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Abstract—Sigmoid functions are used in artificial Neural 
Networks (NN). Normally, NNs are implemented in processors 
systems. In some scenarios these systems do not reach real time 
operation. In these cases, the NNs can be implemented in a Field 
Programmable Gate Array (FPGA). The sigmoid functions are not 
directly implementable in fixed point format, and some 
approximations must be used. A very used one is the lookup table 
technique. In this paper, an advanced design method based on 
Matlab and Simulink is presented. The Signal to Noise Ratio 
power is used to measure the approximation functionality. The 
automatic generation code to a hardware description language can 
be made. 
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I.  INTRODUCTION 

The sigmoid functions [1-8], particularly the hyperbolic 
tangent [9], are widely used as transfer functions in artificial 
Neural Networks (NN) [10]. The artificial NNs are usually 
implemented on a computer or microprocessor system in 
floating point arithmetic, for the training and testing phases. But 
sometimes these systems are not fast enough, in such cases the 
NNs implementations must be developed with others 
technologies for reach real time operation. It is also necessary to 
change the NN support if the level of power consumed or area 
are exceeded. 

Floating point arithmetic can be used on digital devices, but 
these operations need a high number of clock cycles, great 
consumption of power and hardware resources [11]. However, 
floating point numerical representation has a wide range with a 
good resolution. It is possible to use fixed point versus floating 
point arithmetic, justified by its better performances. Fixed point 
increases the operating speed, the latency can be reduced to one 
clock cycle. The hardware resources and consumed power in 
fixed point are smaller than floating point. The drawback in 
fixed point is that the designer must care the range of the signals 
with the necessary resolution. This can be solved by signal 
studies with appropriate mathematical resources and strategies 
[12]. It should be emphasized that in fixed point the data format 
is totally arbitrary, which improves the performances. On the 
other hand, the use of floating point requires the election of a 
standard [13], increasing the number of bits and decreasing 
physical performances. Using a non-standardized floating point 

representation complicates the design process. For these 
reasons, this study is based on fixed point format, allowing to 
the sigmoid functions be included in NN for high performance 
operation. 

Field Programmable Gate Arrays (FPGA) can be used for 
the implementation. The great advantage of FPGAs is that they 
are programmable by the designer, without having to be sent it 
to a factory. Others FPGAs advantages are that they have low 
cost of non-recurring engineering, minimum development time, 
ease debug and verification, shorter time to market, high data 
parallelism, flexible data format, and flexible pipelined [10]. For 
these reasons the modelling is presented for FPGA devices. 

II. SIGMOID FUNCTIONS 

Transfer functions used in NNs are usually continuous and 
derivable, the derivability is a desirable requirement for NN 
training algorithms. Normally, two sigmoid functions are used, 
which satisfy these conditions. One of them is unipolar, simply 
called sigmoid, or logsig in Matlab notation. Its mathematical 
expression is given by equation 1, and its representation is in 
Fig. 1. The output of this function is restricted to the interval 
(0,+1). The second function is bipolar and coincides with the 
hyperbolic tangent, it is called tansig in Matlab notation. Its 
mathematical expression is given by equation 2, its 
representation is in Fig. 1. The output of this function is 
restricted to the interval (-1,+1). It can be easily demonstrated 
that equations 3 and 4 are satisfied, which shows that they are 
analogous functions. (ݔ)ݕ = (ݔ)݃݅ݏ݈݃ = 11 + ݁ି௫ (1) 

(ݔ)ݕ  = (ݔ)݃݅ݏ݊ܽݐ = ݁ା௫ − ݁ି௫݁ା௫ + ݁ି௫ (2) 

(ݔ)݃݅ݏ݊ܽݐ  = (ݔ2)݃݅ݏ݃2݈ − 1 (3)

(ݔ)݃݅ݏ݈݃  = 12 ቂ݃݅ݏ݊ܽݐ ቀ2ݔቁ + 1ቃ (4) 
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Fig. 1. The unipolar and bipolar sigmoid functions. 

III. STATE OF THE ART OF HARDWARE IMPLEMENTATION FOR 

SIGMOIDAL FUNCTIONS 

It should be emphasized that both functions are non-linear, 
because they include division and exponential operations, so 
they are the bottleneck of the NN design. That is, the 
implementation of sigmoid functions is not immediate in fixed-
point arithmetic and they are usually approximated with some 
method. One approach is using Look-up Tables (LUTs), which 
store samples of the function; this method needs a lot of 
hardware resources but gets a high speed [4]. Other 
approximation form is the Piece Wise Lineal (PWL), which 
approaches each section with a straight line [14]. It is also 
possible to approximate each section with polynomials, usually 
of grade two [14]. Other authors use piecewise Taylor 
approximations [15]. Other approaches propose specific shape 
functions that consider the characteristics of the sigmoid 
functions; firstly where its derivative tends to a constant, and 
secondly its symmetry characteristics [2, 4]. Other authors use 
functions that look like sigmoid functions [16], in such cases the 
error is bounded. 

