
EasyChair Preprint

№ 583

Design methodology of sigmoid functions for

Neural Networks using lookup tables on FPGAs

Santiago Tomás Pérez Suárez

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 21, 2018

1

Design methodology of sigmoid functions for Neural
Networks using lookup tables on FPGAs

Santiago T. Pérez Suárez
Signals and Communications Department

University of Las Palmas de Gran Canaria (ULPGC)
Las Palmas de Gran Canaria, Spain

santiago.perez@ulpgc.es

Abstract—Sigmoid functions are used in artificial Neural
Networks (NN). Normally, NNs are implemented in processors
systems. In some scenarios these systems do not reach real time
operation. In these cases, the NNs can be implemented in a Field
Programmable Gate Array (FPGA). The sigmoid functions are not
directly implementable in fixed point format, and some
approximations must be used. A very used one is the lookup table
technique. In this paper, an advanced design method based on
Matlab and Simulink is presented. The Signal to Noise Ratio
power is used to measure the approximation functionality. The
automatic generation code to a hardware description language can
be made.

Keywords—design methodology, digital circuit, FPGA, Matlab,
Simulink, VHDL, Verilog, fixed point, floating point, sigmoid
function, Neural Network, lookup table, Signal to Noise Ratio

I. INTRODUCTION

The sigmoid functions [1-8], particularly the hyperbolic
tangent [9], are widely used as transfer functions in artificial
Neural Networks (NN) [10]. The artificial NNs are usually
implemented on a computer or microprocessor system in
floating point arithmetic, for the training and testing phases. But
sometimes these systems are not fast enough, in such cases the
NNs implementations must be developed with others
technologies for reach real time operation. It is also necessary to
change the NN support if the level of power consumed or area
are exceeded.

Floating point arithmetic can be used on digital devices, but
these operations need a high number of clock cycles, great
consumption of power and hardware resources [11]. However,
floating point numerical representation has a wide range with a
good resolution. It is possible to use fixed point versus floating
point arithmetic, justified by its better performances. Fixed point
increases the operating speed, the latency can be reduced to one
clock cycle. The hardware resources and consumed power in
fixed point are smaller than floating point. The drawback in
fixed point is that the designer must care the range of the signals
with the necessary resolution. This can be solved by signal
studies with appropriate mathematical resources and strategies
[12]. It should be emphasized that in fixed point the data format
is totally arbitrary, which improves the performances. On the
other hand, the use of floating point requires the election of a
standard [13], increasing the number of bits and decreasing
physical performances. Using a non-standardized floating point

representation complicates the design process. For these
reasons, this study is based on fixed point format, allowing to
the sigmoid functions be included in NN for high performance
operation.

Field Programmable Gate Arrays (FPGA) can be used for
the implementation. The great advantage of FPGAs is that they
are programmable by the designer, without having to be sent it
to a factory. Others FPGAs advantages are that they have low
cost of non-recurring engineering, minimum development time,
ease debug and verification, shorter time to market, high data
parallelism, flexible data format, and flexible pipelined [10]. For
these reasons the modelling is presented for FPGA devices.

II. SIGMOID FUNCTIONS

Transfer functions used in NNs are usually continuous and
derivable, the derivability is a desirable requirement for NN
training algorithms. Normally, two sigmoid functions are used,
which satisfy these conditions. One of them is unipolar, simply
called sigmoid, or logsig in Matlab notation. Its mathematical
expression is given by equation 1, and its representation is in
Fig. 1. The output of this function is restricted to the interval
(0,+1). The second function is bipolar and coincides with the
hyperbolic tangent, it is called tansig in Matlab notation. Its
mathematical expression is given by equation 2, its
representation is in Fig. 1. The output of this function is
restricted to the interval (-1,+1). It can be easily demonstrated
that equations 3 and 4 are satisfied, which shows that they are
analogous functions. (ݔ)ݕ = (ݔ)݃݅ݏ݈݃ = 11 + ݁ି௫ (1)

(ݔ)ݕ = (ݔ)݃݅ݏ݊ܽݐ = ݁ା௫ − ݁ି௫݁ା௫ + ݁ି௫ (2)

(ݔ)݃݅ݏ݊ܽݐ = (ݔ2)݃݅ݏ݃2݈ − 1 (3)

(ݔ)݃݅ݏ݈݃ = 12 ቂ݃݅ݏ݊ܽݐ ቀ2ݔቁ + 1ቃ (4)

2

Fig. 1. The unipolar and bipolar sigmoid functions.

