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Abstract: The automatic design of architectural floor plans using deep learning has been widely 
studied to assist architectural design. Traditionally, floor plans generated by deep learning have been 
limited to single floors. Recently, research has been developing the use of graph neural networks 
(GNNs), which applies deep learning to graph data to generate building volumes that consider the 
in-building spatial use. Although these studies aim to generate new building volumes, practical 
architectural design often requires the generation of floor plans within predefined building outlines, 
constrained by various legal and regulatory requirements. This study proposes a method for 
generating multi-story floor plans in a given building volume by using a graph convolutional network 
(GCN), which adapts convolutional operations to graph data representing the given building volume. 
The implemented GCN model successfully predicted, with an accuracy of 74.66%, the spatial use 
class for each node within the graph representing the building. This enables the generation of detailed 
floorplans across multiple floors. This research contributes to the design support of multi-story floor 
plans in a given building volume. Moreover, when integrated with the latest 3D generative AI 
technologies, this approach promises to advance the automatic creation of 3D building models with 
comprehensive interior designs, starting from scratch in volumes initially devoid of any interior 
information. 
 
Keywords:  Floorplan generation, 3D building layout, Graph neural network, Deep learning, 
Generative design 
 
1. INTRODUCTION 

The design of building volumes and floor plans is conducted at the early stages of 
architectural design. Therefore, it is a crucial design process that significantly influences subsequent 
detailed architectural, equipment, and structural design (Zhong et al. 2023). Automated design of 
building volumes and floor plans enables the rapid presentation of diverse design alternatives to 
design decision makers. Additionally, from the diverse automatically generated designs, the optimal 



 

 

design can be selected based on various objective functions such as livability, environmental impact, 
building operability, and structural stability, which are significant motivations for automating the 
design of building volumes and floor plans (Weber et al. 2022). 

The attempt to automate floor plan design using computers began in the early 1970s 
(Friedman 1971). Since then, there have been three main types of methods for automatic floorplan 
generation: 1) Bottom-up methods, 2) Top-down methods, and 3) Referential methods (Weber et al. 
2022). Of these, Bottom-up methods and Top-down methods are antithetical methodologies, while 
Referential methods widely refer to methods that use machine learning and deep learning, and are 
sometimes applied to Bottom-up methods and Top-down methods. 

Bottom-up methods generate floor plans by taking required space uses, such as offices and 
break rooms, as elements, connecting them, and aggregating these elements. The generated floor 
plans are evaluated based on the relationships between the rooms (Merrell et al. 2010) and 
environmental factors such as sunlight conditions (Yi and Yi 2014), thereby producing the most 
suitable floor plan for the intended objectives. 

Top-down methods are used when designing within a predefined building envelope, 
particularly when architectural shapes are strongly constrained by building regulations or regional 
treaties, or when renovating existing structures. This method subdivides the input building envelope, 
such as building volume and floorplan outline, to generate a floor plan that best meets desired 
objectives (Baušys and Pankrašovaité 2005; Rodrigues et al. 2014).  

Referential methods generate floor plans by referencing databases of past floor plans, 
similar to how architectural designers learn from past architectural works. Deep learning used for 
referential methods include models that learn image data of floor plans (Wu et al. 2019; Chaillou 
2020) and models that learn graph data (Hu et al. 2020; Nauata et al. 2021). However, deep learning 
models that learn and generate image data have difficulty generating floor plans for multiple floors. 
This is because the dataset of floorplan image used for deep learning is a set of single floorplan 
images (Weber 2022). On the other hand, deep learning methods that learn graph data, which are 
called graph neural networks (GNNs), have prior studies, Building-GNN (Zhong et al. 2023) and 
Building-GAN (Chang et al. 2022), which generate multi-story floorplans. 

Graph data refers to data consisting of a set of nodes and edges. On this graph data, GNNs 
perform tasks such as node classification, edge link prediction, and graph generation. Many types of 
data, including molecular structures, power networks, and social networks, can be described as graph 
data, and GNNs have been applied in various fields such as chemistry, pharmacology, and 
transportation (Zhou et al. 2020). Their application is also anticipated in the construction industry 
(Jia et al. 2023). 