The comparison of these solutions is based on the 
functionality, which is measured with the error. There are 
several types of errors, and sometimes implementations are 
compared with different error values and error types [1, 17, 18]. 
It should be noted that the effect of the number of bits in the 
representation is chosen discreetly or arbitrarily by authors [4, 
14], usually based on the experience or previous works. 

Usually, authors extract area and speed, but almost never the 
consumed power [4, 14]. Many authors study the speed as the 
latency of the system, number of clock cycles required, but 
without estimating the maximum frequency [14]. 

IV. OBJECTIVES 

The objective is to fix a methodology for sigmoidal functions 
designed on digital programmable devices, in particular, the 
hyperbolic tangent. The approximation type will be based on 
LUTs implemented with logical elements. 

There are many design methods, this development focuses 
on Simulink [19] of Matlab [20] using fixed point arithmetic. 
This design flow is fast and flexible, allowing to check different 
architectures and the effect of the binary format; this makes 
possible to scan the number of bits in a systematic and extensive 
form. 

Once the systems have been chosen, which reach the 
functionality with the smaller sizes of fixed-point representation, 
from Simulink can be generated the project in a standard 
Hardware Description Language (HDL). One of them is Very 
High Speed Integrated Circuit Hardware Description Language 
(VHDL), and the other is Verilog. The generated project is 
formed by the digital implementation and files with input and 
output signals, to perform the necessary simulations.  

It is also possible to design in Simulink for the two main 
FPGA providers, which are Altera [21] and Xilinx [22]; with 
their own tools, which are respectively DSP Builder [23] and 
System Generator [24]. In the design tools of these 
manufacturers it is possible to extract the performances for the 
chosen device [25, 26]. 

To show this design method the manufacturer Altera has 
been chosen, and the project has been generated in Verilog 
language. In this work it is assumed that NN training is 
performed outside the device, this is called offline type [27], so 
it is not considered the approximation of the first derivative of 
the function. For example, for offline training can be used the 
Neural Network Toolbox [28] from Matlab. 

V. THE MEASURE OF FUNCTIONALITY 

There are four parameters that can be evaluated in digital 
implementations: the functionality, the area, the power and the 
system speed. The intention is to analyse approximations with 
equal or similar functionality; afterwards, the three remaining 
parameters are contrasted. The first question is how to measure 
functionality, clearly associated with the error, but with different 
versions. 

Let the function y=f(x) be the one to be approximated, and 
let ya=fa(x) be the expression of the approximation; the error is 
defined as E(x)=ya-y=fa(x)-f(x), which generally has null mean 
value. The absolute error is defined as Eabs(x)=|E(x)|. 

For comparing designs, the maximum value of the absolute 
error |E(x)|max can be used, as in [14]. Although, this is an 
important measure, a good approximation can have a high value 
error only in a small interval; anyway, it is important to take it 
in account. 

Other measure is the mean value of the absolute error [14]; 
which measures an approximation on an interval, but high error 
values can be masked. Therefore, both measures can be 
combined, as in [7]. Occasionally, the square root of the mean 
value of the square error has been used. 

The relative error, defined as Erel(x)=(ya-y)/y=(fa(x)-
f(x))/f(x) can also be used, no reference of it has been found. The 
relative error can be used for comparing same type functions, or 
different type, for the same input range. The relative error grows 
enormously when the value to be approximated tends to zero; 
moreover, it is not defined if the function value is zero and the 
approximation value is not zero. The absolute peak value, or 
average absolute value, of relative error can be considered, with 
the same previous observations. The relative error allows 
compare different function types, as it is shown in Fig. 1, 
because the numerator introduces the error and the denominator 
introduces the value of the function; besides, it can be expressed 
in per centum values. 
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To avoid uncertainty when the signal is zero, the error can 
be measured against the peak-to-peak function value (equation 
5). This value could be used to compare approximations of 
different functions. ܧ(ݔ) = ௫ݕ(ݔ)ܧ −   (5)ݕ

Different authors use different error types, which makes 
comparison difficult. A relative measure is proposed, which is 
the quotient between function and error, which can also be called 
signal and noise, respectively. The sampled signals, input x and 
output y, before quantizing and coding, are discrete time analog 
values; and also the generated noise signal. The Signal to Noise 
Ratio (SNR) [29] is defined in expression 6. ܴܵܰ = ∑ ∑ሾ݅ሿଶୀݕ ሾ݅ሿଶୀܧ  (6) 

