
EasyChair Preprint
№ 3148

Implementing Bottom-up Procedures with Code
Trees: a Case Study of Forward Subsumption

Andrei Voronkov

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

April 12, 2020



UPMAIL Technical Report No. 88

October 3, 1994

Implementing Bottom-up Procedures with

Code Trees: a Case Study of Forward

Subsumption

Andrei Voronkov

1

Computing Science Department

Uppsala University

Box 311, S-751 05 Uppsala,

Sweden

email voronkov@csd.uu.se

1

Supported by Swedish TFR grant no. 93-409



Abstract

We present an implementation technique for a class of bottom-up logic procedures. The technique

is based on code trees. It is intended to speed up most important and costly operations, such as

subsumption and resolution. As a case study, we consider the forward subsumption problem which

is the bottleneck of many systems implementing �rst order logic.

In order to e�ciently implement subsumption, we specialize subsumption algorithms at

run time, using the abstract subsumption machine. The abstract subsumption machine makes

subsumption-check using sequences of instructions that are similar to the WAM instructions

[War83]. It gives an e�cient implementation of the \clause at a time" subsumption problem.

To implement subsumption on the \set at a time" basis we combine sequences of instructions in

code trees.

We show that this technique yields a new way of indexing clauses. Some experimental results

are given.

The code trees technique may be used in various procedures, including binary resolution, hy-

perresolution, UR-resolution, the inverse method, paramodulation and rewriting, OLDT-resolution,

SLD-AL-resolution, bottom-up evaluation of logic programs and disjunctive logic programs.



Contents

1 Introduction 3

2 Subsumption. The abstract subsumption machine 6

3 Code trees 13

4 Multi-literal clauses 19

5 Comparison with indexing 24

6 Experiments 26

Bibliography 31

1



List of Figures

2.1 The clause P (g(x

0

; x

1

); f(a; x

0

; x

2

)) and its set of positions fp

0

; : : : ; p

7

g. : : : : : : : 6

2.2 The general matching algorithm for clauses c

1

; c

2

: : : : : : : : : : : : : : : : : : : : 8

2.3 The specialized matching algorithm for the clause P (g(x

0

; x

1

); f(a; x

0

; x

2

)). : : : : : 9

2.4 The specializing algorithm matchspec(c). : : : : : : : : : : : : : : : : : : : : : : : : 11

3.1 Two instruction sequences and the corresponding code tree. : : : : : : : : : : : : : : 14

4.1 Instruction sequences for multi-literal clauses P (a; x); P (x; b) and P (a; y); P (f(y); y)

and the corresponding code tree. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 21

5.1 An example of a set of terms and its discrimination tree : : : : : : : : : : : : : : : : 24

6.1 Experiments with subsumption : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

6.2 Comparison of forward subsumption in Otter and Vampire : : : : : : : : : : : : : : 29

2



Section 1

Introduction

Most of automatic theorem proving systems can be generally divided in two parts by their mode

of evaluation (or clause generation). Top-down systems start from a goal, reducing it to subgoals,

until all subgoals become axioms. Such systems usually exploit just one branch of the search tree.

Bottom-up systems usually deal with a database of clauses and generate new clauses by applying

inference rules to clauses in the database. There are also systems which can combine top-down

with bottom-up.

Systems which keep track of previously generated clauses are said to retain information in

[WOL91]. All bottom-up systems retain information. If a top-down system retains information, it

is usually characterized as a combination of top-down and bottom-up.

The systems retaining information show a superior performance when dealing with problems

involving large search spaces. It has been widely recognized in the deductive database community.

There are two main reasons why systems that retain information become more e�cient on hard

problems:

1. Systems that retain no information must often do the same job on di�erent branches of the

search tree.

2. In systems that retain information one can implement major operations on the \set at a time"

basis, opposite to \tuple a time" or \clause at a time" procedures used by e.g. Prolog.

Procedures retaining information have been traditionally used in automated deduction, since its

very beginning. Recently, the need for such procedures has been recognized in logic programming

and deductive databases. In logic programming, it has been noted that tabulation can both speed

up evaluation and give more declarative treatment of some subgoals. In deductive databases, where

the databases can be very large, the old \tuple at a time" methods are not adequate any more. Also,

deductive databases do not allow the query answering process be controlled by a user. In this case

recursive speci�cations can cause non-termination, unless (some) intermediate goals are retained.

In logic programming and deductive databases the systems that make use of previously generated

clauses (or goals) are usually considered as bottom-up procedures. We shall use \bottom-up" to

denote procedures that retain clauses throughout this article.

1

The necessity to retain information leads to the introduction of bottom-up features into top-

down systems in various areas around automated deduction. For instance, various modi�cations of

magic sets transformations require the semi-naive bottom-up evaluation of the transformed logic

1

The bottom-up methods of search are also sometimes called indirect methods, in opposite to direct top-down

methods. (Lincoln Wallen, private communication.)

3



program [BMSU86, BR87]. SLD-AL resolution [Vie89] and OLDT-resolution [TS86, War92] are

further examples of systems which combine the bottom-up and top-down evaluations. In automatic

theorem proving, model elimination which is a top-down procedure, has recently been augmented

with lemmas [AS92, GLMS94], which allow one to use previously proved subgoals.

This article deals with an implementation technique for bottom-up systems, which can be used

to speed up many important algorithms.

Bottom-up algorithms have been used through the years in automated deduction. They are used

by many automatic theorem proving procedures, e.g., binary resolution [Rob65], hyperresolution

[Rob65a] and the inverse method [Mas67, Vor92]. In order to e�ciently implement such procedures,

indexing techniques have been develop [Sti89, McC88, McC92]. Indexing allows main operations

(like resolution and subsumption) to be implemented on the \set at a time" basis. As noted in

[Wos92], the implementation of discrimination trees in the well known theorem prover OTTER

resulted in a much faster performance.

Most bottom-up systems are based on the following loop that resembles the \closure algorithm"

from [Lus92]:

Let D be the initial database of clauses.

loop:

1. Apply given inference rules to D (or a part of D). Let �D be the new clauses.

2. If D;�D satisfy a termination criterion, then terminate.

3. Apply a retention test to �D.

4. Change D, based on �D.

5. Add �D to D.

end of loop.

For this class of procedures, we call clauses in D kept clauses, and clauses in �D new clauses.

Let us consider these steps in more details.

1. Inference rules are usually resolution rules applied to clauses from D. In SLD-AL-resolution

inference rules and clauses are more complicated. In fact, it supports two kinds of clauses,

the �rst represents queries and the second represents solutions to the queries.