III. STATE OF THE ART OF HARDWARE IMPLEMENTATION FOR

SIGMOIDAL FUNCTIONS

It should be emphasized that both functions are non-linear,
because they include division and exponential operations, so
they are the bottleneck of the NN design. That is, the
implementation of sigmoid functions is not immediate in fixed-
point arithmetic and they are usually approximated with some
method. One approach is using Look-up Tables (LUTs), which
store samples of the function; this method needs a lot of
hardware resources but gets a high speed [4]. Other
approximation form is the Piece Wise Lineal (PWL), which
approaches each section with a straight line [14]. It is also
possible to approximate each section with polynomials, usually
of grade two [14]. Other authors use piecewise Taylor
approximations [15]. Other approaches propose specific shape
functions that consider the characteristics of the sigmoid
functions; firstly where its derivative tends to a constant, and
secondly its symmetry characteristics [2, 4]. Other authors use
functions that look like sigmoid functions [16], in such cases the
error is bounded.

The comparison of these solutions is based on the
functionality, which is measured with the error. There are
several types of errors, and sometimes implementations are
compared with different error values and error types [1, 17, 18].
It should be noted that the effect of the number of bits in the
representation is chosen discreetly or arbitrarily by authors [4,
14], usually based on the experience or previous works.

Usually, authors extract area and speed, but almost never the
consumed power [4, 14]. Many authors study the speed as the
latency of the system, number of clock cycles required, but
without estimating the maximum frequency [14].

IV. OBJECTIVES

The objective is to fix a methodology for sigmoidal functions
designed on digital programmable devices, in particular, the
hyperbolic tangent. The approximation type will be based on
LUTs implemented with logical elements.

There are many design methods, this development focuses
on Simulink [19] of Matlab [20] using fixed point arithmetic.
This design flow is fast and flexible, allowing to check different
architectures and the effect of the binary format; this makes
possible to scan the number of bits in a systematic and extensive
form.

Once the systems have been chosen, which reach the
functionality with the smaller sizes of fixed-point representation,
from Simulink can be generated the project in a standard
Hardware Description Language (HDL). One of them is Very
High Speed Integrated Circuit Hardware Description Language
(VHDL), and the other is Verilog. The generated project is
formed by the digital implementation and files with input and
output signals, to perform the necessary simulations.

It is also possible to design in Simulink for the two main
FPGA providers, which are Altera [21] and Xilinx [22]; with
their own tools, which are respectively DSP Builder [23] and
System Generator [24]. In the design tools of these
manufacturers it is possible to extract the performances for the
chosen device [25, 26].

To show this design method the manufacturer Altera has
been chosen, and the project has been generated in Verilog
language. In this work it is assumed that NN training is
performed outside the device, this is called offline type [27], so
it is not considered the approximation of the first derivative of
the function. For example, for offline training can be used the
Neural Network Toolbox [28] from Matlab.

V. THE MEASURE OF FUNCTIONALITY

There are four parameters that can be evaluated in digital
implementations: the functionality, the area, the power and the
system speed. The intention is to analyse approximations with
equal or similar functionality; afterwards, the three remaining
parameters are contrasted. The first question is how to measure
functionality, clearly associated with the error, but with different
versions.

Let the function y=f(x) be the one to be approximated, and
let ya=fa(x) be the expression of the approximation; the error is
defined as E(x)=ya-y=fa(x)-f(x), which generally has null mean
value. The absolute error is defined as Eabs(x)=|E(x)|.

For comparing designs, the maximum value of the absolute
error |E(x)|max can be used, as in [14]. Although, this is an
important measure, a good approximation can have a high value
error only in a small interval; anyway, it is important to take it
in account.

Other measure is the mean value of the absolute error [14];
which measures an approximation on an interval, but high error
values can be masked. Therefore, both measures can be
combined, as in [7]. Occasionally, the square root of the mean
value of the square error has been used.

The relative error, defined as Erel(x)=(ya-y)/y=(fa(x)-
f(x))/f(x) can also be used, no reference of it has been found. The
relative error can be used for comparing same type functions, or
different type, for the same input range. The relative error grows
enormously when the value to be approximated tends to zero;
moreover, it is not defined if the function value is zero and the
approximation value is not zero. The absolute peak value, or
average absolute value, of relative error can be considered, with
the same previous observations. The relative error allows
compare different function types, as it is shown in Fig. 1,
because the numerator introduces the error and the denominator
introduces the value of the function; besides, it can be expressed
in per centum values.