The numerator is the energy of (k+1) samples of the signal 
to be approximated, the denominator is the energy of (k+1) 
samples of the corresponding error. Therefore, the equation 6 is 
the ratio of the energies of signal and error. The equation 6 
coincides with the relation between the signal power and the 
noise power. This concept is common in analog and digital 
communications. Often, this relation is expressed in decibels 
(equation 7) [29]. ܴܵܰ(݀ܤ) = ଵ(ܴܵܰ) (7)݃10݈

VI. THE MODEL AND ITS PARAMETERS 

The Simulink block diagram for the approximation is shown 
in Fig. 2, where the arithmetic used is two’s complement. The 1-
D Lookup Table block is the element that stores the samples for 
the approximation. In Fig. 2 the LUT stores 16 words, so its 
address bus has 4 bits; Simulink type is denoted as ufix4, 4 bits 
unsigned fixed-point. The words in the LUT have 1 sign bit, 1 
bit for the integer part and 7 fractional bits, (sfix9_En7) type; so 
in the output the values ±1 are representable, and the function is 
saturable. Besides, the 1-D Lookup Table block does not allow 
using a sign bit without any bit for the integer part. The input 
format has 1 sign bit, 2 bits for the integer part and 6 fractional 
bits, (sfix9_En6) type. The represented input range is [-4,+4-2-

6]. The multiplier and adder in Fig. 2 perform a conversion of the 
input x to the LUT address bus. In this case, the conversion is 
from [-3.75,+3.75] to [0,+15]. The constants G and C can be 
represented without error under certain conditions, this will be 
explained below. 

 
Fig. 2. The Simulink approximation model for 16 words LUT. 

Fig. 3 shows the hyperbolic tangent function for [-4,+4] 
input range; also, the approximation and the error are shown. It 
should be noted that the LUT samples are evenly spaced in the 
input range. The SNR measured is 23.36 dB, according to 
expression 7. 

 
Fig. 3. The hyperbolic tangent function, 16 words LUT output and error. 

Once the model has been established, a set of parameters can 
be discussed: the format of the input signal, the number of words 
stored in the LUT, and the format of the words stored in the 
LUT. The number of words stored in the LUT is a power of 2; 
so this takes advantage of the address bus. Then, M words will 
be addressed by n address bits, such that M=2n. The output 
format has 1 bit sign and 1 bit for integer part, as was explained 
previously. But the number of bits of the fractional part (nbfo) 
can be modified. 

In the input the size of fractional bits (nbfi) can be changed, 
which affects the resolution. The question is how many bits to 
use for the input integer part (nbii). When the number of bits of 
the input fractional part is large the input range tends to [-
2nbii,+2nbii); in fact, the range will be [-2nbii,+2nbii-2nbfi]. Then, 
with nbii equal to 1 the representation range is [-2,+2-2nbfi], with 
nbii equal to 2 the range is [-4,+4-2nbfi], with nbii equal to 3 the 
range is [-8,+8-2nbfi], etc. It is proposed to represent the function 
in an interval centred in the origin, and saturate the output to ±1 
values outside this interval, since the function has two horizontal 
asymptotes. For this purpose, the SNR is measured when a 
sawtooth signal is introduced in the range [-16,+16]. Fig. 4 
shows the saturation error outside the range [-4,+ 4], which is 
the input range with 2 bits for the integer part when the number 
of fractional bits grows indefinitely. That is, the saturation 
approximation is given by expression 8. The SNR obtained is 
81.25 dB, which is a high value. This is the maximum SNR for 
the input range [-16,+16] when the hyperbolic tangent is 
approximated in the interval [-4,+4]. 

 
Fig. 4. The saturation error outside the range [-4,+ 4]. 
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(ݔ)ݏݕ = ൝ −1 ݔ ൏ (ݔ)݃݅ݏ݊ܽݐ4− −4  ݔ  +4+1 +4 ൏ ݔ  (8) 

With the saturation out of the range [-2,+2], with 1 integer 
bit, the SNR for input range [-16,+16] is 46.61 dB; a high value 
but easily surmountable. The saturation out of the range [-8,+8], 
for 3 integer bits, the SNR for input range [-16,+16] is 150.73 
dB, extremely high and unnecessary value. Therefore, the 
number of integer bits in the input is set to 2, the approximation 
will be performed within the range [-4,+4], and the circuit will 
saturate outside this range (equation 9). For measure the SNR of 
the approximation, the input signal will be a sawtooth signal in 
the range [-4,+4]. This coincides with the assumption that all 
values in the input for that range are equally likely. 

