the append func-
tion of Quicksort acts as a combine function of Figure 2.
• Similarly to (P2) for Quicksort, we ensure that, by combining (inverse) re-
duction functions, we preserve (6). That is,

∀xa, xsa . filter=(x, xs) = combine(filter=(x, reduce◦(xs)),

filter=(x, reduce◦−1(xs)))
(27)

Note that lemma (20) for Quicksort is an instance of (27), as the filter< and
filter≥ functions correspond to the (inverse) reduce functions of Figure 2.
To prove the permutation equivalence (6) property of Mergesort, we use the
functions take and drop as the reduce functions of lemmas (26)–(27). Doing
so, we embed a natural number n argument (of sort N) in lemmas (26)–(27),
with n controling how many list elements are taken and dropped, respectively, in
Mergesort. As such, the following instances of lemmas (26)–(27) are adjusted
to Mergesort:

∀xa, xsa, ysa . filter=(x,merge(xs, ys)) = append(filter=(x, xs),

filter=(x, ys))
(28)

and

∀xa, nN, xsa . filter=(x, xs) = append(filter=(x, take(n, xs)),

filter=(x, drop(n, xs))),
(29)

14 Pamina Georgiou, Márton Hajdu, and Laura Kovács

with lemmas (28)–(29) being proved via saturation. With these lemmas at hand,
the permutation equivalence (6) of Mergesort is established, similarly to Quicksort.

Finally, the genericity of lemmas (26)–(27) naturally pays of when proving the
permutation equivalence properrty (6) of Insertionsort. Here, we only use a
simplified instance of (26) to prove (6) is preserved by the auxiliary function
isort. That is, we use the following instance of (26):

∀xa, ya, ysa . filter=(x, cons(y, ys)) = filter=(x, isort(y, ys)), (30)

which is established by saturation with computation induction (2).
We conclude by emphasizing the generality of the lemmas (22) and (26)–(27) for
automating inductive reasoning over sorting algorithms in saturation-based first-
order theorem proving: functional correctness of Quicksort, Mergesort, and
Insertionsort are proved using these lemmas in saturation with induction.
Moreover, each of these lemmas is established via saturation with induction.
Thus, compositional reasoning in saturation with computation induction enables
proving challenging sorting algorithms in a fully automated manner.

6 Implementation and Experiments

Implementation. Our work on saturation with induction in the first-order the-
ory of parameterized lists is implemented in the first-order prover Vampire [11].
In support of parameterization, we extended the SMT-LIB parser of Vampire
to support parametric data types from SMT-LIB [1] – version 2.6. In particular,
using the par keyword, our parser interprets (par (a1 ... an) ...) similar
to universally quantified blocks where each variable ai is a type parameter.
Appropriating a generic saturation strategy, we adjust the simplification order-
ings (LPO) for efficient equality reasoning/rewrites to our setting. For example,
the precedence of function quicksort is higher than of symbols nil, cons, append,
filter< and filter≥, ensuring that quicksort function terms are expanded to
their functional definitions.
We further apply recent results of encompassment demodulation [3] to improve
equality reasoning within saturation (–drc encompass). We use induction on
data types (–ind struct), including complex data type terms (–indoct on).
Experimental Evaluation. We evaluated our approach over challenging re-
cursive sorting algorithms taken from [15], namely Quicksort, Mergesort, and
Insertionsort. We show that the functional correctness of these sorting rou-
tines can be be verified automatically by means of saturation-based theorem
proving with induction, as summarized in Table 1.
We divide our experiments according to the specification of sorting algorithms:
the first column PermEq shows the experiments of all sorting routines w.r.t. per-
mutation equivalence (6), while Sortedness refers to the sortedness (5) property,
together implying the functional correctness of the respective sorting algorithm.
Here, the inductive lemmas of Sections 4–5 are proven in separate saturation runs

Sorting without Sorts 15

PermEq
Benchm. Pr. Required lemmas
IS-PE ✓ {IS-PE-L1}
IS-PE-L1 ✓ ∅
MS-PE ✓ {MS-PE-L1, MS-PE-L2}
MS-PE-L1 ✓* -
MS-PE-L2 ✓ ∅
MS-PE-L3 ✓ ∅
QS-PE ✓ {QS-PE-L1, QS-PE-L2}
QS-PE-L1 ✓ ∅
QS-PE-L2 ✓ ∅

Table 1: Experimental evaluation of
proving properties of sorting algo-
rithms, using a time limit of 5 minutes
on machine with AMD Epyc 7502, 2.5
GHz CPU with 1 TB RAM, using 1
core and 16 GB RAM per benchmark.