3

To avoid uncertainty when the signal is zero, the error can
be measured against the peak-to-peak function value (equation
5). This value could be used to compare approximations of
different functions. ܧ(ݔ) = ௫ݕ(ݔ)ܧ − (5)ݕ

Different authors use different error types, which makes
comparison difficult. A relative measure is proposed, which is
the quotient between function and error, which can also be called
signal and noise, respectively. The sampled signals, input x and
output y, before quantizing and coding, are discrete time analog
values; and also the generated noise signal. The Signal to Noise
Ratio (SNR) [29] is defined in expression 6. ܴܵܰ = ∑ ∑ሾ݅ሿଶୀݕ ሾ݅ሿଶୀܧ (6)

The numerator is the energy of (k+1) samples of the signal
to be approximated, the denominator is the energy of (k+1)
samples of the corresponding error. Therefore, the equation 6 is
the ratio of the energies of signal and error. The equation 6
coincides with the relation between the signal power and the
noise power. This concept is common in analog and digital
communications. Often, this relation is expressed in decibels
(equation 7) [29]. ܴܵܰ(݀ܤ) = ଵ(ܴܵܰ) (7)݃10݈

VI. THE MODEL AND ITS PARAMETERS

The Simulink block diagram for the approximation is shown
in Fig. 2, where the arithmetic used is two’s complement. The 1-
D Lookup Table block is the element that stores the samples for
the approximation. In Fig. 2 the LUT stores 16 words, so its
address bus has 4 bits; Simulink type is denoted as ufix4, 4 bits
unsigned fixed-point. The words in the LUT have 1 sign bit, 1
bit for the integer part and 7 fractional bits, (sfix9_En7) type; so
in the output the values ±1 are representable, and the function is
saturable. Besides, the 1-D Lookup Table block does not allow
using a sign bit without any bit for the integer part. The input
format has 1 sign bit, 2 bits for the integer part and 6 fractional
bits, (sfix9_En6) type. The represented input range is [-4,+4-2-

6]. The multiplier and adder in Fig. 2 perform a conversion of the
input x to the LUT address bus. In this case, the conversion is
from [-3.75,+3.75] to [0,+15]. The constants G and C can be
represented without error under certain conditions, this will be
explained below.

Fig. 2. The Simulink approximation model for 16 words LUT.

Fig. 3 shows the hyperbolic tangent function for [-4,+4]
input range; also, the approximation and the error are shown. It
should be noted that the LUT samples are evenly spaced in the
input range. The SNR measured is 23.36 dB, according to
expression 7.

Fig. 3. The hyperbolic tangent function, 16 words LUT output and error.

Once the model has been established, a set of parameters can
be discussed: the format of the input signal, the number of words
stored in the LUT, and the format of the words stored in the
LUT. The number of words stored in the LUT is a power of 2;
so this takes advantage of the address bus. Then, M words will
be addressed by n address bits, such that M=2n. The output
format has 1 bit sign and 1 bit for integer part, as was explained
previously. But the number of bits of the fractional part (nbfo)
can be modified.

In the input the size of fractional bits (nbfi) can be changed,
which affects the resolution. The question is how many bits to
use for the input integer part (nbii). When the number of bits of
the input fractional part is large the input range tends to [-
2nbii,+2nbii); in fact, the range will be [-2nbii,+2nbii-2nbfi]. Then,
with nbii equal to 1 the representation range is [-2,+2-2nbfi], with
nbii equal to 2 the range is [-4,+4-2nbfi], with nbii equal to 3 the
range is [-8,+8-2nbfi], etc. It is proposed to represent the function
in an interval centred in the origin, and saturate the output to ±1
values outside this interval, since the function has two horizontal
asymptotes. For this purpose, the SNR is measured when a
sawtooth signal is introduced in the range [-16,+16]. Fig. 4
shows the saturation error outside the range [-4,+ 4], which is
the input range with 2 bits for the integer part when the number
of fractional bits grows indefinitely. That is, the saturation
approximation is given by expression 8. The SNR obtained is
81.25 dB, which is a high value. This is the maximum SNR for
the input range [-16,+16] when the hyperbolic tangent is
approximated in the interval [-4,+4].

Fig. 4. The saturation error outside the range [-4,+ 4].

4

(ݔ)ݏݕ = ൝ −1 ݔ ൏ (ݔ)݃݅ݏ݊ܽݐ4− −4 ݔ +4+1 +4 ൏ ݔ (8)

With the saturation out of the range [-2,+2], with 1 integer
bit, the SNR for input range [-16,+16] is 46.61 dB; a high value
but easily surmountable. The saturation out of the range [-8,+8],
for 3 integer bits, the SNR for input range [-16,+16] is 150.73
dB, extremely high and unnecessary value. Therefore, the
number of integer bits in the input is set to 2, the approximation
will be performed within the range [-4,+4], and the circuit will
saturate outside this range (equation 9). For measure the SNR of
the approximation, the input signal will be a sawtooth signal in
the range [-4,+4]. This coincides with the assumption that all
values in the input for that range are equally likely.

