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Abstract—Non-uniform memory access (NUMA) architectures
feature asymmetrical memory access latencies on different CPU
nodes. Hybrid memory systems composed of non-volatile memory
(NVM) and DRAM further diversify memory access latencies
due to the relatively large performance gap between NVM
and DRAM. Traditional NUMA memory management policies
fail to manage hybrid memories effectively and may even hurt
application performance. In this paper, we present HiNUMA, a
new NUMA abstraction for memory allocation and migration in
hybrid memory systems. HiNUMA advocates NUMA topology-
aware hybrid memory allocation policies for the initial data
placement. HiNUMA also proposes a new NUMA balancing
mechanism called HANB for memory migration at runtime.
HANB considers both data access frequency and memory band-
width utilization to reduce the cost of memory accesses in hybrid
memory systems. We evaluate the performance of HiNUMA
with several typical workloads. Experimental results show that
HiNUMA can effectively utilize hybrid memories, and deliver
much higher application performance than conventional NUMA
memory management policies and other state-of-the-art work.

Index Terms—Hybrid Memory, NUMA, Data Placement, Data
Migration

I. INTRODUCTION

The advent of NVM technologies has attracted increasing

research interest in hybrid memory systems. A typical use

of NVM is to organize it as an extension of DRAM in a

single (flat) address space [1]. For example, Intel Optane DC

Persistent Memory [2] provides an App Direct Mode to use

both NVM and DRAM as main memory [3]. Due to the rela-

tively large performance gap between NVM and DRAM [3],

[4], data placement and page migration policies [5], [6], [7],

[8], [9] have been widely studied to improve the performance

of hybrid memory systems in recent years. Those studies all

follow a basic principle that frequently-accessed (hot) data

should be placed on fast memory (i.e., DRAM) to reduce the

total memory access delay. Data placement policies usually

rely on offline profiling techniques to characterize applica-

tions’ memory access patterns, which are used to guide the

initial memory allocation at the object/block level. In contrast,

page migration policies usually exploit online page access

monitoring techniques to predict memory behaviors in the
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future, and then migrate hot data from NVM to DRAM.

However, online memory monitoring at the software layer

can cause significant performance overhead, while hardware-

assistant approaches usually require disruptive modifications

of current hardware architectures.

Modern multicore systems are usually based on Non-
Uniform Memory Access (NUMA) architectures. A NUMA

system is composed of multiple CPU nodes. Each CPU node

has memory attached to it, and accesses its local memory

much faster than other CPU’s memory. For the App Direct
Mode of Intel Optane DC Persistent Memory, the OS kernel

manages NVM and DRAM in different NUMA nodes [3].

Because NVM is slower than DRAM, especially for write

operations [3], [4], hybrid memories would further intensify

the feature of non-uniform memory access latencies in NUMA

systems. The traditional NUMA-aware memory allocation and

load balancing strategies focus on reducing the cost of inter-

node NUMA communication and improving memory access

locality. They are no long effective in hybrid memory systems

because the access latency of local NVM may be even higher

than that of remote DRAM. The difference of access latency

between DRAM and NVM becomes a more important factor

than the cost of inter-node NUMA communication. The tra-

ditional NUMA policy may even slow down the execution of

applications in hybrid memory environments (see more details

in Section II). In the following, we summarize the challenges

of utilizing hybrid memories in NUMA architectures.

First, the diverse hybrid memory access latencies in NUMA
systems make the initial data placement become a compli-
cated problem. The NUMA programming library libnuma
offers some sample data placement policies, such as local

allocation and page interleaving. The local allocation policy

only allocates memory from the node where the application

process is executing. If the local memory is used up, it

cannot use memory resource on remote nodes. This policy

can achieve good performance because the local memory has

the low access latency without inter-node communications, but

cannot utilize memory resource on other NUMA nodes even

there is sufficient memory in the machine. In contrast, the

page interleaving policy allocates memory pages interleaved

on all NUMA nodes in a round-robin manner. Although

the memory access latency on the remote NUMA nodes

becomes higher than the local accesses, it can fully utilize the



memory bandwidth of multiple NUMA nodes and balance the

memory load. However, due to different performance features

(latency, bandwidth) of DRAM and NVM, data distribution on

DRAM and NVM is usually not the best placement using the

traditional NUMA policies. For example, frequently-accessed

(hot) data may be placed on a remote NUMA node attached to

NVM DIMMs. Thus, data placement policies should take into

account both performance characteristics of hybrid memories

and inter-node communication cost.