(ݔ)ܽݏݕ = ൝ −1 ݔ ൏ (ݔ)ܽݕ4− −4  ݔ  +4+1 +4 ൏ ݔ  (9) 

Finally, the parameters to be varied will be: the number of 
fractional bits of the input signal (nbfi), the number of bits of the 
LUT address bus (n), and the number of fractional bits for stored 
words in the LUT (nbfo). It is convenient to revise the final 
format of the input signal; 1 sign bit, 2 bits for the integer part 
and nbfi fractional bits; sfix(1+2+nbfi)_En(nbfi) type. Similarly, 
the output signal has 1 sign bit, 1 integer bit and nbfo fractional 
bits; this is a sfix(1+1+nbfo)_En(nbfo) type. 

The conversion of the input signal to the LUT address is the 
expression 10; obviously, A (address) is an integer between 0 
and (2n-1). ܣ = ݔܩ)	ݎ݁݃݁ݐ݊݁	ݐݏ݁ݎܽ݁݊ + 	(ܥ  (10)

The constants values G and C are given by expressions 11 
and 12; where xmin is -4, xmax is +4 and M is 2n, and n is the 
number of bits for LUT address. Since the extremes of x and M 
are entire powers of 2, these constants can be expressed as 
powers of 2 and have an exact representation in fixed-point 
format. ܩ = ெ௫ೌೣି௫ = 2(ିଷ)  (11) 

ܥ  = ܯ − 12 = 2(ିଵ) − 2(ିଵ) (12) 

VII. SCAN OF MODEL PARAMETERS 

For n equal to 4 (M=16) the number of fractional bits in input 
and output (nbfi, nbfo) was varied between 0 and 24. The SNR 
was measured in dBs. The maximum SNR obtained was 23.36 
dB, and the system gets this value with 6 input fractional bits 
and 7 output fractional bits. It should be emphasized that for 16 
words LUT, 625 configurations were simulated. The value of 
fixed point output signal is stored in Matlab variables space in 
floating point format; afterwards, the SNR is measured in dBs. 
Fig. 5 shows the shape of SNR in dBs for 16 words LUT against 
input and output fractional bits. In other words, in order to reach 
the maximum SNR with the 16 words LUT, at least 6 input 
fractional bits and 7 output fractional bits are required, which is 

marked in Fig. 5. Increasing fractional bit numbers above these 
values do not increase the SNR. 

 
Fig. 5. The shape of SNR in dBs for 16 words LUT. 

For the implementation the values 6 and 7 are chosen for nbfi 
and nbfo because the maximum SNR is obtained with the 
minimum number of bits, this system is shown in Fig. 2. From 
Simulink the Verilog project was generated for the Altera device 
EP2AGX260FF35I5 of Arria II GX family. The project was 
compiled with Quartus II [30] and simulated with ModelSim-
Altera Edition [31] and the Simulation Waveform Editor 
included in Quartus II. The schematic circuit is in Fig. 6; which 
shows the input and output of the function, the clock, the reset, 
and input and output enable signals. In short, only one FPGA 
implementation was generated, the most convenient case of the 
625 Simulink simulations. 

 

Fig. 6. The schematic circuit of 16 words LUT. 

The ModelSim simulation is shown in Fig. 7 for 25 MHz 
clock frequency. Only the input and output signals are shown in 
this figure; avoiding auxiliaries signals for simplification. The 
simulation input rate is 25·10+6 values per second. The input and 
output registers, shown in Fig. 6, set the latency of the system in 
2 clock cycles. These registers, which are not shown in Fig. 2 for 
simplification, are necessary in Simulink for generating the 
clock signal in the project. The output Y_OUT of Fig. 7 is equal 
to the output signal in Simulink. This can be ensured because 
when the project is generated from Simulink, the input and 
output test signals (testbench) are also generated. The fixed point 
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input signal is used in circuit simulation with ModelSim. On the 
other hand, the output signal of this simulator is compared with 
the Simulink fixed point output signal, at the end the message 
"test completed passed" indicates that output signals have the 
same values. 

 

Fig. 7. The circuit simulation with ModelSim of 16 words LUT. 

In Quartus II hardware resources were estimated, for the 
previous device the area was evaluated as the number of 
Combinational Adaptive Lookup Tables (ALUTs); for this 
implementation were needed 8 ALUTs. With the TimeQuest 
Timing Analyser of Quartus II it was found that the maximum 
operating frequency of the system was 909.09 MHz; for the 
worst case, which among other things, takes into account the 
temperature at which the device operates. Finally, with the 
PowerPlay Power Analyser of the Quartus II, for a clock 
frequency of 25 MHz, a dynamic power of 0.80 mW and static 
power of 858.86 mW was obtained, that gives a total of 859.66 
mW. 