Both Building-GNN (Zhong et al. 2023) and Building-GAN (Chang et al. 2022), represent 
building volumes with spatial use information as graph data and use GNN to generate unknown 
building volumes. This is a study applying the Referential method to the Bottom-up method. 
However, no study has been proposed to apply GNNs to the Top-down method, which generates 
multiple floor plans from predefined building volumes. 

Therefore, the objective of this study is to generate multi-story floorplans in a given 
building volume. This study proposed and implemented a method to predict the spatial use in a given 
building volume and generate floor plans for multiple floors by developing a GNN, specifically graph 
convolutional network (GCN), which extends convolutional operations to graph data (Kipf and 
Welling 2017) and predicts which spatial use a node in the graph belongs to. 

This research contributes to design support for designing floor plans that span multiple 
floors within a given building volume. In addition, the proposed method of adding floor plans as a 
starting point for interior design to a building 3D model that does not have design information in the 
building volume is expected to contribute to the generation of building 3D models with detailed 
interior design when combined with the recently developed 3D generation AI. 



 

 

 
2. RELATED WORK 
2.1  Architectural Floorplan Generation Using GNNs 

Previous studies applying deep learning to generate floorplans can be broadly classified 
into two types: methods that learn from image data and methods that use graph data as constraints. 

In the methods of generating floorplans by training image data to deep learning, it is first 
required to unify the floorplan images of the dataset to be trained, such as 128 × 128 pixels or 256 × 
256 pixels (Wu et al. 2019). This limits the scale of the floorplan to a relatively small scale. 
Furthermore, since the training images are single-floor plans, the generated floor plans are also 
restricted to being single-floor (Weber et al. 2022). 

On the other hand, the method of generating floor plans by providing graph data to deep 
learning as a constraint is to first represent rooms as nodes and connect movable rooms with edges 
to represent the relationship between rooms in a graph (bubble diagram). The floorplan is then 
generated by evaluating the generated floorplan with the ground truth floorplan while maintaining 
the constraints between rooms in the bubble diagram, and then sequentially improving the floorplan 
to make it more similar to the ground truth floorplan. The floorplans can be generated bubble diagram, 
making it easier for users to generate the desired floorplans (Hu et al. 2020; Nauata et al. 2021).  

In all these cases, there is no direct way to generate multiple-story floor plans. However, 
there are studies that use GNNs to learn the connection and arrangement of spatial uses in a 3D 
building model and generate building volumes that consider the connection and arrangement of 
spatial uses. In these studies, the generated building volume is cut horizontally, and this cut plane is 
used as a floor plan to create floor plans for multiple floors. The method proposed in this study also 
predicts the interior spatial use of a given building volume and generates a multi-story floor plan by 
cutting the building volume horizontally. 
 
2.2  Building Volume to Multi-Story Floorplans 

Common representation methods for building 3D models include voxel representation, 
point clouds, mesh representation, and neural fields (Wang et al. 2023). Of these, the representation 
method used by previous studies that apply GNNs to generate building 3D models is based on voxel 
representation.  

Building-GNN (Zhong et al. 2023) generates the overall building volume by combining 
GNN and recurrent neural network, successively adding new building volumes based on the partial 
building volume initially provided by the designer. Both the initial building volume and the 
additional building volumes contain class information about the spatial use in the building. As a 
result, the final generated building model retains this internal usage information. By taking horizontal 
cross-sections of this building volume with usage information at each floor level, it is possible to 
obtain floor plans that span multiple floors. 

Building-GAN (Chang et al. 2022) proposes a method to generate a new building volume 
by taking as input a bubble diagram of a floor plan spanning multiple floors and the designable area 
of the building. Building-GAN, like Building-GNN, generates a building volume with information 
on the building's internal spatial use, so that by obtaining a cut plane for each floor of this volume, a 
floor plan for multiple floors can be obtained. However, both Building-GNN and Building-GAN 
applied GNNs to bottom-up methods for floorplan generation, and there is no research on the 
application of GNNs to top-down methods for generating floorplans for multiple floors within a 
predefined building volume. 