(ݔ)ܽݏݕ = ൝ −1 ݔ ൏ (ݔ)ܽݕ4− −4 ݔ +4+1 +4 ൏ ݔ (9)

Finally, the parameters to be varied will be: the number of
fractional bits of the input signal (nbfi), the number of bits of the
LUT address bus (n), and the number of fractional bits for stored
words in the LUT (nbfo). It is convenient to revise the final
format of the input signal; 1 sign bit, 2 bits for the integer part
and nbfi fractional bits; sfix(1+2+nbfi)_En(nbfi) type. Similarly,
the output signal has 1 sign bit, 1 integer bit and nbfo fractional
bits; this is a sfix(1+1+nbfo)_En(nbfo) type.

The conversion of the input signal to the LUT address is the
expression 10; obviously, A (address) is an integer between 0
and (2n-1). ܣ = ݔܩ)	ݎ݁݃݁ݐ݊݁	ݐݏ݁ݎܽ݁݊ + 	(ܥ (10)

The constants values G and C are given by expressions 11
and 12; where xmin is -4, xmax is +4 and M is 2n, and n is the
number of bits for LUT address. Since the extremes of x and M
are entire powers of 2, these constants can be expressed as
powers of 2 and have an exact representation in fixed-point
format. ܩ = ெ௫ೌೣି௫ = 2(ିଷ) (11)

ܥ = ܯ − 12 = 2(ିଵ) − 2(ିଵ) (12)

VII. SCAN OF MODEL PARAMETERS

For n equal to 4 (M=16) the number of fractional bits in input
and output (nbfi, nbfo) was varied between 0 and 24. The SNR
was measured in dBs. The maximum SNR obtained was 23.36
dB, and the system gets this value with 6 input fractional bits
and 7 output fractional bits. It should be emphasized that for 16
words LUT, 625 configurations were simulated. The value of
fixed point output signal is stored in Matlab variables space in
floating point format; afterwards, the SNR is measured in dBs.
Fig. 5 shows the shape of SNR in dBs for 16 words LUT against
input and output fractional bits. In other words, in order to reach
the maximum SNR with the 16 words LUT, at least 6 input
fractional bits and 7 output fractional bits are required, which is

marked in Fig. 5. Increasing fractional bit numbers above these
values do not increase the SNR.

Fig. 5. The shape of SNR in dBs for 16 words LUT.

For the implementation the values 6 and 7 are chosen for nbfi
and nbfo because the maximum SNR is obtained with the
minimum number of bits, this system is shown in Fig. 2. From
Simulink the Verilog project was generated for the Altera device
EP2AGX260FF35I5 of Arria II GX family. The project was
compiled with Quartus II [30] and simulated with ModelSim-
Altera Edition [31] and the Simulation Waveform Editor
included in Quartus II. The schematic circuit is in Fig. 6; which
shows the input and output of the function, the clock, the reset,
and input and output enable signals. In short, only one FPGA
implementation was generated, the most convenient case of the
625 Simulink simulations.

Fig. 6. The schematic circuit of 16 words LUT.

The ModelSim simulation is shown in Fig. 7 for 25 MHz
clock frequency. Only the input and output signals are shown in
this figure; avoiding auxiliaries signals for simplification. The
simulation input rate is 25·10+6 values per second. The input and
output registers, shown in Fig. 6, set the latency of the system in
2 clock cycles. These registers, which are not shown in Fig. 2 for
simplification, are necessary in Simulink for generating the
clock signal in the project. The output Y_OUT of Fig. 7 is equal
to the output signal in Simulink. This can be ensured because
when the project is generated from Simulink, the input and
output test signals (testbench) are also generated. The fixed point

5

input signal is used in circuit simulation with ModelSim. On the
other hand, the output signal of this simulator is compared with
the Simulink fixed point output signal, at the end the message
"test completed passed" indicates that output signals have the
same values.

Fig. 7. The circuit simulation with ModelSim of 16 words LUT.

In Quartus II hardware resources were estimated, for the
previous device the area was evaluated as the number of
Combinational Adaptive Lookup Tables (ALUTs); for this
implementation were needed 8 ALUTs. With the TimeQuest
Timing Analyser of Quartus II it was found that the maximum
operating frequency of the system was 909.09 MHz; for the
worst case, which among other things, takes into account the
temperature at which the device operates. Finally, with the
PowerPlay Power Analyser of the Quartus II, for a clock
frequency of 25 MHz, a dynamic power of 0.80 mW and static
power of 858.86 mW was obtained, that gives a total of 859.66
mW.