2. There are many kinds of the termination criterion. Usually, the procedure terminates when a

goal is found. The termination criterion can also be based on the saturation: the procedure

terminates when no new clauses can be generated.

3. The retention test for �D usually includes forward subsumption: remove from �D every

clause subsumed by a clause in D. In principle, there might be other criteria for discarding

new goals [McC90]. When the number of generated clauses is big compared to the number

of kept clauses, forward subsumption becomes the most costly operation.

4. The changes in D are induced by new clauses from �D. Two algorithms may be applied

at this stage. Back subsumption consists of removal from D every clause subsumed by a

clause from �D. If a new clause includes equalities, it can be used for back demodulation,

i.e. rewriting applied to clauses from D.

This loop is used in most implementations of binary resolution and hyperresolution [Rob65, Rob65a],

the inverse method [Mas67, Vor92], implementations based on magic sets [BMSU86, BNRST87],

tabled computations of logic programs [TS86, War92, SR93], various deductive databases proce-

dures, for example query answering and integrity checking [LT85, LST86, Dec86, Das92], bottom-up

4



static analysis of logic programs [CD93], constraint logic programming, parsing [TR94], production

systems [MAT94]. Top-down procedures which use lemmaizing, like SLD-AL-resolution [Vie89] or

some implementations of model elimination [AS92] also use a similar scheme.

There are certain speci�c features of such systems which pose a challenge to people who imple-

ment them:

1. There is usually a small number of operations which must repeatedly be applied to clauses

in the database (for example, resolution).

2. The database may be very large and dynamically changing.

3. The number of calls of these operations is so big that it is practically impossible to implement

them on the \clause at a time" basis.

Below we shall consider particular examples which illustrate the number of operation calls for some

hard problems in automated deduction.

The main problems faced by bottom-up procedures are based on the necessity to e�ciently

handle large dynamically changing databases of clauses. Implementations of Prolog meet very

di�erent problems. Goals in Prolog are executed on the \goal at a time" basis, which requires very

fast processing of the current goal. WAM, which has become a standard for implementing Prolog,

is hence designed with the aim of the e�cient execution of one (current) subgoal or a chain of

subgoals at a time. Such \goal at a time" processing is inadequate for bottom-up algorithms which

must often handle millions of clauses.

2

In this paper we introduce an implementation technique called code trees which is intended for

speeding up these basic procedures. We shall show its use it on the forward subsumption problem.

The idea of code trees is very general and may as well be applied to various concepts of resolution.

It can also be used for the implementation of equality reasoning procedures, like paramodulation

[RW69] and rewriting.

Our technique is based on the following two main ideas. The �rst idea is to compile specialized

subsumption procedures for kept clauses. It can be considered as a run time specialization of a

general subsumption algorithm. This technique has much in common with the technique of WAM-

based Prolog implementations. We call it the abstract subsumption machine. It gives a very e�cient

subsumption algorithm for the problem of subsuming a clause by a clause. A speci�c feature of the

use of this approach is that the compilation must be performed at run time.

When the set D of kept clauses is large, the implementation of subsumption on the \clause at

a time" basis becomes ine�cient. The second idea of this paper is to perform subsumption on the

\set at a time" basis via code trees which merge several specialized algorithms into one.

2

In our experiments we tried benchmarks where around 900,000,000 clauses were generated, and the number of

subsumption-checks was about 20,000,000,000.

5



Section 2

Subsumption. The abstract

subsumption machine

We assume acquaintance with the basic notions of terms and substitutions. A clause is a list of

terms. Terms in a clause are also called literals. Variables will be denoted by the lower case letters

x; y; z; u; v; w, maybe with indices. Let c

1

; c

2

be two clauses. Clause c

1

subsumes clause c

2

i� there is

a substitution � such that c

1

� is a subset of c

2

1

. For example, let c

1

= P (x; f(y)); P (z; f(f(z))) and

c

2

= P (y; f(f(y))). Then c

1

subsumes c

2

with the substitution [x=y; y=f(y); z=y] and c

2

subsumes

c

1

with the substitution [y=z].

A clause is a unit clause i� it consists of exactly one literal. Clauses with more than one

literal will be called multi-literal clauses. In most logic programming applications, the bottom-

up procedures use only unit clauses. Multi-literal clauses are used in disjunctive logic programs,

theorem proving procedures and static analysis of logic programs. In this section, we only

consider unit clauses. Multi-literal clauses will be considered in Section 4.

The algorithms considered in this paper deal with positions in clauses. A position in a clause

c corresponds to an occurrence of a subterm in c. A tree representation of the (unit) clause

P (g(x

0

; x

1

); f(a; x

0

; x

2

)) and the corresponding set of positions are given in Figure 2.1. This clause

will be our running example until the end of Section 3.

In order to present our algorithms, we need to introduce a few operations on positions. Let p be

a position, corresponding to t

i

in a subterm f(t

1

; : : : ; t

n

). Then right(p) is the position to the right

of p, i.e. the one that corresponds to t

i+1

. If such position does not exist, right(p) is unde�ned.

For example, on Figure 2.1 we have right(p

1

) = p

2

, right(p

5

) = p

6

and right(p

0

) is unde�ned.

If the position p corresponds to a term t then down(p) denotes the position of the �rst argument

1

I.e. every literal in c

1

� is a literal in c

2

P

�

�

��

H

H

HH

f

�

�

@

@

a

x

0

x

2

g

�

�

A

A

x

0

x

1

p

0

�

�

��

H

H

HH

p

2

�

�

@

@

p

5

p

6

p

7

p

1

�

�

A

A

p

3

p

4

Figure 2.1: The clause P (g(x

0

; x

1

); f(a; x

0

; x

2

)) and its set of positions fp

0

; : : : ; p

7

g.

6



of t. If t has no arguments (i.e. t is a variable or a constant) then down(p) is unde�ned. For example,

on Figure 2.1 we have down(p

0

) = p

1

, down(p

1

) = p

3

and down(p

6

) is unde�ned.

var (p) is true i� the term at the position p is a variable. functor (p) denotes the principal

functor of the term in the position p. For simplicity, we assume that the arity of each function

symbol is �xed. For example, terms g(x) and g(x; y) cannot be used together

2

. de�ned(p) is true

i� p is a valid position in the clause (operations down ; right may lead to invalid positions). For

p; q positions, p == q is true i� terms at positions p; q are equal. 6=6= is the negation of ==. For

example, on Figure 2.1 var(p

0

) is false, var(p

7

) is true, functor (p

0

) = P , p

3

== p

6

is true and

p

3

== p

1

is false.