Second, the default NUMA memory migration policy is
not effective in hybrid memory system. Applications generally

perform best when the task accesses memory on the local

NUMA node. The automatic NUMA balancing (ANB) strategy

always tries to move application data to the memory node

closer to the tasks (threads or processes). However, in hybrid

memory systems, the access latency of NVM on a local node

may be even higher than that of DRAM on remote nodes.

Without considering the inherent performance gap between

DRAM and NVM, ANB may falsely migrate application

data to a place that is even slower than its prior residence.

Moreover, ANB would migrate a remote page to local memory

once it is accessed twice, and thus may lead to unnecessary

page migrations and a waste of memory bandwidth. The

traditional ANB does not consider the memory heterogeneity

and data access frequency, and thus is not effective in hybrid

memory systems and may even hurt application performance.

In this paper, we present HiNUMA, an extension of tradi-

tional NUMA mechanism for hybrid memory architectures.

HiNUMA provides new memory access interfaces to distin-

guish NVM from DRAM in different NUMA groups. We

propose two NUMA topology-ware hybrid memory allocation

strategies, i.e., Low-latency and Hi-bandwidth for latency-

sensitive applications and bandwidth-sensitive applications,

respectively. We also propose a new NUMA balancing mech-

anism called HANB for hybrid memory systems. It takes

both data hotness and inter-node bandwidth utilization into

account for page migrations. The proposed mechanisms are

implemented in the Operating System (OS) layer, without

modifications of hardware and applications.

We evaluate the performance of HiNUMA with several

representative workloads. Experimental results show that

HiNUMA can effectively utilize hybrid memories. HiNUMA
data placement policies can improve application performance

by up to 38.2% compared to the vanilla NUMA-interleave

policy, and by up to 20% compared to the state-of-the-art

Bandwidth-aware Memory Placement and Migration (BMPM)

Policy [10]. HiNUMA page migration policies can further

improve application performance by up to 33.2% and 18.9%

compared to BMPM [10] and HeteroVisor [11], respectively.

The remainder of this paper is organized as follows. Sec-

tion II introduces background and motivations of this paper.

Section III describes the detailed design and implementation

of HiNUMA. Section IV presents the experimental results.

We discuss the related work in Section V and conclude in

Section VI.

II. BACKGROUND AND MOTIVATION

We first briefly introduce the background, and then present

our experimental observations that motivate this work.

A. Hybrid Memory Emulation

Generally, NVM features higher memory density, much

lower static power consumption than DRAM, at the expense of

higher access latency and lower memory bandwidth. Currently,

Intel Optane DC Persistent Memory is the only commercially

available NVM DIMMs [2]. Its read latency is about 170-

320ns, about 1.5-3 times higher than that of DRAM. Its read

and write bandwidths are about 2.4–7.6GB/s and 0.5–2.3GB/s,

respectively [3], [4]. Particularly, the bandwidth of random

write is about 30 times lower than that of DRAM. Since

the Optane DC persistent memory is not available before this

work, we evaluate application performance in hybrid memory

systems through an emulation approach. We use HME [12],

[13], a lightweight hybrid memory emulator to emulate the

performance characteristics of NVM by using DRAM.

B. Motivation

At first, we analyze the problems of using traditional

NUMA management mechanisms in hybrid memory systems.

The most interesting thing is the difference between the

inherent memory access latency and the NUMA inter-node

interconnection cost. We use Intel Memory Latency Checker
(MLC) [14] to measure the NUMA interconnection cost in

Intel Xeon servers. We find that the NUMA interconnection

cost typically ranges from 53ns to 89ns. According to the

NVM latencies described in Section II-A, the difference of

access latency between NVM and DRAM is much larger than

the cost of NUMA interconnection. The memory heterogeneity

makes the data placement more complicate in NUMA systems.

We conduct experiments to verify the effectiveness of

vanilla NUMA data placement policies in hybrid memory

environments. HME is able to emulate the performance char-

acteristics of many NVMs, such as STT-RAM, PCM, and

ReRAM. Without loss of generality, we set the NVM read

and write latencies to be twice and eight times of the DRAM,

respectively, and limit the NVM bandwidth to be one half of

the DRAM. The NUMA system contains only two memory

nodes in which one is used to emulate the NVM node. There

are generally four kinds of memories in NUMA systems: local

DRAM, local NVM, remote DRAM, and remote NVM.

We evaluate the traditional NUMA policies using convolu-
tion and YCSB [15], two typical and popular multi-threaded

applications for machine learning and big data processing, re-

spectively. The convolution algorithm shows uniform memory

accesses on all data, while YCSB shows very different memory

access patterns in terms of access frequency (hotness).