The power estimation was done with a fixed clock 
frequency, in order to compare the consumed power of different 
designs for the same data rate. This clock frequency must be less 
than the smallest of maximum frequencies of the compared 
designs. On the other hand, all power estimations were made for 
an ambient temperature of 25°C, without heatsink and no forced 
air flow. The power estimation was performed after loading the 
Value Change Dump File, which sets the form of change of the 
input signals. This is an input file for the power analyser, which 
stores the change rates and static probabilities of signals. The 
Value Change Dump File was generated with the Simulation 
Waveform Editor, where the clock frequency was set to 25 MHz 
and the binary input signals were randomly varied. 

VIII. DESIGN FLOW 

Fig. 8 shows the design flow process. Between the floating 
point input signal and the fixed point model, a data type 
converter block exists and is not shown for simplification in Fig. 
2. Similarly, a data type converter block exists at the output of 
the Simulink model. These converter blocks are not 
implemented in hardware, the input and output of the 
approximated function are in fixed point format. The Simulink 
model can be loaded, from Matlab, with the number of LUT 
address bits (n), the number of input fractional bits (nbfi) and the 
number of output fractional bits (nbfo). 

 

Fig. 8. The design flow process from floating point to FPGA implementation. 

The SNR is calculated with the exact floating point value of 
the hyperbolic tangent and the floating point values of the fixed 
point output signal. For the model with the desired functionality, 
and using HDL Workflow Advisor [32], it is generated the HDL 
project and the testbench. Not all Simulink blocks are supported 
by the HDL Workflow Advisor. In particular, only blocks of the 
HDL Coder library are implementable. But not all 
configurations of these blocks permit implementation, although 
they are simulable. Generating these files manually can be an 
impossible task, but this automatic generation can be performed 
in minutes. It should be noted that in HDL Workflow Advisor a 
synthesis tool is chosen, which has been installed previously in 
the computer; in this case Quartus II of Altera. Besides, the type 
of FPGA is chosen, and for the testbench allows set the clock, 
reset and enable signals. Once the HDL Workflow Advisor has 
completed the files generation, it is possible to implement the 
FPGA and obtain the hardware resources, the maximum 
frequency and the consumed power. With the Simulation 
Waveform Editor can be performed functional and timing 
simulations; also, testbench simulations can be performed with 
ModelSim. These last simulations take the input signal that was 
used in Simulink. On the other hand, ModelSim simulation 
compares its output with the Simulink output signal, which 
verifies the circuit operation. The implementation and 
simulations must not be dissociated, some simulations are 
necessary to set parameters for the power estimator. 

Different designs are characterized by performances, 
underlined in Fig. 8: the functionality, measured as the SNR in 
dB; the area, hardware resources occupied in the FPGA; the 
speed, measured as the maximum frequency operation; and the 
consumed power for a certain operating frequency. 
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IX. EXPERIMENTS AND RESULTS 

In the previous section has been set: the model, the 
parameters, the design methodology and the measurement of 
performances. This section presents the results when the design 
parameters are varied. For this purpose, the number of bits in 
LUT address bus (n) was varied until 16. For each n value, the 
number of input and output fractional bits, nbfi and nbfo 
respectively, were varied from 0 to 24. A similar study to the 
previous section was done, the results of SNR were stored in 
matrices of 25 by 25 elements, similar behaviours were obtained 
to Fig. 5. For each n value, only the case of maximum SNR with 
the minimum numbers of bits was implemented, and its 
performances were evaluated. Fig. 9 shows the 16 responses 
obtained. Obviously, if the number of words in the LUT 
increases, the maximum SNR grows, but it is necessary to 
increase the number of input and output fractional bits. In 
Simulink the number of simulations for generating Fig. 10 was 
10,000 (16x25x25), which were performed by running a loop for 
each n value. 

 

Fig. 9. The SNR in dBs versus input and output fractional bits, for each number 
of bits in LUT address bus. 

A. Measurements and results with no device dependency 

Fig. 10 shows the maximum SNR for each n value. The SNR 
is almost linear versus n, and increases 6 dB per bit. The SNR in 
equation 6 is multiplied by 4 when the number of words is 
doubled in the LUT. In Fig. 11 it is shown the input fractional 
bits versus the address bus size for the maximum SNR. In 
general, the number of input fractional bits is equal to the 
number of address bits plus four. This tendency indicates that it 
is necessary to increase one bit in the input when a bit is 
increased in the address bus; that is, the number of words in the 
LUT is doubled. Fig. 12 shows the number of output fractional 
bits versus the size of the address bus, necessary to reach the 
maximum SNR, an almost linear tendency exists. In general, the 
number of bits required in the output is equal to the number of 
address bits plus four. It is necessary to increase one bit in the 
output when a bit is increased in the address bus; that is, the 
number of words is doubled in the LUT. 