The power estimation was done with a fixed clock
frequency, in order to compare the consumed power of different
designs for the same data rate. This clock frequency must be less
than the smallest of maximum frequencies of the compared
designs. On the other hand, all power estimations were made for
an ambient temperature of 25°C, without heatsink and no forced
air flow. The power estimation was performed after loading the
Value Change Dump File, which sets the form of change of the
input signals. This is an input file for the power analyser, which
stores the change rates and static probabilities of signals. The
Value Change Dump File was generated with the Simulation
Waveform Editor, where the clock frequency was set to 25 MHz
and the binary input signals were randomly varied.

VIII. DESIGN FLOW

Fig. 8 shows the design flow process. Between the floating
point input signal and the fixed point model, a data type
converter block exists and is not shown for simplification in Fig.
2. Similarly, a data type converter block exists at the output of
the Simulink model. These converter blocks are not
implemented in hardware, the input and output of the
approximated function are in fixed point format. The Simulink
model can be loaded, from Matlab, with the number of LUT
address bits (n), the number of input fractional bits (nbfi) and the
number of output fractional bits (nbfo).

Fig. 8. The design flow process from floating point to FPGA implementation.

The SNR is calculated with the exact floating point value of
the hyperbolic tangent and the floating point values of the fixed
point output signal. For the model with the desired functionality,
and using HDL Workflow Advisor [32], it is generated the HDL
project and the testbench. Not all Simulink blocks are supported
by the HDL Workflow Advisor. In particular, only blocks of the
HDL Coder library are implementable. But not all
configurations of these blocks permit implementation, although
they are simulable. Generating these files manually can be an
impossible task, but this automatic generation can be performed
in minutes. It should be noted that in HDL Workflow Advisor a
synthesis tool is chosen, which has been installed previously in
the computer; in this case Quartus II of Altera. Besides, the type
of FPGA is chosen, and for the testbench allows set the clock,
reset and enable signals. Once the HDL Workflow Advisor has
completed the files generation, it is possible to implement the
FPGA and obtain the hardware resources, the maximum
frequency and the consumed power. With the Simulation
Waveform Editor can be performed functional and timing
simulations; also, testbench simulations can be performed with
ModelSim. These last simulations take the input signal that was
used in Simulink. On the other hand, ModelSim simulation
compares its output with the Simulink output signal, which
verifies the circuit operation. The implementation and
simulations must not be dissociated, some simulations are
necessary to set parameters for the power estimator.

Different designs are characterized by performances,
underlined in Fig. 8: the functionality, measured as the SNR in
dB; the area, hardware resources occupied in the FPGA; the
speed, measured as the maximum frequency operation; and the
consumed power for a certain operating frequency.

6

IX. EXPERIMENTS AND RESULTS

In the previous section has been set: the model, the
parameters, the design methodology and the measurement of
performances. This section presents the results when the design
parameters are varied. For this purpose, the number of bits in
LUT address bus (n) was varied until 16. For each n value, the
number of input and output fractional bits, nbfi and nbfo
respectively, were varied from 0 to 24. A similar study to the
previous section was done, the results of SNR were stored in
matrices of 25 by 25 elements, similar behaviours were obtained
to Fig. 5. For each n value, only the case of maximum SNR with
the minimum numbers of bits was implemented, and its
performances were evaluated. Fig. 9 shows the 16 responses
obtained. Obviously, if the number of words in the LUT
increases, the maximum SNR grows, but it is necessary to
increase the number of input and output fractional bits. In
Simulink the number of simulations for generating Fig. 10 was
10,000 (16x25x25), which were performed by running a loop for
each n value.

Fig. 9. The SNR in dBs versus input and output fractional bits, for each number
of bits in LUT address bus.

A. Measurements and results with no device dependency

Fig. 10 shows the maximum SNR for each n value. The SNR
is almost linear versus n, and increases 6 dB per bit. The SNR in
equation 6 is multiplied by 4 when the number of words is
doubled in the LUT. In Fig. 11 it is shown the input fractional
bits versus the address bus size for the maximum SNR. In
general, the number of input fractional bits is equal to the
number of address bits plus four. This tendency indicates that it
is necessary to increase one bit in the input when a bit is
increased in the address bus; that is, the number of words in the
LUT is doubled. Fig. 12 shows the number of output fractional
bits versus the size of the address bus, necessary to reach the
maximum SNR, an almost linear tendency exists. In general, the
number of bits required in the output is equal to the number of
address bits plus four. It is necessary to increase one bit in the
output when a bit is increased in the address bus; that is, the
number of words is doubled in the LUT.