Sortedness
Benchm. Pr. Required lemmas
IS-S ✓ {IS-S-L1}
IS-S-L1 ✓* -
MS-S ✓ ∅
MS-S-L1 ✓* -
MS-S-L2 ✓* ∅

QS-S ✓
{QS-S-L1, QS-S-L2, QS-S-L3},
{QS-S-L1, QS-S-L3, QS-S-L4}

QS-S-L1 ✓ ∅
QS-S-L2 ✓ {QS-S-L4}
QS-S-L3 ✓ {QS-S-L4, QS-S-L5}
QS-S-L4 ✓ {QS-S-L6}
QS-S-L5 ✓ {QS-S-L7}
QS-S-L6 ✓ ∅
QS-S-L7 ✓ ∅

IS, MS and QS correspond to Insertionsort, Mergesort and Quicksort; S and PE
respectively denote sortedness (5) and permutation equivalence (6), and Li stands for
the i-th lemma of the problem.

of Vampire with structural/computation induction; these lemmas are then used
as input assumptions to Vampire to prove validity of the respective benchmark.
A benchmark category SA-PR[-Li] indicates that it belongs to proving the prop-
erty PR for sorting algorithm SA, where PR is one of S (sortedness (5)) and PE (per-
mutation equivalence (6)) and SA is one of IS (Insertionsort), MS (Mergesort)
and QS (Quicksort). Additionally, an optional Li indicates that the benchmark
corresponds to the i-th lemma for proving the property of the respective sorting
algorithm.
For our experiments, we ran all possible combinations of lemmas to determine
the minimal lemma dependency for each benchmark. For example, the sortedness
property of Quicksort (QS-S) depends on seven lemmas (see Section 4.1), while
the third lemma for this property (QS-S-L3) depends on four lemmas (see Sec-
tion 4.2). The second column Pr. indicates that Vampire solved the benchmark,
by using a minimal subsets of needed lemmas given in the third column.
We ran Vampire on each benchmark in a portfolio setting for 5 minutes, with
strategies enumerating all combinations of options that we hypothesized to be
relevant for solving these problems. In accordance with Table 1, Vampire com-
positionally proves permutation equivalence of Insertionsort and Quicksort
and sortedness of Mergesort and Quicksort. Note that sortedness of Mergesort
is proven without any lemmas, hence lemma MS-S-L1 is not needed. The lemmas
MS-PE -L1 for the permutation equivalence of Mergesort and IS-S-L1 for the
sortedness of Insertionsort could be proven separately by more tailored search
heuristics in Vampire (hence ✓∗), but our cluster setup failed to consistently
prove these with the portfolio setting.

16 Pamina Georgiou, Márton Hajdu, and Laura Kovács

7 Related Work

While Quicksort has been proven correct on multiple occasions, first and fore-
most in the famous 1971’s pen-on-paper proof by Foley and Hoare [4], not many
have investigated a fully automated proof of the algorithm. The only partially
automated proof of Quicksort, to the best of our knowledge, relies on Dafny [14],
where loop invariants are manually provided [2]. While [2] claims to prove some
of the lemmas/invariants, not all invariants are proved corrects (only assumed to
be so). The work of [17] establishes the correctness of permutation equivalence for
multiple sorting algorithms based on separation logic through inductive lemmas.
However, [17] does not address the correctness proofs of the sortedness property.
Contrarily, we fully automate the correctness proofs of sorting algorithms, using
first-order reasoning in the theory of parameterized lists.
Verifying functional correctness of sorting routines has also been explored in
the abstract interpretation and model-checking communities, by investigating
array-manipulating programs [5, 8]. In [5], the authors automatically generate
loop invariants for standard sorting algorithms of arrays of fixed length; the
framework is, however, restricted solely to inner loops and does not handle re-
cursive functions. Further, in [8] a priori given invariants/interpolants are used
in the verification process. Unlike these techniques, we do not rely on a priori
given invariant, nor are we restricted to inner loops.
There are naturally many examples of proofs of sorting algorithms using interac-
tive theorem proving (ITP), see e.g. [9, 12]. The work of [9] establishes correctness
of insertion sort. Similarly, the setting of [12] proves variations of Introsort and
Pdqsort – both using Isabelle/HOL [18]. However, ITP relies on user guidance
to provide induction schemes, a burden that we eliminate in our approach.
When it comes to the landscape of automated reasoning, we are not aware of
our techniques enabling the fully automated verification of such sorting routines.
Moreover, to the best of our knowledge, the formal verification of Quicksort has
so far not been automated, an open challenge which we solve in this paper.