 

Fig. 10. The maximum SNR in dBs for each n value . 

 

Fig. 11. The input fractional bits against the address bus size for the maximum 
SNR. 

 

Fig. 12. The output fractional bits against the address bus size for the maximum 
SNR . 
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It should be emphasized that for 16 bits in the address bus 
the Verilog design size is 65,723 lines, and the testbench is 
13,107,541 lines, including blank lines and comments; a hand 
coded design using a HDL would have been impossible to 
generate. 

B. Measurements and results with device dependency. The 
Altera Arria II GX family 

For this family, the device EP2AGX260FF35I5 was chosen. 
One implementation was developed for each size of the LUT 
address bus; it was for the maximum SNR and minimum 
numbers of input and output fractional bits. The results of area, 
speed and power performances are shown below. It should be 
noted that the HDL Workflow Advisor does not allow to 
generate the project for one bit in the address bus; as this is a 
trivial case, the study from 2 to 16 bits in this bus is presented. 
The area versus the number of words in the LUT is shown in 
Fig. 13, which has a nearly linear shape. The area blocks of this 
device are Combinational ALUTs (Adaptive Lookup-Tables). 
The area depends heavily on the number of words but weakly on 
the number of bits, for the maximum SNR. On average, 0.2 
Combinational ALUTs per word stored in the LUT is needed. 

 

Fig. 13. Hardware resources against the number of words in the LUT (Altera 
device EP2AGX260FF35I5 of Arria II GX family). 

The maximum frequency versus n, (and versus M) for the 
maximum SNR, are not linear. The minimum allowed period for 
each case is represented in Fig. 14, it has almost linear behaviour 
by zones. In any case, a clear tendency is not observed for the 
speed. 

Finally, the power was estimated for the previous cases (Fig. 
15), the clock frequency was 25 MHz, smaller than the 
minimum. The represented power is the sum of dynamic and the 
static powers, the behaviour is almost linear against the number 
of words (0.0026 mW/word). 

 

 

Fig. 14. The minimum period against the size of the LUT address bus for the 
maximum SNR (Altera device EP2AGX260FF35I5 of Arria II GX family). 

 

Fig. 15. The consumed power against the number of words in the LUT for 25 
MHz clock frequency (Altera device EP2AGX260FF35I5 of Arria II GX 
family). 

It is possible to define a Quality Factor (expression 13), 
which includes the physical performances and functionality; the 
SNR obeys expression 6, not in dBs. In expression 13 the 
maximum frequency is expressed in hertz, the area is the number 
of Combinational ALUTs and the power is introduced in watts. 
The Quality Factor has an almost linear behaviour for n greater 
than 10, generally this value increases with M, according to Fig. 
16. This factor can be used to compare different designs. ܳܨ = ೌೣௌேோ∙௪  (13) 
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Fig. 16. The Quality Factor versus the number of words in the LUT (Altera 
device EP2AGX260FF35I5 of Arria II GX family). 

C. Measurements and results with device dependency. The 
Altera Cyclone IV GX, MAX 10 and Stratix V  families 

Analogous results were obtained for other devices of 
different Altera FPGA families: 

- the EP4CGX150DF31I7AD device of the Cyclone IV GX 
family, 

- the 10M50SFE144I7G device of the MAX 10 family, 

- the device 5SGXMBBR3H43I4 of the family Stratix V. 

In the four devices, included the Arria II GX family, the area 
is strongly linear versus the number of words in the LUT; for the 
speed is not observed a clear rule, vaguely the minimum period 
allowed in the clock signal is almost linear piecewise versus the 
number of bits of the LUT address bus; finally, the consumed 
power is strongly linear versus the number of words in the LUT. 
In all cases the defined Quality Factor grows with the number of 
words; sometimes it is almost linear. 

It should be noted that the logical blocks of the FPGAs 
families are: 

- Combinational ALUTs (Adaptive Lookup-Tables), for 
Arria II GX family; 

- Logic Elements, similar but not equal, for Cyclone IV GX 
and MAX 10 families, 

- and Adaptive Logic Modules for the Stratix V family. 

For the largest circuit, with 16 bits in the LUT address bus 
and maximum SNR; the area for the devices is shown in Table 
I. The Logic Elements of the Cyclone IV GX and MAX 10 
families have similar behaviour for this design. Analogous, the 
Combinational ALUTs of the Arria II GX family and the 
Adaptive Logic Modules of the Stratix V are similar for 
implementing this design. 