We compare the following NUMA memory management

policies: (1) Page interleaving (NUMA interleaving policy),

pages are interleaved evenly on DRAM and NVM, i.e., NVM-

to-DRAM ratio is 1:1. (2) NVM-to-DRAM ratio (1:4), data

is placed on NVM and DRAM with a ratio of 1 to 4. More

data placed on DRAM implies higher data access performance.



Fig. 1: The execution time of benchmarks using different placement
policies, all normalized to the DRAM-only allocation policy

Fig. 2: The performance vs. bandwidth utilization of YCSB

Previous work [16] advocates to allocate DRAM preferentially,

and migrate cold data to NVM only when DRAM is used

up. We conservatively and tentatively set the NVM-to-DRAM

ratio as 1:4. We also evaluate the policies (1) and (2) with

automatic NUMA balancing (ANB) policy enabled. Figure 1

shows the experimental results, all normalized to a DRAM-

only policy, in which all data are placed on DRAM nodes.

Observation 1: The NUMA page interleaving policy usu-
ally achieves sub-optimal application performance in hybrid
memory systems. The page interleaving policy places data on

NVM and DRAM evenly to balance the memory bandwidth

of different nodes. However, in hybrid memory systems, this

policy may hurt application performance. Generally, multi-

threaded applications run much faster when more data is

placed on DRAM. The policy “NVM-to-DRAM ratio (1:4)”

leads to much less execution time than the page interleaving

policy for both convolution and YCSB. Moreover, due to

the difference of memory bandwidth between DRAM and

NVM, the page interleaving policy is also sub-optimal from

the perspective of memory bandwidth balancing [10].

Observation 2: The ANB policy is not effective for hybrid
memory systems, and may even cause application performance
degradation. ANB is a dynamic data placement strategy to

improve the data access locality at runtime. The intent of

ANB is to migrate application data to the memory node that

the processes/threads are scheduled. However, Figure 1 shows

that ANB even slows down the execution of applications. For

the case of “NVM-to-DRAM ratio (1:4)”, ANB significantly

increases the execute time of convolution by a factor of

2. Because the local NVM is even slower than the remote

DRAM, ANB falsely migrates a portion of recently-accessed

application data from the DRAM node to the NVM node, and

thus slows down the execution of convolution. As ANB usually

changes data distribution in hybrid memory systems, it makes

the initial data placement strategy useless at runtime.

Observation 3: The ANB policy can not fully utilize DRAM
and NVM bandwidth. Figure 2 shows the performance and

bandwidth utilization of YCSB using ANB and hot page

migration schemes in five stages evenly divided by execution

time. We use the “NVM-to-DRAM ratio (1:4)” as the initial

data placement policy. The performance at different stages is

also normalized to this static data placement policy. We find

that ANB migrates a lot of data from high-bandwidth DRAM

to low-bandwidth NVM (costly), and thus can not effectively

utilize the high bandwidth of DRAM. The traditional ANB

moves pages across different memory nodes based on data

access recency. However, in hybrid memory systems, data

migration between NVM and DRAM becomes more costly.

The on-demand page migrations are usually unnecessary and

waste memory bandwidth. A simple threshold-based hot page

migration policy even achieves much higher performance than

ANB. We also find that the hot page migration policy improves

memory bandwidth utilization at the beginning of migration,

and then the bandwidth utilization declines slowly. The reason

is that the threshold-based hot page migration policy does

not take memory bandwidth utilization into account. The data

layout in the hybrid memory system can not maximize the

bandwidth utilization of both DRAM and NVM.

Observation 4: Traditional task migration strategies for
NUMA systems could not achieve the best performance in
hybrid memory systems. To improve data locality in NUMA

systems, a common approach is to move tasks to the data

instead of moving data to the tasks. This approach is more

efficient if a large amount of data should be moved. Because

the NUMA intra-node communication cost is the major per-

formance bottleneck in homogeneous memory systems, the

task migration strategies can mitigate the overhead of data

movement. However, in a hybrid memory environment, the

difference of access latency between DRAM and NVM has a

much larger impact on application performance than the inter-

node communication cost of NUMA. Although task migration

strategies can increase data locality, they increase a risk of

accessing local yet slower NVM. Because accessing remote

DRAM is still much faster than accessing local NVM, task

migration strategies are no longer effective in hybrid memory

architectures. The key problem of those strategies is that they

do not change data distribution in hybrid memory systems.

Overall, task migration strategies are not effective in hybrid

memory architectures yet, and we should still rely on data

migration to achieve higher memory access performance.