For unit clauses c

1

; c

2

, the subsumption problem reduces to the matching problem: �nd a

substitution � such that c

1

� = c

2

. An example of the matching algorithm match is given in

Figure 2.2. We do not claim this algorithm to be the most e�cient. One can often do better,

depending on the nature of the problem and the concrete representation of clauses.

The algorithm match tries to construct a substitution � such that c

1

� = c

2

. First of all, match

traverses the c

1

and c

2

, putting into subst pairs hv; ti, where v is a variable in c

1

, t a term in

c

2

. Then it compares terms in c

2

corresponding to di�erent occurrences of the same variable in c

1

.

There were two reasons for us to delay the comparison. The �rst reason is that the term comparison

is potentially very costly operation. The second reason is that this form of the algorithm makes

more code sharing considered below in Section 3.

Theorem 1 The algorithm match is sound and complete. More precisely:

1. If c

1

does not subsume c

2

then match(c

1

; c

2

) terminates with failure.

2. If c

1

subsumes c

2

then match(c

1

; c

2

) terminates with success. In this case after termination

subst contains the matching substitution.

Proof is omitted.

The set of clauses in bottom up procedures is dynamically changing. Thus, it is not possible to

pre-compile the subsumption algorithm. However, one can try to compile subsumption algorithms

for kept clauses c at run time, in order to execute subsumption more e�ciently. The compilation

requires some time, but it can improve the performance in general, if the subsumption algorithm

between c and other clauses will be called several times. Since clauses c

1

; c

2

in match(c

1

; c

2

) play

di�erent roles, there are two ways to specialize the subsumption algorithm match. If c

1

is given

and c

2

is unknown, we obtain a specialized algorithm smatch

c

1

(c

2

). It is used for the subsumption

of new clauses by c

1

(forward subsumption). In the other case, if c

2

is given and c

1

is unknown,

we obtain a specialized algorithm smatch

c

2

(c

1

). It is used to subsume c

1

by new clauses (back

subsumption). The two specializations are quite di�erent. For the simplicity and due to the lack

of space, we shall only consider forward subsumption.

We shall represent the specialized matching algorithms as a sequence of instructions of an

abstract machine. All possible instructions form \the building blocks" of matching algorithms. For

the reasons that will be clear in Section 3 it is preferable that the instruction set be as simple

as possible. We shall show an example how to produce these instruction sets for the matching

problem.

Let c

1

= P (g(x

0

; x

1

); f(a; x

0

; x

2

)). When we partially evaluate match with respect to c

1

as the

�rst argument, we obtain the specialized algorithm shown on Figure 2.3.

3

2

In logic programming languages such use of functors is allowed. In this case we have to consider pairs g=n

7



Algorithm match(c

1

; c

2

)

Let p; q be positions

Let subst; post be initially empty stacks of pairs of positions

begin

push(hc

1

; c

2

i; post);

while nonempty(post) f

hp; qi := pop(post);

if var (p)

then push(hp; qi; subst)

else if var(q) or functor(p) 6= functor(q)

then exit with fail

else f

if de�ned(right(p)) then push(hright(p); right(q)i; post);

if de�ned(down(p)) then push(hdown(p); down(q)i; post)

g

g

forall cliques c = hp

0

; q

0

i; : : : ; hp

n

; q

n

i 2 subst

forall i 2 f1; : : : ; ng f

if q

0

== q

i

then remove hp

i

; q

i

i from subst

else exit with fail

g

exit with success

end

In this algorithm the stack subst represents the matching substitution. The stack post is used to

keep the pairs of positions whose matching is postponed. p; q are used to denote the positions which

are currently under consideration.

For a stack S and an element e, push(e; S) denotes the operation of adding e at the beginning of

S. To add e to the end of the stack S, we write add(e; S). pop(S) removes the �rst element from

the stack S and returns this element as the result. nonempty(S) is true if the stack S is not empty.

Let S = hp

0

; q

0

i; : : : ; hp

n

; q

n

i, where p

i

are positions. Then tail(S) is hp

1

; q

1

i; : : : ; hp

n

; q

n

i A clique

in S is any maximal subsequence hp

i

0

; q

i

1

i; : : : ; hp

i

k

; q

i

k

i of S such that k � 1 and p

i

j

== p

i

0

for all

j 2 f0; : : : ; kg.

Figure 2.2: The general matching algorithm for clauses c

1

; c

2

8



Algorithm match

P (g(x

0

;x

1

);f(a;x

0

;x

2

))

(c)

Let q be a position

Let subst; post be initially empty arrays of positions

begin

q := c; Initialize

if var (q) or functor (q) 6= P then exit with fail; Check P

q := down(q); Down

if var (q) or functor (q) 6= g then exit with fail; Check g

post[0] := right(q); Push 0

q := down(q); Down

subst[0] := q; Put 0

q := right(q); Right

subst[1] := q; Put 1

q := post[0]; Pop 0

if var (q) or functor (q) 6= f then exit with fail; Check f

q := down(q); Down

if var (q) or functor (q) 6= a then exit with fail; Check a

q := right(q); Right

subst[2] := q; Put 2

q := right(q); Right

subst[3] := q; Put 3

if subst[0] 6=6= subst[2] exit with fail; Compare 0 2

exit with success Success

end

Figure 2.3: The specialized matching algorithm for the clause P (g(x

0

; x

1

); f(a; x

0

; x

2

)).

In the right column there are instructions of the abstract subsumption machine. Unnecessary

instructions are shown in Roman letter, like Right.

9



Each line of this specialized algorithm is an instruction of our abstract subsumption machine.

There are 9 di�erent kinds of instructions (Initialize, Check, Down, Right, Push, Pop, Put, Com-

pare, Success). They are displayed in the right column of Figure 2.3. Some of instructions have

parameters (Check, Push, Pop, Putand Compare).

One can imagine the abstract subsumption machine as a kind of Turing machine. q plays the

role of the head of the machine. Instead of moving along the tape, the head q moves on the set

of positions in the clause. It uses two arrays: post to record positions to be considered later and

subst for keeping tracks of terms substituted for variables. The meaning of the set of instructions

is the following:

Initialize Set q to the initial position (the term c)

Check P Check that functor(q) is P

Down Go down the current position (i.e. from a term to its arguments)

Right Go to the right (i.e. from an argument in a term to its next argument)

Push n Push the position to the right on the nth position in post

Pop n Set q to the nth position in post

Put n Put the current position on the nth position in subst (as the substitution for the

nth variable).