Fig. 10. The maximum SNR in dBs for each n value .

Fig. 11. The input fractional bits against the address bus size for the maximum
SNR.

Fig. 12. The output fractional bits against the address bus size for the maximum
SNR .

7

It should be emphasized that for 16 bits in the address bus
the Verilog design size is 65,723 lines, and the testbench is
13,107,541 lines, including blank lines and comments; a hand
coded design using a HDL would have been impossible to
generate.

B. Measurements and results with device dependency. The
Altera Arria II GX family

For this family, the device EP2AGX260FF35I5 was chosen.
One implementation was developed for each size of the LUT
address bus; it was for the maximum SNR and minimum
numbers of input and output fractional bits. The results of area,
speed and power performances are shown below. It should be
noted that the HDL Workflow Advisor does not allow to
generate the project for one bit in the address bus; as this is a
trivial case, the study from 2 to 16 bits in this bus is presented.
The area versus the number of words in the LUT is shown in
Fig. 13, which has a nearly linear shape. The area blocks of this
device are Combinational ALUTs (Adaptive Lookup-Tables).
The area depends heavily on the number of words but weakly on
the number of bits, for the maximum SNR. On average, 0.2
Combinational ALUTs per word stored in the LUT is needed.

Fig. 13. Hardware resources against the number of words in the LUT (Altera
device EP2AGX260FF35I5 of Arria II GX family).

The maximum frequency versus n, (and versus M) for the
maximum SNR, are not linear. The minimum allowed period for
each case is represented in Fig. 14, it has almost linear behaviour
by zones. In any case, a clear tendency is not observed for the
speed.

Finally, the power was estimated for the previous cases (Fig.
15), the clock frequency was 25 MHz, smaller than the
minimum. The represented power is the sum of dynamic and the
static powers, the behaviour is almost linear against the number
of words (0.0026 mW/word).

Fig. 14. The minimum period against the size of the LUT address bus for the
maximum SNR (Altera device EP2AGX260FF35I5 of Arria II GX family).

Fig. 15. The consumed power against the number of words in the LUT for 25
MHz clock frequency (Altera device EP2AGX260FF35I5 of Arria II GX
family).

It is possible to define a Quality Factor (expression 13),
which includes the physical performances and functionality; the
SNR obeys expression 6, not in dBs. In expression 13 the
maximum frequency is expressed in hertz, the area is the number
of Combinational ALUTs and the power is introduced in watts.
The Quality Factor has an almost linear behaviour for n greater
than 10, generally this value increases with M, according to Fig.
16. This factor can be used to compare different designs. ܳܨ = ೌೣௌேோ∙௪ (13)

8

Fig. 16. The Quality Factor versus the number of words in the LUT (Altera
device EP2AGX260FF35I5 of Arria II GX family).

C. Measurements and results with device dependency. The
Altera Cyclone IV GX, MAX 10 and Stratix V families

Analogous results were obtained for other devices of
different Altera FPGA families:

- the EP4CGX150DF31I7AD device of the Cyclone IV GX
family,

- the 10M50SFE144I7G device of the MAX 10 family,

- the device 5SGXMBBR3H43I4 of the family Stratix V.

In the four devices, included the Arria II GX family, the area
is strongly linear versus the number of words in the LUT; for the
speed is not observed a clear rule, vaguely the minimum period
allowed in the clock signal is almost linear piecewise versus the
number of bits of the LUT address bus; finally, the consumed
power is strongly linear versus the number of words in the LUT.
In all cases the defined Quality Factor grows with the number of
words; sometimes it is almost linear.

It should be noted that the logical blocks of the FPGAs
families are:

- Combinational ALUTs (Adaptive Lookup-Tables), for
Arria II GX family;

- Logic Elements, similar but not equal, for Cyclone IV GX
and MAX 10 families,

- and Adaptive Logic Modules for the Stratix V family.

For the largest circuit, with 16 bits in the LUT address bus
and maximum SNR; the area for the devices is shown in Table
I. The Logic Elements of the Cyclone IV GX and MAX 10
families have similar behaviour for this design. Analogous, the
Combinational ALUTs of the Arria II GX family and the
Adaptive Logic Modules of the Stratix V are similar for
implementing this design.