In summary, traditional NUMA memory allocation and

ANB mechanisms are not yet effective in hybrid memory

systems and may even hurt application performance. The

above observations motivate us to develop new NUMA data

placement mechanisms for hybrid memory systems.

III. DESIGN AND IMPLEMENTATION

In this Section, we present the implementation details of

HiNUMA.

A. Physical Memory Abstraction

Figure 3 shows the hybrid memory architecture of

HiNUMA. Linux kernel manages NUMA physical memory

in several memory nodes, and each node comprises multiple
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Fig. 3: Hybrid memory architecture of HiNUMA

DIMMs. To simplify hybrid memory management in Linux

kernel, each NUMA node is composed of only one kind of

memory media. We distinguish NVM nodes from DRAM

nodes with an identifier, and cluster NVM and DRAM nodes in

two NUMA memory groups separately. We use a data structure

to maintain NUMA memory groups and the corresponding

performance characteristics (bandwidth, latency, etc.). In this

way, Linux kernel can manage different memory media at the

granularity of NUMA nodes.

As the distance between different NUMA nodes also has

non-trivial impact on remote memory access latencies, we

measure NUMA inter-node communication cost through In-

tel Memory Latency Checker (MLC) [14]. We construct a

weighted directed graph to present the communication cost be-

tween NUMA nodes. We record the NUMA topology to guide

the memory allocation and migration. This NUMA topology-

aware data placement can also reduce the communication cost

across different NUMA nodes.

B. Memory Allocation Policies

Like the traditional NUMA, the memory allocation strategy

in HiNUMA also aims to improve the performance of multi-

threaded or multi-process applications in NUMA architectures.

Because the OS kernel is usually unaware of the applica-

tion semantic knowledge, it is hard to determine the initial

data placement in hybrid memory systems for applications.

HiNUMA provides two memory allocation policies as alter-

natives for programmers. Specifically, a Low-latency policy

is designed to minimize the average memory access latency

for latency-sensitive applications, while a Hi-bandwidth policy

is offered to maximize both DRAM and NVM bandwidth

utilization for bandwidth-sensitive applications. We provide

several new interfaces in libnuma to perform our HiNUMA
policies easily. For example, the system administrators can di-

rectly use ”numactl – Low-latency/Hi-bandwith” to specify the

memory allocation strategies for running latency-intensive and

bandwidth-intensive applications, respectively. The application

programmers do not need to modify their source codes at all.

At first, we present our Low-latency policy for memory

latency-sensitive multi-threaded applications. Their execution

times are mainly determined by transferring data from the

memory subsystem to CPUs [7], [10]. Here, we consider a

common case that a multi-threaded application’s execution

time is determined by the accumulated access delay on hybrid

memories, and the CPU time consumed by all threads are

equal. As DRAM and NVM nodes use separate memory

controllers, the basic principle of Low-latency policy is to

balance the total access delay on DRAM (tDRAM ) and NVM

(tNVM ), so that the application execution time is minimized.

That is

tNVM = tDRAM (1)

Let NDRAM and NNVM denote the total number of ac-

cesses to DRAM and NVM, respectively, TDRAM denote the

DRAM read/write latency, TNVMr
and TNVMw

denote the

asymmetric NVM read and write latencies, respectively. We

assume that the portions of read and write operations on NVM

are p and 1−p, respectively. We assume the number of pages

placed on NVM and DRAM nodes are nNVM and nDRAM ,

respectively. The total access delay on DRAM becomes

tDRAM = NDRAM ∗ TDRAM (2)

The total access delay on NVM becomes

tNVM = NNVM (p ∗ TNVMr
+ (1− p) ∗ TNVMw

) (3)

Although some advanced technologies such as offline/online

memory profiling can be used to analyze applications’ memory

access behaviors, in this paper, we assume OSes have no

such priori knowledge for the initial memory allocation, and a

better data placement mainly relies on dynamic page migration

at runtime. As a result, we assume the memory accesses

are uniformly distributed in all NVM and DRAM pages.

According to Equation 1, 2, 3, we have the optimal NVM-

to-DRAM ratio (Ropt) to place data on NVM and DRAM

nodes.

Ropt =
nNVM

nDRAM
=

TDRAM

p ∗ TNVMr
+ (1− p) ∗ TNVMw

(4)

Second, we present the Hi-bandwidth policy designed for

memory bandwidth-sensitive applications. Similar to the Low-
latency policy, Hi-bandwidth aims to balance the total time

spent in transferring data from DRAM (tDRAM ) and NVM

(tNVM ) nodes to CPUs, so that the total application execution

time is minimized. Equation 1 still works in this case. We

assume that BDRAM and BNVM are bandwidths of DRAM

and NVM, respectively. We can figure out the optimal NVM-

to-DRAM ratio (Ropt) that data is placed on NVM and DRAM

nodes using Equation 5.