Compare m n Compare terms at positions m;n in subst (both positions correspond to the sub-

stitution for the same variable).

Success Exit with success.

If a Compare or a Check instruction fails then the whole algorithm fails. We shall prove in Theorem 2

below that these 9 types of instructions are enough to specializematch(c

1

; c

2

) for any c

1

. The proof

will use a specializing algorithm.

The specializing algorithm matchspec accepts a term c

1

as the input and constructs the instruc-

tion sequence for the subsumption of c

2

by c

1

. The algorithm matchspec is shown in Figure 2.4.

The following theorem shows the soundness and correctness of the of the matchspec algorithm:

Theorem 2 For all unit clauses c

1

; c

2

, matchspec(c

1

)(c

2

) is equivalent to match(c

1

; c

2

), i.e. one

of them terminates with success i� the other one terminates with success.

Proof (sketch). By induction on the size of c

1

one can show the following. Let mat

c

1

be obtained by

the unfolding ofmatch using c

1

as the �rst argument. Replace inmat

c

1

all sequences of instructions

of the form

push(E; post)

q := pop(post)

where E is an arbitrary expression by the equivalent q := E. It is easy to see that we obtained

exactly matchspec

c

1

.

In our early experiments we used the abstract subsumption machine in two ways. The �rst

way is to create, for each kept clause c, a structure representing the sequence of instructions of

consisting of a function symbol and its arity. We do not treat this case for the sake of simplicity.

3

We also perform an obvious optimization. Instead of the sequence of instructions

push(E; post)

q := pop(post)

where E is an expression, we use the equivalent q := E.

10



Algorithm matchspec(c)

Let p be a position

Let subst; post be initially empty stacks of pairs of the form hposition,numberi

Let instr be an initially empty instruction sequence.

Let var count; post count := 0

begin

add(Initialize ; instr);

p := c;

loop

if var (p)

then f

Add Put var count to instr;

Add hp; var counti to subst ;

var count := var count+ 1

g

else Add Check functor(p) to instr

if de�ned(down(p))

then f

if de�ned(right(p))

then f

Add Push post count to instr;

push(hright(p); post counti; post);

post count := post count+ 1

g

Add Down to instr;

p := down(p)

g

else if de�ned(right(p))

then f

Add Right to instr;

p := right(p)

g

else if nonempty(post)

then f

hp; ki = pop(post);

Add Pop k to instr

g

else exit loop

end of loop

forall cliques c = hp

0

; k

0

i; : : : ; hp

n

; k

n

i 2 subst

forall i 2 f1; : : : ; ng add Compare k

0

k

i

to instr

end

Figure 2.4: The specializing algorithm matchspec(c).

11



matchspec(c). Then, instead of performing subsumption on two terms c

1

; c

2

, we used an interpreter

of the abstract machine. The interpretation could give from no speedup (ground terms) to the

speedup of the order of 3-4 (clauses with about 10 occurrences of variables). The second way

was to compile the abstract machine into the native code of our computer. On clauses with 10

occurrences of variables the speedup of the compilation approach was of the order of 10. This latter

is a considerable improvement of subsumption performed on the \clause at a time" basis. However,

the main idea behind the use of the abstract machine is much more powerful than that. The idea

is to combine instruction sequences in code trees.

12



Section 3

Code trees

It has been widely recognized in the deductive database research that the logic programming \goal

at a time"

1

mode of evaluation is not adequate for handling large amounts of clauses. It is true both

for rules producing new clauses and for subsumption algorithms. In this section we demonstrate

how to perform subsumption on the \set at a time" basis using code trees.

The idea of code trees is simple but extremely powerful. In the previous section, we created

a sequence of the abstract subsumption machine instructions in order to represent a specialized

subsumption algorithm matchspec(c) induced by a given clause c. Code trees create similar in-

structions in order to represent a specialized subsumption algorithm Match

D

induced by a given

set of clauses D. Code trees can be considered as the abstract subsumption machine extended by

several new instructions. We gave it a di�erent name to stress that the instructions of Match

D

do not form a linear structure as the instructions of matchspec(c). Rather, they are structured as

trees.

2

Thus, we dynamically create an algorithm for the forward subsumption problem induced by

a dynamically changing database of clauses.

Assume that we have a (large) database D of kept clauses and a new clause d. We have to check

whether d is subsumed by a clause in D. There are at least two ways to perform subsumption by

D on the \set at a time" basis. The �rst idea is to exploit the common structure of clauses in D

in order to select a (hopefully small) subset of potential candidates for subsumption. This idea has

given rise to the use of various indexing schemes, like discrimination trees [McC92] or path indexing

[Sti89]. Indexing plays the role of a �lter for the selection of potentially useful clauses. The second

idea is to combine algorithms which perform subsumption by D in one algorithm (the code tree).

In Section 5 we brie
y compare the two approaches.

Let us start with an example. Consider two instruction sets, which represent forward sub-

sumption algorithms for clauses P (x; a; x) and P (x; x; b). They are shown on Figure 3.1 on the

left.

The �rst 5 instructions of the two sequences coincide. It means that two algorithms do the

same job in the beginning. In order to not repeat the same job we can perform subsumption as

follows. First of all, we execute the common 5 instructions. If one of these common instruction

fails, then the algorithm fails. Then we execute the rest of the �rst instruction sequence. If it

fails, we backtrack to the point where the two sequences diverge and execute the rest of the second

instruction sequence. For such an algorithm to be sound we have to ensure that all state changes

1

In deductive databases it is also called \tuple at a time" since deductive databases consider relations as sets of

tuples.

2

In the case of multi-literal clauses, the specialized code is even more complicated than trees. For example, there

are instructions which cause a potentially unlimited backtracking.

13



Initialize

Check P

Down

Put 0

Right

Check a

Right

Put 1

Compare 0 1

Success

Initialize

Check P

Down

Put 0

Right

Put 1

Right

Check b

Compare 0 1

Success

-

i

0

: Initialize i

1

i

1

: Check P i

2

i

2

: Down i

3

i

3

: Put 0 i

4

i

4

: Right i

5

i

5

: Fork j

5

i

6

i

6

: Check a i

7

i

7

: Right i

8

i

8

: Put 1 i

9

i

9

: Compare 0 1 i

10

i

10

: Success

j

5

: Restore j

6

j

6

: Put j i

7

j

7

: Right j

8

j

8

: Check b j

9

j

9

: Compare 0 1 j

10

j

10

: Success

Figure 3.1: Two instruction sequences and the corresponding code tree.