 

TABLE I.  THE HARDWARE RESOURCES FOR 16 BITS IN THE LUT 
ADDRESS BUS 

FAMILY DEVICE ELEMENT 
Area for 16 
bits in LUT 
address bus 

Arria II GX EP2AGX260FF35I5 
Combinational 
Adaptive Lookup-
Tables 

12,828 

Cyclone IV GX EP4CGX150DF31I7AD Logic Elements 45,108 
MAX 10  10M50SFE144I7G Logic Elements 45,172 

Stratix V 5SGXMBBR3H43I4 
Adaptive Logic 
Modules 12,009 

X. CONCLUSIONS 

One of the objectives of this contribution is to show a fast 
and flexible design method for digital devices, which allows 
verifying different architectures and data formats for a system. 
In other words, the method allows exploring the space solutions. 
These advanced design techniques are embedded in Matlab for 
floating point models in files with Matlab extension [33] or for 
Simulink systems [34] and are connected to a digital synthesis 
tool. This method allows studying the effect of the number of 
bits in a wide range, which many authors only study in a discreet 
form by the limitation of the used method. Optimized systems 
can be transferred to a FPGA. 

Altera and Xilinx have their own environments for designing 
as a block diagram in Simulink; these are DSP Builder [23] and 
System Generator [24] respectively, but handling fixed point 
format is more difficult. 

The SNR has been introduced for measuring the 
functionality, this allows to compare the quality of an 
approximation of the sigmoid function (expression 1) to an 
approximation of the hyperbolic tangent (expression 2), for the 
same input range. On the other hand, the functionality estimation 
with the SNR in dBs allows observing linearities in 
performances. 

ACKNOWLEDGMENT 

Acknowledgment is expressed to Altera for donating 
software and licenses within its University Program. 

REFERENCES 

[1] A. Armato, L. Fanucci, G. Pioggia and D. D. Rossi, "Low-error 
approximation of artificial neuron sigmoid function and its derivative," 
Electronics Letters, vol. 45, no. 21, pp. 1082- 1084, 2009.  

[2] K. Basterretxea, J. M. Tarela y I. del Campo, «Approximation of sigmoid 
function and the derivative for hardware implementation of neural 
networks,» IEE Proceedings-Circuits Devices and Systems, vol. 151, nº 
1, pp. 18-24, 2004.  

[3] I. d. Campo, R. Finker, J. Echanobe y K. Basterretxea, «Controlled 
accuracy approximation of sigmoid function for efficient FPGA-based 
implementation of artificial neurons,» Electronics Letters, vol. 49, nº 25, 
p. 1598–1600, 2013.  

[4] P. K. Meher, «An Optimized Lookup-Table for the Evaluation of 
Sigmoid Function for Artificial Neural Networks,» de 18th IEEE/IFIP 
International Conference on VLSI and System-on-Chip (VLSI-SoC 
2010), 2010.  

[5] M. C. Miglionico y F. Parillo, «A novel approach for implementing of a 
log-sigmoid function on a FPGA device using Sfloat24 Math library - An 
modelling,» de Proceedings of the International Symposium on the 
Analytic Hierarchy Process, 2013.  



9 
 

[6]  S. Ngah, R. A. Bakar, A. Embong y S. Razali, «Two-steps 
implementation of sigmoid function for artificial neural network in Field 
Programmable Gate Array,» ARPN Journal of Engineering and Applied 
Sciences, vol. 11, nº 7, pp. 4882-4888, 2016.  

[7]  M. T. Tommiska, «Efficient digital implementation of the sigmoid 
function for reprogrammable logic,» IEE Proceedings-Computers and 
Digital Techniques, vol. 150, nº 6, pp. 403-411, 2003.  

[8]  C.-H. Tsai, Y.-T. Chih, W. H. Wong y C.-Y. Lee, «A Hardware-Efficient 
Sigmoid Function With Adjustable Precision for a Neural Network 
System,» IEEE Transactions on Circuits and Systems - II: Express 
Briefs, vol. 62, nº 11, pp. 1073-1077, 2015.  

[9]  M. Panicker y C.Babu, «Efficient FPGA Implementation of Sigmoid and 
Bipolar Sigmoid Activation Functions for Multilayer Perceptrons,» IOSR 
Journal of Engineering (IOSRJEN), vol. 2, nº 6, pp. 1352-1356, 2012.  

[10] A. R. Omondi y J. C. Rajapakse, FPGA Implementations of Neural 
Networks, Springer, 2006.  

[11] M. A. Cavuslu, C. Karakuzu, S. Sahin y M. Yakut, «Neural network 
training based on FPGA with floating point number format and it's 
performance,» Neural Computing and Applications, vol. 20, nº 2, pp. 
195-202, 2011.  

[12] MathWorks, «Fixed-Point Designer,» [En línea]. Available: 
http://www.mathworks.es/products/fixed-point-designer. [Último 
acceso: june 2017]. 