Ropt =
nNVM

nDRAM
=

BNVM

BDRAM
(5)

In HiNUMA, the memory allocation can be divided into

three steps. First, we choose several NUMA nodes from

two NUMA groups according to the NVM-to-DRAM ratio

calculated by HiNUMA’s memory allocation policies. When

the memory pages allocated from the DRAM group exceed a

given threshold, the required memory page is allocated from

the NVM group. Second, we rely on the NUMA topology to

select the target NUMA nodes. We choose NUMA nodes with

adequate free memory and the minimum NUMA interconnect

cost as the target memory nodes. Finally, we allocate memory

pages on DRAM nodes and NVM nodes according to the



NVM-to-DRAM ratio. When there is no free DRAM in the

DRAM group, a NVM node is chosen for memory allocation.

If all NUMA nodes have no free memory, we swap data in

the local memory node to external storage to reclaim memory.

C. Page Access Counting

Hybrid memory systems often relies on page migration

technologies to achieve better data access performance. To

identify the hot data in NVM nodes, it is essential to monitor

memory accesses at the page granularity. However, current

x86 architectures do not provide hardware support for memory

access counting. We develop a lightweight software approach

to page access counting by using some reserved bits in page
table entries (PTEs). To track memory references, we use

BadgerTrap [17], a kernel extension to intercept TLB misses.

Upon a page access, we mark (poison) its PTE by setting

a reserved bit (the 51st bit), and then flush the PTE from

the TLB. The consequent access to this page would trigger a

TLB miss and a hardware page table walk. The poisoned PTE

causes a protection fault which is intercepted by BadgerTrap.

The fault handler adds one to the page’s access counts, and

then reset the reserved bit. In this way, we count BadgerTrap

faults to estimate the number of page accesses for each page.

However, the selection of hot pages is still time-consuming.

Previous work usually uses sorting [11] or threshold-

based [16] schemes to classify pages as hot or cold. We shrink

the scope of hot pages lookup through a sampling approach.

As many applications exhibit good temporal/spatial locality

of memory references, we use a multi-level queue as a buffer

to record TLB misses intercepted by BadgerTrap. Each entry

in the queue contains the index of a physical page and its

access counts. We maintain the buffer with a pseudo Least
Recently Used (LRU) algorithm. This buffer is able to record

the access counts of most recently used pages. We periodically

sort the pages in the buffer in ascending order of access counts

to identify the hot pages, without sorting the whole physical

memory pages. This approach can significantly reduce the cost

of hot page identification by limiting the lookup scope within

a LRU list.

Generally, a larger buffer can increase the accuracy of

hot page identification, at the expense of more time spent

in sorting. The length of queue can be determined by the

maximum performance degradation specified by the users. We

assume that the acceptable performance penalty due to hot

page identification is X% at most, the total number of pages

is N , the length of queue is L, and the average time spent in

sorting and traversing per page is tp. We deduce that L should

not larger than X
100tp

∗N .

Due to the impact of on-chip cache filtering, the number

of TLB misses is not exactly equal to the number of page

accesses. Our software-based page access counting mechanism

actually utilizes the TLB misses as a proxy of LLC misses

to estimate the number of page accesses [16]. Although this

approach is not aware of how many accesses to a page are

cache hits or misses, there exists a correlation between LLC

miss rate and TLB miss rate. If the LLC miss rate is low,

the number of TLB misses tracked by BadgerTrap is usually

larger than the number of actual memory accesses. In contrast,

a high LLC miss rate implies that the number of TLB misses

tracked by BadgerTrap approximates to the number of actual

memory accesses.
In order to calibrate the estimation of LLC misses and

eliminate the impact on hot page detection, we adjust the

sampling interval of hot page detection according to the

change of LLC miss rate, as shown in Equation 6. When the

LLC miss rate decreases, we increase the sampling interval to

accumulate more accesses to the hot pages, and thus reduce

the impact of cache filtering on hot page tracking. When the

LLC miss rate becomes high, we reduce the sampling interval

to detect the hot page more quickly.