Shared parts of code are put in a dashed box.

made after the backtrack point be restored after backtracking. To this end we add two additional

instructions: Fork and Restore. Fork memorizes values of variables which may have changed

after having executed the rest of the �rst instruction sequence. Restore restores the values. We

call such a pair Fork-Restore a fork .

3

The new set of instructions representing subsumption for

this set of two clauses is shown on Figure 3.1 on the right. The instructions form a tree. Since the

set of clauses D can be changing dynamically, each instruction, except for Success, must have an

additional argument representing the next instruction. This argument may change when we add

new clauses to the database D or remove clauses from D. Such sets of instructions represent the

subsumption algorithm for the set of clauses D. We called them code tree for the following reasons:

1. They can be considered as a code for the subsumption algorithm;

2. They have a tree-like structure;

3. They can grow and shrink dynamically: new paths can be added and existing paths can be

pruned;

The use of the code tree is the following. With each new clause d to be added to the database

D, we integrate the corresponding instruction sequence matchspec(d) into the code tree T . The

integration process consists of �nding the longest path in the tree which coincides withmatchspec(d)

(disregarding forks). Then we add a new fork together with the rest of matchspec(d) at the node

where the path must diverge with matchspec(d). We denote the insertion operation Insert(I; T ).

We also use the procedure of removing the pathmatchspec(d) from the tree. We need to remove

it for e�ciency reasons when d is removed from the database (for example by back subsumption).

The removal consists of �nding the path that corresponds to matchspec(d) and removing the part

of this path starting from the last fork together with the fork. We denote the removal operation

Remove(I; T ).

When we add/remove instruction sequences we have to also change some arguments of instruc-

tions in the code tree, as can be seen on Figure 3.1. Assume that the tree consists of the instructions

3

We have organized the abstract machine instructions in such a way that the only value which needs to be restored

is the position of the head, i.e. the value of q. We achieved this by implementing stacks subst; post via arrays which

resulted in having additional arguments to the Push, Pop and Put instructions.

14



for the �rst clause P (x; a; x) and we merge the instructions for the second clause P (x; x; b) into

it. Then the argument of the Right instruction must be changed from the address of the Check a

instruction to the address i

5

of Fork.

Now we shall explain the semantics of the instruction set used in code trees similar to the one

given on Figure 2.3. First of all we note that all previously used instructions have an additional

argument representing the next instruction. After having executed an instruction, we have to pass

the control to this next instruction. For example, Right n now means

q := right(q);

goto n

The other instructions are changed in the same way. To implement new instructions Fork and

Restore we introduce two new stacks back and heads representing backtrack points and head

positions that need to be restored. Each Fork instruction creates a backtrack point and memorizes

the current position of the head q. Each Restore instruction restores the position of q. Instructions

Check and Compare which may fail now try to backtrack to the previously stored backtrack point:

if var(q) or functor(q) 6= f

then if empty(back)

then exit with fail

else goto pop(back)

else goto i

k

Check f i

k

: : :

push(q; heads);

push(i

j

; back);

goto i

k

; Fork i

j

i

k

: : :

q := pop(heads);

goto i

k

; Restore i

k

: : :

We de�ned the semantics of the code tree instructions. In order to prove that we use code

trees correctly we introduce some formal de�nitions. We call extended instructions all previously

introduced instruction having the additional argument representing the next instruction. A code

tree is any �nite set of extended instructions. We call arguments representing instructions addresses

of these instructions (i

0

; : : : ; j

10

on Figure 3.1. We shall often identify instructions in a code tree

with their addresses. An extended path in the code tree is a any sequence of instructions de�ned

by induction in the following way:

1. Any single instruction is an extended path.

2. Let i

1

; : : : ; i

n

be an extended path.

(a) If i

n

has the instruction i as its last argument then i

1

; : : : ; i

n

; i is an extended path.

(b) If i

n

is a Fork j k instruction, then i

1

; : : : ; i

n

; j is an extended path.

Paths in the code tree are obtained from extended paths by deleting all Fork and Restore in-

structions and omitting the last argument of each remaining instruction, except for Success. For

example, the extended path

15



i

1

: Initialize i

6

i

6

: Fork i

7

i

8

i

8

: Restore i

12

i

12

: Check P i

16

gives the path

Initialize

Check P

A completed (extended) path is an (extended) path whose last instruction is Success. An

instruction j is reachable from i in the code tree T i� there is an extended path i; : : : ; j in T . A

code tree T is consistent i� it satis�es the following properties:

1. There is exactly one Initialize instruction in T .

2. Every instruction i 2 T is reachable from the Initialize instruction.

3. For every instruction i 2 T which is not a Success instruction, there is a Success instruction

reachable from I.

4. For every instruction i 2 T , the last argument of i is not a Restore instruction.

5. For every Fork i j instruction, i is a Restore instruction.

6. There are no loops in T , i.e. the lengths of extended paths in T are restricted.

We shall only consider consistent code trees.

A code tree T corresponds to a set of clauses c

1

; : : : ; c

n

i� the set of all paths in T is exactly

fmatch

c

1

; : : : ;match

c

n

g. Now we can formally de�ne the execution of the code trees T with respect

to a clause d as the sequence of extended instructions, starting from the Initialize instruction, which

would have been executed by T on d according to the given semantics of the extended instructions.

Theorem 3 Let the consistent code tree T correspond to the set of clauses C and d be a clause.

Then the execution of T on d terminates with success i� d is subsumed by a clause in C.

Proof (sketch).

1. Assume that the execution succeeds. Consider the sequence I of instructions executed by T .

If a backtrack happened in I (i.e. two instructions Fork i j and i : Restore k were executed,

then the part of I between this two instructions can be safely removed. After removal of all

backtrack points from I, we obtain an extended path J . Let J

0

be the path obtained from

J by removing all Fork and Restore instructions. It is easy to see that the executions of J

and J

0

give the same result, i.e. both of them succeed. We know that J

0

= matchspec(c) for

some c 2 C. Applying Theorems 1 and 2 we obtain that d is subsumed by c.

2. Assume that the execution fails. Since any instruction i 2 T is reachable from the Initialize,

there is at least one failing Check or Compare instruction on any path. Applying the same

arguments as above, we obtain that no c 2 C subsumes d.