 

 

 
3. PROPOSED METHOD 

This study proposes a method to automatically generate multi-story floor plans in a given 
building volume. The input is a building volume divided horizontally by reference lines and 
vertically by floor heights, and the output is multiple floor plans within the building volume. In the 
framework of this automatic floorplan generation, the main process consists of the three steps shown 
in Figure 1: Step 1. Conversion from Input Building Volume to Unclassified Voxel Graph; Step 2. 
Conversion from Unclassified Voxel Graph to Classified Voxel Graph using GNN; Step 3. 
Conversion from Classified Voxel Graph to Building Volume with Spatial Usage Class. By going 
through these three steps, the given building volume is converted into a building volume with spatial 
usage class. Multi-story floor plans are obtained by creating a sectional view of this building volume 
with classes of in-building spatial use. 
 

Figure 1. Overview of Proposed Method 
 
3.1.  Voxel Graph 

Voxel graph is a method proposed by Building-GAN to represent building volumes as a 
3D lattice graph (Chang et al. 2022). This 3D lattice graph is set up as follows. First, the voxel-
represented building volume is divided by the reference lines used for design. The original building 
volume is then represented as a set of cuboids, as shown in Figure 2 (a). A 3D lattice graph is obtained 
by taking the center points of these cuboids and connecting the lattice points with edges when the 
cuboids share a face with a neighboring cuboid. Voxel graph is a graph in which these grid points 



 

 

are nodes, and the node’s attribute information includes the node’s coordinates, the node’s class 
information (the class that represents the spatial use in the building), and the height, width, and height 
of the building voxel that a node represents. This study used the dataset of voxel graph provided by 
Chang et al. (2022), which is a dataset of 120,000 office buildings generated according to patterns 
and rules provided by professional architects. Figure 2 (b) shows a voxel graph where each node has 
either six classes information (Lobby/Corridor, Restroom, Office, Stairs, Elevator, and Mechanical). 
 

  
(a) (b) 

Figure 2. (a) Building Volume. (b) Voxel Graph. 
 
3.2.  Conversion from Input Building Volume to Unclassified Voxel Graph 
 As shown in Figure 1, Step 1 converts an architectural volume into an unclassified voxel 
graph. 
 
(1) Unclassified Voxel Graph and Classified Voxel Graph 
 In this study, a voxel graph whose nodes do not have in-building spatial use class 
information is called an unclassified voxel graph (Figure 3 (a)), and a voxel graph whose nodes have 
in-building spatial use class information is called a classified voxel graph. 
 

  
(a) (b) 

Figure 3. (a) Unclassified Voxel Graph. (b) Classified Voxel Graph. 
 
(2) Building Volume with Any Representation Methods to Unclassified Voxel Graph 



 

 

In the method proposed in this study, a given building volume refers to the volume and 
shape of the space occupied by a building. The representation method of the building volume is not 
specified. The method of representation can be voxel representation, mesh representation of the 
volume surface, volume rendering, or any other arbitrary method. When a building volume created 
using any representation method is divided by the design baseline, the building volume is divided 
into a set of cuboids, regardless of the method of representation. By obtaining nodes at the center 
points of these cuboids, an unclassified voxel graph can be obtained. 
 
3.3.  Conversion from Unclassified Voxel Graph to Classified Voxel Graph using GNN 
 In Step 2, the unclassified voxel graph is converted to a classified voxel graph using GNN. 
Step 2 is a process to predict which class of spatial use a node without class information in the 
unclassified voxel graph belongs to and is a node class classification problem in GNN. 
 
(1) Dataset 

For GNN to learn the voxel graph as a node classification problem, this study created a 
voxel graph dataset with the configuration shown in Table 1. The number of voxel graphs used for 
training data is 10,000. The number of voxel graphs used for validation data and test data is both 
1,000. A single voxel graph has three types of data: 1) adjacency matrix, 2) node features, and 3) 
node’s ground truth class label. 
 

 
For the node features, the following two cases were tested: 1) the X, Y, and Z coordinates 

were used as node features (Coordinate Feature); 2) some nodes were given the ground truth class 
label (Signal Feature), which was used as node features. Each of these cases can be interpreted in the 
voxel graph, as shown in Figure 4. 
 

Table 1. Structure of Voxel Graph Dataset 
The number of training data 10,000 

The number of validation data 1,000 
The number of test data 1,000 

Data in one voxel graph 
Adjacency matrix 

Node feature (Coordinate or Signal) 
Ground truth class label for each node 



 

 

  
(a) (b) 

Figure 4. (a) Coordinate Feature. 
(b) Signal Feature. 5 nodes for each class are given ground truth labels in this case (5 signals). 