TABLE I. THE HARDWARE RESOURCES FOR 16 BITS IN THE LUT
ADDRESS BUS

FAMILY DEVICE ELEMENT
Area for 16
bits in LUT
address bus

Arria II GX EP2AGX260FF35I5
Combinational
Adaptive Lookup-
Tables

12,828

Cyclone IV GX EP4CGX150DF31I7AD Logic Elements 45,108
MAX 10 10M50SFE144I7G Logic Elements 45,172

Stratix V 5SGXMBBR3H43I4
Adaptive Logic
Modules 12,009

X. CONCLUSIONS

One of the objectives of this contribution is to show a fast
and flexible design method for digital devices, which allows
verifying different architectures and data formats for a system.
In other words, the method allows exploring the space solutions.
These advanced design techniques are embedded in Matlab for
floating point models in files with Matlab extension [33] or for
Simulink systems [34] and are connected to a digital synthesis
tool. This method allows studying the effect of the number of
bits in a wide range, which many authors only study in a discreet
form by the limitation of the used method. Optimized systems
can be transferred to a FPGA.

Altera and Xilinx have their own environments for designing
as a block diagram in Simulink; these are DSP Builder [23] and
System Generator [24] respectively, but handling fixed point
format is more difficult.

The SNR has been introduced for measuring the
functionality, this allows to compare the quality of an
approximation of the sigmoid function (expression 1) to an
approximation of the hyperbolic tangent (expression 2), for the
same input range. On the other hand, the functionality estimation
with the SNR in dBs allows observing linearities in
performances.

ACKNOWLEDGMENT

Acknowledgment is expressed to Altera for donating
software and licenses within its University Program.

REFERENCES

[1] A. Armato, L. Fanucci, G. Pioggia and D. D. Rossi, "Low-error
approximation of artificial neuron sigmoid function and its derivative,"
Electronics Letters, vol. 45, no. 21, pp. 1082- 1084, 2009.

[2] K. Basterretxea, J. M. Tarela y I. del Campo, «Approximation of sigmoid
function and the derivative for hardware implementation of neural
networks,» IEE Proceedings-Circuits Devices and Systems, vol. 151, nº
1, pp. 18-24, 2004.

[3] I. d. Campo, R. Finker, J. Echanobe y K. Basterretxea, «Controlled
accuracy approximation of sigmoid function for efficient FPGA-based
implementation of artificial neurons,» Electronics Letters, vol. 49, nº 25,
p. 1598–1600, 2013.

[4] P. K. Meher, «An Optimized Lookup-Table for the Evaluation of
Sigmoid Function for Artificial Neural Networks,» de 18th IEEE/IFIP
International Conference on VLSI and System-on-Chip (VLSI-SoC
2010), 2010.

[5] M. C. Miglionico y F. Parillo, «A novel approach for implementing of a
log-sigmoid function on a FPGA device using Sfloat24 Math library - An
modelling,» de Proceedings of the International Symposium on the
Analytic Hierarchy Process, 2013.

9

[6] S. Ngah, R. A. Bakar, A. Embong y S. Razali, «Two-steps
implementation of sigmoid function for artificial neural network in Field
Programmable Gate Array,» ARPN Journal of Engineering and Applied
Sciences, vol. 11, nº 7, pp. 4882-4888, 2016.

[7] M. T. Tommiska, «Efficient digital implementation of the sigmoid
function for reprogrammable logic,» IEE Proceedings-Computers and
Digital Techniques, vol. 150, nº 6, pp. 403-411, 2003.

[8] C.-H. Tsai, Y.-T. Chih, W. H. Wong y C.-Y. Lee, «A Hardware-Efficient
Sigmoid Function With Adjustable Precision for a Neural Network
System,» IEEE Transactions on Circuits and Systems - II: Express
Briefs, vol. 62, nº 11, pp. 1073-1077, 2015.

[9] M. Panicker y C.Babu, «Efficient FPGA Implementation of Sigmoid and
Bipolar Sigmoid Activation Functions for Multilayer Perceptrons,» IOSR
Journal of Engineering (IOSRJEN), vol. 2, nº 6, pp. 1352-1356, 2012.

[10] A. R. Omondi y J. C. Rajapakse, FPGA Implementations of Neural
Networks, Springer, 2006.

[11] M. A. Cavuslu, C. Karakuzu, S. Sahin y M. Yakut, «Neural network
training based on FPGA with floating point number format and it's
performance,» Neural Computing and Applications, vol. 20, nº 2, pp.
195-202, 2011.

[12] MathWorks, «Fixed-Point Designer,» [En línea]. Available:
http://www.mathworks.es/products/fixed-point-designer. [Último
acceso: june 2017].