ΔLLCMiss =
LLCMissi − LLCMissi−1

LLCMissi−1

Intervali = Intervali−1 × (1−ΔLLCMiss)

(6)

D. Hybrid Memory-aware Automatic NUMA Balancing
In this section, we present hybrid memory-aware automatic

NUMA balancing called HANB. Because the HiNUMA mem-

ory allocation strategies have no knowledge about the data

hotness to direct data placement, and thus may not fully utilize

the memory bandwidth of both DRAM nodes and NVM nodes

at runtime. The goal of HANB is to further optimize data

placement based on page migration during the execution of

programs. We extend the traditional ANB to support topology-

aware page migration within the same NUMA group, and

hotness-aware page migration across different NUMA groups.
We implement HANB strategies by modifying the handler

of NUMA hint page faults. When a page is migrated, we first

check whether the page is moved within the same NUMA

group or across different NUMA groups according to the

page’s physical address and the address mapping table of

NUMA groups, and then choose the page migration policies.

Upon a page migration, all read/write operations on the page

are forbidden, and TLB entries corresponding to the page are

invalidated. We exploit a copy-on-write method to migrate the

memory page, and finally update the physical address in the

page’s PTE.
For page migration within the same NUMA group, the

traditional ANB migrates data to the memory node where

the processes/threads are currently scheduled in an on-demand

manner. It is still effective for improving memory affinity.

However, it does not consider the NUMA topology for intra-

node data movement. We thus propose a NUMA topology-

aware data migration scheme to reduce the communication

overhead between different NUMA nodes. If the tasks’ local

memory node is under high memory pressure, we choose the

closest memory node as the destination for page migration.

If all NUMA nodes have no free page available, we reclaim

memory in the local node to serve the upcoming memory

requests. Those schemes are based on the NUMA topology

stored in each NUMA group.
For page migration across NUMA groups, we further con-

sider data hotness because the performance gap between NVM



and DRAM nodes becomes much larger than the inherent

asymmetry of NUMA. As the local NVM node is even

slower than the remote DRAM node, we need to migrate

cold pages to NVM nodes, and migrate hot pages to DRAM

nodes. Traditional page migration methods usually exchange

roughly equal numbers of cold and hot pages between DRAM

and NVM. They have not considered the memory bandwidth

utilization. Thus, we propose asymmetrical page migration

to take into account both memory latencies and bandwidth

utilization. We use Intel VTune Performance Analyzer, Per-
formance Tuning Utility (PTU) and Event-Based Sampling
(EBS) to measure application bandwidth usage [18]. We use

Equation 7 to evaluate the difference of memory bandwidth

utilization between two sequential intervals.

ΔBandwidth =
Bandwidthi −Bandwidthi−1

Bandwidthi−1
(7)

To balance the bandwidth utilization between DRAM and

NVM nodes, when we migrate a hot NVM page to DRAM

nodes, N cold DRAM pages are migrated to NVM nodes at

the same time. We use Equation 8 to determine the ratio (N )

of DRAM pages to NVM pages. If ΔBandwidth > 0, we

gradually increase the ratio N so that more cold DRAM pages

are migrated to NVM nodes. Otherwise, less DRAM pages

are migrated to NVM nodes. With this simple yet effective

approach, the memory bandwidth utilization would be finally

maximized with trivial fluctuations, and the value of N also

becomes stable.

Ni = Ni−1 + �ΔBandwidth ∗Ni−1� (8)

IV. EVALUATION

In this section, we evaluate HiNUMA page placement and

migration strategies separately. We also compare HiNUMA
with the state-of-the-art work [10] which we call BMPM, and

HeteroVisor [11] which is implemented in a non-virtualized

environment.

A. Experimental Setup

We use HME [13], [12] to emulate hybrid DRAM/NVM

on NUMA-based servers, which are equipped with two-socket

octa-core Intel Xeon E5-2650 2.0 GHz processors and 64 GB

DRAM. We use 32 GB DRAM on one socket to emulate the

NVM node. We set the NVM read and write latencies to be

twice and eight times of the DRAM, respectively, and limit

the NVM bandwidth to be one half of the DRAM [4], [3].

These settings are very like the performance characteristics of

commercial Intel Optane DC DIMMs. The servers run CentOS

7 with a modified kernel 3.11.0 to support HiNUMA. We use

Intel PMU tools to count memory accesses and bandwidth

utilization.

We evaluate twelve multi-threaded workloads selected

from PARSEC [19], SPLASH [20], BigDataBench [21], and

YCSB [15]. Canneal, FFT, kmeans, ocean cp, ocean ncp,

streamcluster and wordcount are memory bandwidth-sensitive

workloads. Blackscholes, facesim, freqmine, raytrace, and

swaptions are memory latency-sensitive workloads. We also

evaluate the performance of HiNUMA using two key-value

stores cassandra and redis. We use YCSB [22], which is a key-

value store-based benchmark that mimics data access in web

applications. Table I shows the configurations of six YCSB

workloads in our experiments. Each workload performs 10K

K-V operations on 50M items of 1 KB size.