 
When GNN is trained with X, Y, and Z coordinates as node features, the GNN will predict 

the class of in-building spatial use (e.g., office, facility room, etc.) from the given building volume 
alone. When some of the nodes are given the ground truth class label, and GNN is trained, the GNN 
will classify the remaining nodes that were not given the ground truth label. This is equivalent to the 
designer specifying the spatial use of a part of the building volume and using it as a constraint, and 
the GNN automatically designs the rest of the in-building spatial use. 

 
(2) Graph Neural Network Architecture 

The basic idea of GNNs is to update the feature vector of each node with the feature vectors 
of its neighboring nodes, thereby enriching the node's features to features that reflect the structure of 
the graph. Equation (1) is the update mechanism for a typical GNNs. 

 

𝐡௜ =  ෍ 𝑥௝𝑊்

௝ ∈𝒩೔

 (1) 

 
Where 𝑥௝ is the feature vector for node 𝑗. 𝐡௜ is the updated vector for node 𝑖. 𝑊 is the weight 
vector. 𝒩௜   is the set of node 𝑖 and its neighboring nodes. 
 This study used GCN (Kipf and Welling 2017) to classify nodes. General GNN models 
have the problem that nodes with large degree (the degree of a node is the number of edges that 
incident to it) have extremely large influence compared to nodes with small degree due to the 
difference in the degree of the nodes. As shown in Equation (2), GCN normalizes the imbalance that 
general GNNs suffer from by dividing the updated features of a node by degrees when updating the 
features of the node. 
 

𝐡௜  =  
1

deg(𝑖)
෍ 𝑥௝𝑊்

௝ ∈𝒩೔

 (2) 

 
Where deg(𝑖) is the degree of node 𝑖.  
 The GNN that learns the voxel graph dataset and performs node class classification has the 
configuration shown in Figure 5: Node features of the voxel graph are embedded, passed through the 
4-layer GCN, and connected to all coupling layers to perform classification for each node. 



 

 

 

Figure 5. Structure of Graph Neural Network for Voxel Graph Dataset 
 
3.4.  Conversion from Classified Voxel Graph to Building Volume with Spatial Usage Class 

In Step 3 in Figure 1, the classified voxel graph obtained by Step 2 is converted into a 
building volume with class information on in-building spatial use. In Step 3, the classified voxel 
graph can be converted into a building volume by voxelizing each node of the classified voxel graph 
according to the design baseline, centered at the node's coordinates, in the reverse of Step 1. Finally, 
the building volume with in-building spatial use is cut horizontally according to the reference lines 
to output floor plans for each floor. 
 
4. RESULTS 
4.1. Implementation Details 

The GNN used in this study was implemented with Pytorch and Deep Graph Library 
(Wang et al. 2019), which provides a Python package necessary for GNN implementation. The 
Optimizer is AdamW, the initial value of the learning rate is 5 × 10-5, and if the loss function 
decreases for 25 epochs, the learning rate is halved, and when the learning rate falls below 1 × 10-6, 
the GNN training is completed, and the node classification accuracy at this time is defined as 
classification accuracy of the GNN implemented in this study. 

 
4.2. Definition of Node Classification Accuracy 
 The classification of voxel graph node by GNN was performed using 10,000 voxel graphs 
as training data, with coordinate feature and signal feature. The overall node classification accuracy 
is the average accuracy for each class. The accuracy for one class is obtained by dividing the number 
of nodes whose ground truth label was correctly estimated by GNN by the number of nodes 
belonging to that class. The node classification accuracy for each class is expressed in Equation (3), 
and the overall node classification accuracy is expressed in Equation (4). 
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑜𝑟 𝐶𝑙𝑎𝑠𝑠 𝑘 (𝐴௞) =  
𝑁௉௥௘ௗ (௞)

𝑁ீ் (௞)
 (3) 

 
𝑁ீ் (௞) is the number of nodes whose ground truth label is class 𝑘. 𝑁௉௥௘ௗ (௞) is the number of nodes 

that is predicted to belong to class 𝑘 by GNN. 
 