8 Conclusions

We present an integrated formal approach to establish program correctness over
recursive programs based on saturation-based theorem proving. We automati-
cally prove recursive sorting algorithms, particularly the Quicksort algorithm,
by formalizing program semantics in the first-order theory of parameterized lists.
Doing so, we expressed the common properties of sortedness and permutation
equivalence in an efficient way for first-order theorem proving. By leveraging
common structures of divide-and-conquer sorting algorithms, we advocate com-
positional first-order reasoning with built-in structural/computation induction.
Proving further recursive sorting/search algorithms in future work, with im-
proved compositionality, is an interesting line to investigate.

Sorting without Sorts 17

References

1. Barrett, C., Fontaine, P., Tinelli, C.: The Satisfiability Modulo Theories Library
(SMT-LIB). www.SMT-LIB.org (2016)

2. Certezeanu, R., Drossopoulou, S., Egelund-Muller, B., Leino, K.R.M., Sivarajan,
S., Wheelhouse, M.: Quicksort revisited: Verifying alternative versions of quicksort.
Theory and Practice of Formal Methods: Essays Dedicated to Frank de Boer on
the Occasion of His 60th Birthday pp. 407–426 (2016)

3. Duarte, A., Korovin, K.: Ground joinability and connectedness in the superposition
calculus. In: IJCAR. pp. 169–187. Springer (2022)

4. Foley, M., Hoare, C.A.R.: Proof of a recursive program: Quicksort. The Computer
Journal 14(4), 391–395 (1971)

5. Gulwani, S., McCloskey, B., Tiwari, A.: Lifting Abstract Interpreters to Quantified
Logical Domains. In: PoPL. pp. 235–246 (2008)

6. Hajdu, M., Hozzová, P., Kovács, L., Reger, G., Voronkov, A.: Getting saturated
with induction. In: Principles of Systems Design: Essays Dedicated to Thomas A.
Henzinger on the Occasion of His 60th Birthday, pp. 306–322. Springer (2022)

7. Hoare, C.A.: Quicksort. The computer journal 5(1), 10–16 (1962)
8. Jhala, R., McMillan, K.L.: Array Abstractions from Proofs. In: CAV. pp. 193–206

(2007)
9. Jiang, D., Zhou, M.: A comparative study of insertion sorting algorithm

verification. In: 2017 IEEE 2nd Information Technology, Networking, Elec-
tronic and Automation Control Conference (ITNEC). pp. 321–325 (2017).
https://doi.org/10.1109/ITNEC.2017.8284998

10. Kovács, L., Robillard, S., Voronkov, A.: Coming to Terms with Quantified Rea-
soning. In: POPL. pp. 260–270 (2017)

11. Kovács, L., Voronkov, A.: First-Order Theorem Proving and Vampire. In: CAV.
pp. 1–35 (2013)

12. Lammich, P.: Efficient verified implementation of introsort and pdqsort. In: IJCAR.
pp. 307–323. Springer (2020)

13. Laneve, C., Montanari, U.: Axiomatizing permutation equivalence. Mathematical
Structures in Computer Science 6(3), 219–249 (1996)

14. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.
In: LPAR. pp. 348–370 (2010)

15. Nipkow, T., Blanchette, J., Eberl, M., Gómez-Londoño, A., Lammich, P., Ster-
nagel, C., Wimmer, S., Zhan, B.: Functional algorithms, verified (2021)

16. Robinson, A.J., Voronkov, A.: Handbook of automated reasoning, vol. 1. Elsevier
(2001)

17. Safari, M., Huisman, M.: A generic approach to the verification of the permutation
property of sequential and parallel swap-based sorting algorithms. In: iFM. pp.
257–275. Springer (2020)

18. Wenzel, M., Paulson, L.C., Nipkow, T.: The Isabelle Framework. In: TPHOLs. pp.
33–38 (2008)