A consistent code tree T is in the tree form i�

1. The last arguments of any two instructions in T are di�erent.

2. The �rst arguments m of any two di�erent Fork m n instructions are di�erent.

16



Theorem 4 Let the code tree T be in the tree form with n instructions. Then, for every clause c,

execution of T on c calls at most n instructions.

Proof is trivial.

This theorem formally states the importance of having less instructions in a code tree. It is

thus important to have more shared instructions in the tree, i.e. instructions that lie on many

paths. The need for more sharing explains some features on the design of code trees. In many

cases we could speed up single instruction sequences for subsumption by changing the order of

instructions or by introducing new instructions. But it would create code trees with less sharing

and thus decrease the e�ciency of the \set at a time" subsumption.

The following theorem shows that we achieved a maximal sharing on some instructions:

Theorem 5 Let I

1

= matchspec(c

1

) and I

2

=matchspec(c

2

). Let the �rst n instructions of I

1

; I

2

coincide. Let the n + 1th instruction of I

1

; I

2

be Push m;Push n. Then m = n. The same holds

for Pop and Put instructions.

Proof by routine inspection of matchspec.

Theorem 6 Let T be a consistent code tree in the tree form. Let I = matchspec(c). The

Insert(I; T ) and Remove(I; T ) are consistent code trees in the tree form. Let, in addition, T

correspond to a set of clauses C. Then

1. If no clause in C is a variant of c then Insert(I; T ) corresponds to C[c, otherwise Insert(I; T )

corresponds to C;

2. Remove(I; T ) corresponds to C without all variants of c;

Proof is straightforward, but tedious.

Note that by using code trees we obtained an interesting technique of indexing in presence

of variables. It has been noted in [SR93] that the non-ground subsumption-checking is di�cult:

\In the general case, subsumption-checking is a costly operation, and we are not aware of e�cient

subsumption-checking techniques for the case of arbitrary non-ground facts: : : ". Variables create

a problem for indexing because in most logic programming and theorem proving implementations

they are implemented as addresses in memory. Any two occurrences of variables in two di�erent

clauses are two di�erent addresses. Our technique discriminate variables in the order of their

occurrences in clauses. Thus, it treats variables occurring in di�erent clauses in a uniform way.

We do not know any implementation of a logic programming or theorem proving system which

makes use of this idea. In [Gra94] a technique is proposed which tries to �nd some dependencies

in path indexes in a uniform way. Ideas of that paper have something in common with our paper.

There are some quite obvious optimizations of code trees. For example, one can use hashing

instead of forking in the tree. When the set of function/predicate symbols is �xed in advance,

one can even implement parts of code trees via arrays. Another possibility is to introduce explicit

backtrack points in the trees, instead of putting them in a stack at run time. It makes the insertion

and removal operations on trees more costly, but it can speed up the evaluation in general. In

deductive database applications, where tuples are usually implemented via records, one can consider

an alternative to Down and Right instructions. It is also possible to access arguments of functions

in a non-standard order, depending on their types. When the main memory is insu�cient to keep

17



the whole code trees, we can organize them in such a way that they will load/save their parts

automatically and keep information about subtree sizes etc. In general when using code trees, one

can try to get the best both of the particular properties of data and the properties of the computer.

Let us analyze at which circumstances code trees are most e�cient. The �rst necessary condition

for creating code trees is to have a simple abstract machine with a small number of instructions

for executing a single problem. The second condition is that the structure of code admit sharing.

The third condition is that the execution of instructions on a single problem should either produce

no side-e�ects, or to produce side-e�ects which are easily recoverable. In the case of matching, the

only side e�ect was the change of the position of the head q, which we restored upon backtracking.

Fortunately, all major procedures used in automated deduction satisfy these three properties in

most cases.

18



Section 4

Multi-literal clauses

In this section we consider multi-literal clauses. The subsumption-check for multi-literal clauses

is much harder than that of unit clauses. It is known that the subsumption-check for multi-

literal clauses is NP-complete (see e.g. [GJ79]). The usual indexing methods used in theorem

proving programs do not work well with multi-literal clauses. For example, in OTTER the clause

P (x); P (f(f(x))) will be selected as a potential candidate to subsume any clause in which the

predicate symbol P occurs, since discrimination trees and path indexes in OTTER make indexing

on literals, not clauses.

Assume that we need to make the subsumption-check for clauses c; d. Then every literal in c

must subsume a literal in d, and the matching substitutions must be compatible for all literals in

c. Now every literal in d can be selected as a potential candidate for a literal in c.

The multi-literal subsumption can also be specialized. All commands used in the abstract

subsumption machine for unit clause are needed for multi-literal clauses. In addition, we need

two new instructions. The �rst instruction, First sets the �rst literal in d as the current potential

candidate to be subsumed by a literal in c. The second instruction Next resets this candidate

to be the next literal. Both instructions create new backtrack points: Next can be executed

as many times as the number of literals in d, which is unknown at the time when we compile the

specialized procedure subsume

c

. Thus, both commands have an additional argument which denotes

the backtrack point, namely the (address of) the Next instruction. Since c can also be multi-literal,

we need to remember the current candidates for each literal in c. To this end we introduce an

array Q instead of the head q. Now q will denote the number of the current element in Q and Q[q]

can be considered as the head of the abstract machine. The semantics of the Initialize instruction

changes. The new instructions of our machine have the following semantics:

q := �1;

goto j Initialize j

: : :

q := q + 1;

Q[q] := d;

Push(i; back)

goto j First i j

: : :

i : if de�ned(right(Q[q]))

then

f

19



Q[q] := right(Q[q]);

Push(i; back)

g

else

f

q := q � 1;

if empty(back)

then exit with fail

else goto pop(back)

g

goto j Next i j

: : :

More informally, the First i j command sets the (position of the) �rst literal of d as the candidate

to be subsumed by the current literal in c (literal number q). First also sets an additional backtrack

point i, corresponding to a Next instruction. Next i j is executed upon backtracking. It tries to

reset the candidate for the literal number q to the next literal in d. If this next literal exists,

Next i j puts the address i of itself as the new backtrack point. Otherwise, it backtracks, resetting

q to q � 1, i.e. trying to reconsider the matching for the previous literal.

This modi�cation of the subsumption abstract machine is friendly to the code trees idea. The

reason is that we still have a small number of instructions with easily recoverable side-e�ects and

good sharing properties.

The specializing algorithm for multi-literal clauses is very similar to the one for unit clauses. It

compiles all literals one by one and adds two instructions First and Next before the code for every

literal. The merge of instruction sequences into code trees is also very similar to the one for unit

clauses. For example, the instruction sequences for clauses P (a; x); P (x; b) and P (a; y); P (f(y); y)

and the corresponding code tree are given in Figure 4.1. As one can see, the code tree for this

example shares the code for the �rst literals in both clauses and a part of the code for the second

literal.