[13] IEEE, «IEEE Standard for Floating-Point Arithmetic,» [En línea].
Available: http://ieeexplore.ieee.org/servlet/opac?punumber=4610933,
permanent link. [Último acceso: june 2017].

[14] S. Vassiliadis, M. Zhang y J. G. Delgado, «Elementary Function
Generators for Neural-Network Emulators,» IEEE Transactions on
Neural Networks, vol. 11, nº 6, pp. 1438-1449, 2000.

[15] B. Lee y N. Burgess, «Some results on Taylor-series function
approximation on FPGA,» de 37th Asilomar Conference on Signals,
Systems and Computers, 2003.

[16] E. Soria-Olivas, J. D. Martín-Guerrero, G. Camps-Valls, A. J. Serrano-
López, J. Calpe-Maravilla y L. Gómez-Chova, «A Low-Complexity
Fuzzy Activation Function for Artificial Neural Networks,» IEEE
Transactions on Neural Networks, vol. 14, nº 6, pp. 1576-1579, 2003.

[17] A. Armato, L. Fanucci, E. P. Scilingo y D. De Rossi, «Low-error digital
hardware implementation of artificial neuron activation functions and
their derivative,» Microprocessors and Microsystems, vol. 35, nº 6, pp.
557-567, 2011.

[18] S. Roy y P. Banerjee, «An algorithm for trading off quantization error
with hardware resources for MATLAB-based FPGA design,» IEEE
Transactions on Computers, vol. 54, nº 7, pp. 886-869, 2005.

[19] MathWorks, «Simulink,» [En línea]. Available:
http://www.mathworks.com/products/simulink. [Último acceso: june
2014].

[20] MathWorks, «MATrix LABoratory de MathWorks (Matlab),» [En
línea]. Available: http://www.mathworks.com. [Último acceso: june
2014].

[21] Altera, «Altera Corporation,» [En línea]. Available:
http://www.altera.com/. [Último acceso: june 2014].

[22] Xilinx, «Xilinx Corporation,» [En línea]. Available:
http://www.xilinx.com. [Último acceso: june 2014].

[23] Altera, «DSP Builder,» [En línea]. Available:
http://www.altera.com/products/software/products/dsp/dsp-
builder.html. [Último acceso: june 2014].

[24] Xilinx, «System Generator for DSP,» [En línea]. Available:
http://www.x.com/products/design-
tools/vivado/integration/sysgen.html. [Último acceso: june 2014].

[25] Altera, «Quartus II,» [En línea]. Available:
https://www.altera.com/products/design-software/fpga-design/quartus-
prime/overview.html. [Último acceso: june 2014].

[26] Xilinx, «Vivado Design Suite,» [En línea]. Available:
https://www.xilinx.com/products/design-tools/vivado.html. [Último
acceso: june 2017].

[27] S. T. Pérez, C. Osorio, J. L. Vásquez, J. B. Alonso y C. M. Travieso,
«Design methodology of a fully parallelized Neural Network on a
FPGA,» de 8th WSEAS International Conference on Circuits, Systems,
Signal and Telecommunications (CSST '14), 2014.

[28] MathWorks, «Matlab Neural Network Toolbox,» [En línea]. Available:
http://es.mathworks.com/products/neural-network. [Último acceso: june
2014].

[29] A. V. Oppenheim y R. W. Schafer, Discrete-time signal processing,
Prentice-Hall, 1989.

[30] Altera, «Intel Quartus Prime Design Software Overview,» [En línea].
Available: https://www.altera.com/products/design-software/fpga-
design/quartus-prime/overview.html. [Último acceso: june 2017].

[31] Altera, «ModelSim-Altera Edition,» [En línea]. Available:
https://www.altera.com/products/design-software/model---
simulation/modelsim-altera-software.html. [Último acceso: june 2017].

[32] MathWorks, «HDL Workflow Advisor,» [En línea]. Available:
https://www.mathworks.com/examples/matlab-hdl-
coder/mw/hdlcoder_product-mlhdlc_tutorial_hdlcodegen-basic-hdl-
code-generation-with-the-workflow-advisor. [Último acceso: june
2017].

[33] MathWorks, «Fixed-Point Advisor,» [En línea]. Available:
https://es.mathworks.com/help/fixedpoint/ug/fixed-point-advisor.html.
[Último acceso: june 2017].

[34] MathWorks, «HDL Workflow Advisor,» [En línea]. Available:
https://www.mathworks.com/examples/matlab-hdl-
coder/mw/hdlcoder_product-mlhdlc_tutorial_hdlcodegen-basic-hdl-
code-generation-with-the-workflow-advisor. [Último acceso: june
2017].