[13] IEEE, «IEEE Standard for Floating-Point Arithmetic,» [En línea]. 
Available: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933, 
permanent link. [Último acceso: june 2017]. 

[14] S. Vassiliadis, M. Zhang y J. G. Delgado, «Elementary Function 
Generators for Neural-Network Emulators,» IEEE Transactions on 
Neural Networks, vol. 11, nº 6, pp. 1438-1449, 2000.  

[15] B. Lee y N. Burgess, «Some results on Taylor-series function 
approximation on FPGA,» de 37th Asilomar Conference on Signals, 
Systems and Computers, 2003.  

[16] E. Soria-Olivas, J. D. Martín-Guerrero, G. Camps-Valls, A. J. Serrano-
López, J. Calpe-Maravilla y L. Gómez-Chova, «A Low-Complexity 
Fuzzy Activation Function for Artificial Neural Networks,» IEEE 
Transactions on Neural Networks, vol. 14, nº 6, pp. 1576-1579, 2003.  

[17] A. Armato, L. Fanucci, E. P. Scilingo y D. De Rossi, «Low-error digital 
hardware implementation of artificial neuron activation functions and 
their derivative,» Microprocessors and Microsystems, vol. 35, nº 6, pp. 
557-567, 2011.  

[18] S. Roy y P. Banerjee, «An algorithm for trading off quantization error 
with hardware resources for MATLAB-based FPGA design,» IEEE 
Transactions on Computers, vol. 54, nº 7, pp. 886-869, 2005.  

[19] MathWorks, «Simulink,» [En línea]. Available: 
http://www.mathworks.com/products/simulink. [Último acceso: june 
2014]. 

[20] MathWorks, «MATrix LABoratory de MathWorks (Matlab),» [En 
línea]. Available: http://www.mathworks.com. [Último acceso: june 
2014]. 

[21] Altera, «Altera Corporation,» [En línea]. Available: 
http://www.altera.com/. [Último acceso: june 2014]. 

[22] Xilinx, «Xilinx Corporation,» [En línea]. Available: 
http://www.xilinx.com. [Último acceso: june 2014]. 

[23] Altera, «DSP Builder,» [En línea]. Available: 
http://www.altera.com/products/software/products/dsp/dsp-
builder.html. [Último acceso: june 2014]. 

[24] Xilinx, «System Generator for DSP,» [En línea]. Available: 
http://www.x.com/products/design-
tools/vivado/integration/sysgen.html. [Último acceso: june 2014]. 

[25] Altera, «Quartus II,» [En línea]. Available: 
https://www.altera.com/products/design-software/fpga-design/quartus-
prime/overview.html. [Último acceso: june 2014]. 

[26] Xilinx, «Vivado Design Suite,» [En línea]. Available: 
https://www.xilinx.com/products/design-tools/vivado.html. [Último 
acceso: june 2017]. 

[27] S. T. Pérez, C. Osorio, J. L. Vásquez, J. B. Alonso y C. M. Travieso, 
«Design methodology of a fully parallelized Neural Network on a 
FPGA,» de 8th WSEAS International Conference on Circuits, Systems, 
Signal and Telecommunications (CSST '14), 2014.  

[28] MathWorks, «Matlab Neural Network Toolbox,» [En línea]. Available: 
http://es.mathworks.com/products/neural-network. [Último acceso: june 
2014]. 

[29] A. V. Oppenheim y R. W. Schafer, Discrete-time signal processing, 
Prentice-Hall, 1989.  

[30] Altera, «Intel Quartus Prime Design Software Overview,» [En línea]. 
Available: https://www.altera.com/products/design-software/fpga-
design/quartus-prime/overview.html. [Último acceso: june 2017]. 

[31] Altera, «ModelSim-Altera Edition,» [En línea]. Available: 
https://www.altera.com/products/design-software/model---
simulation/modelsim-altera-software.html. [Último acceso: june 2017].

[32] MathWorks, «HDL Workflow Advisor,» [En línea]. Available: 
https://www.mathworks.com/examples/matlab-hdl-
coder/mw/hdlcoder_product-mlhdlc_tutorial_hdlcodegen-basic-hdl-
code-generation-with-the-workflow-advisor. [Último acceso: june 
2017]. 

[33] MathWorks, «Fixed-Point Advisor,» [En línea]. Available: 
https://es.mathworks.com/help/fixedpoint/ug/fixed-point-advisor.html. 
[Último acceso: june 2017]. 

[34] MathWorks, «HDL Workflow Advisor,» [En línea]. Available: 
https://www.mathworks.com/examples/matlab-hdl-
coder/mw/hdlcoder_product-mlhdlc_tutorial_hdlcodegen-basic-hdl-
code-generation-with-the-workflow-advisor. [Último acceso: june 
2017]. 

 