The code tree in this example is strictly speaking not a tree any more. The execution of the

code tree is not the traversal of a relevant part of the tree. Now some parts of the code tree may be

executed several times upon backtracking caused by the execution of Next instructions. It means

that Theorem 4 about the number of steps called by the execution of a code tree is not true for

multi-literal clauses. All other statements from the previous sections remain true for multi-literal

clauses. However in the multi-literal case they are not obvious, since code trees now may have

in�nite paths caused by repeated applications of the Next instruction.

Instructions, extended instructions and code trees are de�ned as in the previous section, but

may now include First i j and Next i j instructions. An extended path is now de�ned in the

following way:

1. Any single instruction is an extended path.

2. Let i

1

; : : : ; i

n

be an extended path.

(a) If i

n

has the instruction i as its last argument then i

1

; : : : ; i

n

; i is an extended path.

(b) If i

n

is a Fork j k, or a First j k or a Next j k instruction, then i

1

; : : : ; i

n

; j is an

extended path.

20



i

0

: Initialize i

1

i

1

: First i

2

i

3

i

2

: Next i

2

i

3

i

3

: Check P i

4

i

4

: Down i

5

i

5

: Check a i

6

i

6

: Right i

7

i

7

: Put 0 i

8

i

8

: First i

9

i

10

i

9

: Next i

9

i

10

i

10

: Check P i

11

i

11

: Down i

12

i

12

: Put 1 i

13

i

13

: Right i

14

i

14

: Check b i

15

i

15

: Compare 0 1 i

16

i

16

: Success

j

0

: Initialize j

1

j

1

: First j

2

j

3

j

2

: Next j

2

j

3

j

3

: Check P j

4

j

4

: Down j

5

j

5

: Check a j

6

j

6

: Right j

7

j

7

: Put 0 j

8

j

8

: First j

9

j

10

j

9

: Next j

9

j

10

j

10

: Check P j

11

j

11

: Down j

12

j

12

: Check f j

13

j

13

: Push 0 j

14

j

14

: Down j

15

j

15

: Put 1 j

16

j

16

: Pop 0 j

17

j

17

: Put 2 j

18

j

18

: Compare 0 1 j

19

j

19

: Compare 0 2 j

20

j

20

: Success

-

i

0

: Initializei

1

i

1

: First i

2

i

3

i

2

: Next i

2

i

3

i

3

: Check P i

4

i

4

: Down i

5

i

5

: Check a i

6

i

6

: Right i

7

i

7

: Put 0 i

8

i

8

: First i

9

i

10

i

9

: Next i

9

i

10

i

10

: Check P i

11

i

11

: Down k

0

k

0

: Fork k

1

i

12

i

12

: Put 1 i

13

i

13

: Right i

14

i

14

: Check b i

15

i

15

: Compare 0 1 i

16

i

16

: Success

k

1

: Restore j

12

j

12

: Check f j

13

j

13

: Push 0 j

14

j

14

: Down j

15

j

15

: Put 1 j

16

j

16

: Pop 0 j

17

j

17

: Put 2 j

18

j

18

: Compare 0 1 j

19

j

19

: Compare 0 2 j

20

j

20

: Success

Figure 4.1: Instruction sequences for multi-literal clauses P (a; x); P (x; b) and P (a; y); P (f(y); y)

and the corresponding code tree.

21



An extended k-path is an extended path in which the number of consecutive Next instructions is

� k.

As before, a completed extended path is an extended path whose last instruction is Success. A

code tree T is consistent i� it satis�es the following properties:

1. There is exactly one Initialize instruction in T .

2. Every instruction i 2 T is reachable from the Initialize instruction.

3. For every instruction i 2 T which is not a Success instruction, there is a Success instruction

reachable from I.

4. For every instruction i 2 T , the last argument of i is not a Restore or a Next instruction.

5. For every Fork i j instruction, i is a Restore instruction.

6. For every First i j instruction, i is a Next instruction.

7. For every Next i j instruction, i is (the address of) this instruction.

8. All loops in T are caused by repeated applications of Next instruction. More precisely, for

every k � 1, the lengths of extended k-paths in T are restricted.

Let us denote by subsume and subsumespec the subsumption algorithm and the specialization

algorithm for multi-literal clauses, which are constructed based on match and matchspec.

A code tree T corresponds to a set of clauses C i� the set of all 1-paths is exactly fsubsumespec(c) j

c 2 Cg.

Theorem 7 Let the consistent code tree T correspond to the set of clauses C and d be a clause.

Then the execution of T on d terminates with success i� d is subsumed by a clause in C.

Proof (sketch)

()) Assume that the execution of T terminates with success. Consider the sequence of instructions

I = i

1

; : : : ; i

n

which have been followed during the execution. let J be obtained from I by

removal of all backtrack points in the following way:

1. If there is an occurrence of two instructions Fork i j and i : Restore k , remove both

instructions and all instruction in between.

2. If there is an occurrence of two instructions First i j and i : Next i k, remove all

instruction between the two.

It is easy to see that the execution of J will have the same e�ect as the execution of I. Let P

be the extended 1-path obtained from J in the following way: remove all multiple occurrences

of the same Next instruction and add Next after each First not followed by Next . Thus, there

is a clause c 2 C such that subsumespec(c) = P . Consider the substitution � obtained by the

execution of I. Let f : N ! N be a partial function of natural numbers de�ned as follows: if

the kth First instruction in J is immediately followed by n Next instructions, let f(k) = n+1.

Using the properties of the matchspec algorithm and properties of First ;Next , one can prove

c

k

� = d

f(k)

, where c

j

(d

j

) denotes the jth literal of the clause c (d). Thus, c subsumes d.

22



(() Similarly. Let c 2 C subsumes d such that there is a substitution � with c

i

� = d

f(i)

. Consider

the extended path in T de�ned as previously. One can check that either the execution of T

on d will follow this path and terminate with success, or there is path terminated with success

before.

It is not possible any more to prove the theorem on the number of steps in the code tree

execution, since instructions Next can cause a backtracking which causes the exponential upper

bound on the number of steps. It is not surprising, since subsumption on multi-literal clauses

is NP-complete. The exponent arises when we have (failed) Next instructions inside other Next

instructions. Nevertheless, code trees show superior behavior over other approaches on multi-literal

clauses for the following reason: such deep backtrack points may be merged together in code trees,

thus avoiding re-executing them many times.