 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
∑ 𝐴௞

௡௕೎೗ೌೞೞ೐ೞ
௞ୀଵ

𝑛𝑏௖௟௔௦௦௘௦

 (4) 

 
4.3. Node Classification Accuracy 

The relationship between node classification accuracy and the epochs on the training data 
is illustrated in Figure 6. The "5 signals" scenario represents the case where five nodes per class are 
randomly selected in advance, and their ground-truth classes are provided as node features. Similarly, 
the "10 signals" scenario corresponds to the case where ten nodes per class are randomly selected, 
with their ground-truth classes used as node features. The node classification accuracy for both the 
training and test datasets is summarized in Table 2. For the test dataset, when the node features were 
XYZ coordinates, the accuracy was 22.8%. In the "5 signals" scenario, the accuracy increased to 
56.67%, and in the "10 signals" scenario, it further improved to 74.66%. 

 

 
Figure 6. The Relationship between Node Classification Accuracy and the Epochs on the Training 

Data 
 

Table 2. Node Classification Accuracy on Test Data and Training Data 
 XYZ Coordinate 5 Signals 10 Signals 

Test Data 22.81% 56.67% 74.66% 
Training Data 22.35% 56.37% 76.01% 

 
The multi-story floor plans are directly obtained from the building volume that is 

voxelized from the classified voxel graph by Step 3 in Figure 1. Therefore, this GNN node 
classification accuracy, which indicates the accuracy of Step 2 of generating the classified voxel 
graph, is an indicator of how well the floorplan generated predicts the ground truth floorplan of the 
input building volume. 
 



 

 

4.4. Output Floorplans 
Figure 7 shows the results of floorplan generation by integrating the GNN trained by 5 

signals and 10 signals, respectively, into the proposed method. The input building volume in Figure 
7 is an example of a building volume randomly extracted from the test data of Voxel Graph Dataset. 
 

 Ground Truth 
Generated Floorplans 

with 5 Signals 
Generated Floorplans 

with 10 Signals 

Input Building 
Volume 

 

  
Node Classification 
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Figure 7. Result of Generated Floorplans (continued) 
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Figure 7. Result of Generated Floorplans (continued) 
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Figure 7. Result of Generated Floorplans 

 
5. DISCUSSION 

Comparing the generated floor plans with the Ground Truth floor plans, the generated first 
floor plans do not replicate the Ground Truth floor plans as well as the floor plans on the second and 
higher floors. This can be attributed to the fact that the Ground Truth floor plans differ significantly 
between the first floor and the second floor and above. This suggests that GNN was able to learn the 
features of similar floor plans on the second and higher floors of Ground Truth but was unable to 
learn the rapidly changing floor plan on the first floor. In addition, when looking at the floor plans 
generated when five signal features were given, there is a horizontal series of green areas indicating 
elevators. This may be improved by adding coordinate features to the five signal features and training 
the GNN. In addition, the voxel graph dataset used in this study was designed for office buildings, 
so the generation of floorplans by this study is limited to office buildings. Different datasets should 
be prepared for the design of hotels, high-rise residential buildings, and commercial facilities. 
 
6. CONCLUSION 

This study proposed a novel method to generate multi-story floor plans in a given building 
volume by using GCN on voxel graph, which represents building volumes with spatial use 
information as graph data. The GNN implemented in this study predicts the remaining volume’s 
spatial uses from a small number of spatial uses given as initial design conditions. By specifying 5 
nodes per class for each spatial use in the voxel graph, the remaining nodes are classified with 



 

 

56.67% accuracy. If 10 nodes per class for each spatial use are specified within the voxel graph, the 
remaining nodes are classified with 74.66% accuracy. 

The contributions of this study are as follows. 

 A novel method was proposed to generate multi-story floor plans within a given building 
volume. 

 It has been demonstrated that a GNN can be implemented to predict the spatial use of the 
remaining building volume by specifying the spatial use for a part of the building volume. 

The proposed method generates a floor plan, serving as the starting point for subsequent interior 
design within a 3D building model that initially contains no internal details. Future work will aim to 
integrate this research with 3D generative AI that creates building volumes, potentially enabling the 
generation of 3D building models with detailed interior designs. 
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