TABLE I: YCSB Workload Configuration

Pattern Read Update Scan Insert R&U

a 50% 50% - - -

b 95% 5% - - -

c 100% - - - -

d 95% - - 5% -

e - - 95% 5% -

f 50% - - - 50%

We use the traditional NUMA placement and balancing poli-

cies as a baseline. We also compare HiNUMA with the state-

of-the-art data placement and migration schemes BMPM [10]

and HeteroVisor [11].

B. Experimental Results

Figure 4 shows the performance of workloads using differ-

ent data placement policies in the hybrid memory system, all

normalized to the baseline NUMA-local. The goal of NUMA-

interleave is to balance memory bandwidth utilization among

multiple memory nodes. However, it does not consider the

difference of bandwidth between DRAM and NVM nodes, and

thus can not fully utilize the DRAM bandwidth. BMBP [10]

uses a memory bandwidth-aware page placement scheme, and

achieves 22.9% performance improvement compared to the

traditional NUMA policies for memory bandwidth-sensitive

applications (from canneal to wordcount). Our Hi-bandwidth
policy considers both NUMA topology and the asymmetrical

performance of hybrid memories for data placement, and

thus improves application performance by up to 36% and

19.4% compared to NUMA-interleave and BMBP, respec-

tively. BMBP has very little impact on memory latency-

sensitive applications (from Blackscholes to swaptions). In

contrast, the Low-latency policy is specifically designed for

latency-sensitive applications, and it is especially effective for

those workloads. It reduces the execution time of latency-

sensitive applications by 24.2% compared to BMPM. Overall,

our HiNUMA policies can improve application performance

by up to 38.2% and 20% compared to NUMA-interleave and

BMPM, respectively.

We also evaluate the performance of HiNUMA with a large-

scale benchmark YCSB. It uses two K-V stores, i.e., cassandra

and redis. These workloads have very large memory footprints.

Figure 5 shows the normalized response time of K-V opera-

tions, all normalized to the NUMA-interleave policy. We can

find that BMPM and Hi-bandwidth are not effective for these

memory latency-sensitive workloads. Because BMPM and Hi-
bandwidth are designed particularly for memory bandwidth-

sensitive applications. Compared to the NUMA-interleave

strategy, BMPM only achieves a performance improvement

of 10.1% on average, while Low-latency improves application

performance by 35%. These results demonstrate the applica-

bility of HiNUMA for different kinds of applications. It is



Fig. 4: Application performance for different data placement policies, all normalized to the NUMA-local policy

Fig. 5: Performance of YCSB benchmarks using different data placement policies, all normalized to the NUMA-interleave policy

Fig. 6: Performance improvement of different page migration policies, all relative to the initial data placement policies

Fig. 7: Application execution time sensitive to NVM read/write latency

particularly applicable for memory latency-sensitive workloads

that previous studies such as BMPM have not considered.

Figure 6 shows the performance gains of different page

migration policies, all relative to the policy “Low-latency +

BMPM-migration”. We note that the traditional ANB even

hurts application performance under a given data placement

policy, so we only compare HANB with the state-of-the-art

BMPM [10] and HeteroVisor [11]. Since “BMPM-migration”

policy aims to maintain the initial data distribution on hybrid

memories and does not consider the hotness of pages, it

achieves only 2% performance improvement. The page mi-

gration policy in HeteroVisor is based on the page hotness.

However, its simple page access counting and hot page de-

tection strategies cause excessive performance overhead, and

thus offset the performance gain from hot page migrations. In

contrast, our HANB significantly reduces the overhead of hot

page identification, and also maximizes the memory bandwidth

utilization of applications. As a result, HANB can achieve

up to 33.2% and 18.9% higher performance improvement

compared to BMPM and HeteroVisor, respectively.

We have explored how different NVM access latencies can

effect the application performance in HiNUMA. As shown

in Figure 7, the application execution time is roughly linear

to the increase of NVM read/write latencies. However, the

execution time of bandwidth-sensitive applications such as

canneal and streamcluster increases much slower than that of

latency-sensitive applications such as swaptions, blacksholes,

and YCSB. From another point of view, this experiment

validates that the performance of latency-sensitive applications

is more sensitive to NVM read/write latencies.

To evaluate how the application performance is affected by

the scope of hot page lookup, we increase the size of the



Fig. 8: Performance improvement sensitive to PTEs scanned

Fig. 9: YCSB performance overhead due to page migrations

buffer which is used to store the PTEs flushed from TLB,

so that the scope of hot page lookup is extended gradually.

Figure 8 shows the applications’ performance varies with the

buffer sizes. When the buffer size increases at the beginning,

the extended searching space provides higher opportunities to

find out more hot pages for migration, and thus improve the

applications’ performance. However, when the proportion of

the scanned pages become larger than 50%, the application

performance tends to slow down because the benefit of hot

page migrations is offset by the increasing overhead of hot

page lookup. As a result, we empirically set the buffer size to

cover only one half of the applications’ footprints.

Figure 9 shows the performance overhead due to hot page

detection and migration for different policies running YCSB.

ANB and BMPM all use an on-demand page migration

scheme. They only lead to 0.24 GB and 0.32 GB data traffic

due to page migrations, and thus the runtime overhead is only

5.0% and 5.6% of total execution time for ANB and BMPM,

respectively. However, HeteroVisor and HANB all exchange

the hot pages and cold pages between DRAM nodes and NVM

nodes, and thus significantly increase page migration traffic to

2.04 GB and 1.28 GB, respectively. The runtime overhead due

to page access counting and migration also increases to 20%

and 15% for HeteroVisor and HANB, respectively. However,

the runtime overhead can be offset by the performance gain

from accessing hot data on the fast DRAM.

V. RELATED WORK

There have been many studies on data placement mecha-

nisms in NUMA systems with homogeneous memory [23],

[24], [25]. Majo et. al [25] studied the impact of data

placement on the performance of multi-threaded applications

in the NUMA architectures. Carrefour [23] is a hardware-

based memory placement mechanism for reducing NUMA

traffic congestion. Gaud et. al [24] argue that superpages may

be harmful in NUMA systems, and propose a new scheme to

place superpages in NUMA nodes. Those previous work all

assume that the memory nodes in NUMA systems are homo-

geneous. However, in a NUMA system with hybrid memories

supported, the asymmetric memory access latencies of NUMA

can be further amplified by the hybrid memories. They allow

data placement on NUMA systems become more complicated.

HiNUMA is specifically designed for data placement and

migration in NUMA systems. We propose a NUMA topology

and hybrid memory-aware data placement policy, and a page

hotness-aware NUMA balancing mechanism to maximize the

memory bandwidth utilization.

In recent years, there are also some studies on data place-

ment and migration in hybrid memory systems [5], [6], [7], [8],

[9], [26], [27], [28]. A lot of work propose hardware-assisted

page migration policies, with TLB or memory controller

monitoring page access patterns and migrating pages between

hybrid memories [9], [29], [30]. Some other work propose OS-

managed page migration in hybrid memory systems [31], [32].

However, the hot page detection usually introduces significant

performance overhead that may offset the benefit of hot page

migrations. Thermostat [16] exploits TLB miss rate as a proxy

of cache miss rate to find out cold pages in DRAM, and

migrate them to NVM. HeteroVisor [11] exploits hardware-

assisted virtualization techniques to monitor hot pages in guest

OSes, and migrate them to fast memory. HeteroOS [33]

introduces a more efficient approach to hot page detection

in virtualization environments to reduce the cost of page

access counting. However, those hybrid memory management

mechanisms are not particularly designed for NUMA systems,

and only achieve sub-optimal performance improvement.

BMPM [10] perhaps is the most relevant work to HiNUMA.

BMPM and HiNUMA both provide bandwidth-aware hybrid

memory allocation and migration policies for NUMA systems.

The major difference between HiNUMA and BMPM is that

HiNUMA also provides a data placement policy specifically

for latency-sensitive applications. Moreover, HiNUMA sup-

ports access-frequency based hot page detection and migration,

while the page migration in BMPM is still based on traditional

ANB. These optimizations in HiNUMA further improve appli-

cation performance in NUMA-based hybrid memory systems.

VI. CONCLUSION

Traditional NUMA memory management policies fail to

be effective in hybrid memory systems and may even cause

application performance degradation. In this paper, we present

NUMA-aware data placement mechanisms called HiNUMA
for hybrid memory systems. HiNUMA exploits NUMA-aware

memory allocation and asymmetric page migration mecha-

nisms to improve the efficiency of using hybrid memories.

Experimental results show that HiNUMA can improve appli-

cation performance by up to 38.2% and 20% compared to the

NUMA-interleave policy and the state-of-the-art BMPM [10],

respectively. HiNUMA can also improve application perfor-

mance by up to 33.2% and 18.9% compared to the ANB policy

and the state-of-the-art HeteroVisor [11], respectively.
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