Theorem 5 about sharing of code in code trees remains valid for multi-literal code trees. In-

sertion/removal of code in the code tree for the multi-literal case are similar to those of the trees

for matching. As in the unit case, both operations applied to consistent code trees give consistent

code trees and Theorem 6 also holds in the multi-literal case.

23



Section 5

Comparison with indexing

A number of approaches have been proposed to improve the performance of subsumption and other

algorithms used in bottom-up procedures. Some of them are reviewed in [McC92]. Most of these

techniques use indexing to �lter out the relevant clauses and to perform the algorithms \set at a

time". There are two main types of indexing schemes which are used in modern theorem provers

| path indexing [Sti89] and discrimination trees [McC92]. In this section we brie
y compare code

trees with indexing schemes.

Discrimination trees are trees which encode structure of terms occurring in clauses. Paths is

the discrimination trees correspond to the terms. An example from [McC92] of a set of terms and

its discrimination tree is shown on Figure 5.1 (the example is taken over from [McC92]).

The main di�erence in the design of code trees and indexing schemes is the following. Indexing is

used to �lter out relevant clauses for a procedure. It may often be not enough for e�cient algorithms.

Thus, indexing schemes are usually provided with additional information. For example, in OTTER

leaves of the discrimination tree contain not only references to clauses, but also the lists of variables

in clauses. It sometimes helps to complete an operation. e.g., subsumption, without actually doing

subsumption. The traversal (or, better, execution) of code trees is a complete algorithm. Code trees

use a di�erent idea: instead of indexing on data they dynamically create the code for a procedure.

In the case of forward subsumption, where the structure of specialized procedures is very close to

the structure of data, code trees and discrimination trees are very similar. However the code trees

for back subsumption and uni�cation are very di�erent from those of forward subsumption. The

root

�

�

�

�

H

H

H

H

g

�

�

A

A

�

f7,8g

b

f9g

f

�

�

�

Q

Q

Q

�

�

�

A

A

�

f1,2g

b

f3g

g

a

�

�

A

A

�

f4g

b

f5g

a

�

f6g

1. f(x; x)

2. f(x; y)

3. f(x; b)

4. f(g(a); x)

5. f(g(a); b)

6. f(a; y)

7. g(x)

8. g(z)

9. g(b)

Figure 5.1: An example of a set of terms and its discrimination tree

24



experience shows that discrimination trees do not perform well for back subsumption. One of the

reasons for it lies in the fact that the code for back subsumption does not so closely resemble the

structure of the kept clause as the code for forward subsumption. In the case of uni�cation, the

specialized instructions for a clause already form a tree with forks created by if-then-else statements.

It is also very important that code trees can be translated into the native code of a computer. We

made experiments with specialized algorithms compiled into the native code. The real compilation

can give another speedup of the factor of 3-4.

The idea of indexing in the case of subsumption can be summarized as follows: �nd structural

properties P

1

; P

2

of data such that whenever c

1

satis�es P

1

and t

2

satis�es P

2

, then c

1

subsumes

(or does not subsume) c

2

. Then keep information about these P

1

; P

2

in special data structures,

for example discrimination trees. We propose to exploit shared code, which is not the same as

indexing. We do not claim that the use of code trees is always superior over indexing. They are

just another technique to implement a class of procedures.

We have already seen how the use of code instead of data helped us to �nd a new way of

indexing on variables. The use of code trees also resulted in a new soluiton for subsumption on

multi-literal clauses. It shows that the decision to manipulate with code instead of data helps to

�nd new design decisions. Code trees provide an important methodology for designing bottom-up

procedures. The consistent use of this methodology helps to �nd new solutions to old problems. We

believe that code trees give a di�erent viewpoint on problems and their solutions, compared to the

idea of indexing data.

Indexing methods may require less memory than code trees, when several procedures partici-

pate in deduction. In theorem proving applications, some problems use resolution, both kinds of

subsumption, rewriting and paramodulation. The full use of code trees would require 5 di�erent

trees to be constructed. But all these procedures may use the same indexing scheme. At the same

time if one would try to provide indexing schemes with more information helpful for an algorithm,

it may result in a huge memory consumption, as was shown in [Gra94] for path indexing.

25



Section 6

Experiments

Here we give a statistics of two examples proved in our theorem proving system V ampire on a

Hewlett Packard 735. We did not try to set the best methods/switches to solve the two problems.

On the contrary, we tried to set options in such a way so that to increase the number of forward

subsumptions required.

One of the hardest problems dealing with unit clauses was the condensed detachment 4 problem

from [WOL91]. The initial clauses are the following:

1. P (x

1

);:P (x

2

);:P (i(x

2

; x

1

)):

2. :P (i(i(i(a; i(b; c)); c); i(b; a))).

3. P (i(x

1

; i(i(x

2

; i(x

3

; x

1

)); i(x

3

; x

2

)))).

The problem has been tried by positive hyperresolution with the restriction 20 on the maximal

weight of clauses.

1

On this problem positive hyperresolution generates only unit clauses. A typical

example of a clause used in this proof is

P (i(i(i(i(i(x

1

; x

2

); i(x

2

; x

3

)); i(x

4

; i(x

2

; x

3

))); x

5

); i(x

6

; x

5

))):

Subsumption is very hard for such kind of problems for the following two reasons:

1. The number of variables in clauses is quite big (usually 7 to 10 in this example).

2. There is only one predicate symbol and only one function symbol. Thus, subsumption never

fails on the comparison of function symbols.

On multi-literal clauses, we tried the \steamroller" problem from the Pelletier list [Pel86]:

1. :Q1(x0);:P0(x1);:P0(x2);:R(x1; x0);:R(x2; x1)

2. P0(x0);:P1(x0)

3. P1(a)

4. :P2(x0); P0(x0)

5. P2(b)

6. :P3(x0); P0(x0)

7. P3(c)

1

Here the weight of a clause is the number of occurrences of symbols in the clause. For example, the weight of

P (f(x));Q(a) is 5.

26



8. :P4(x0); P0(x0)

9. P4(d)

10. :P5(x0); P0(x0)

11. P5(e)

12. Q0(x0);:Q1(x0)

13. Q1(g)

14. :Q0(x0);:Q0(x1);:P0(x2);:P0(x3);:S(x2; x3); R(x3; x2); R(x3; x1);:R(x2; x0)

15. :P5(x0);:P3(x1); S(x0; x1)

16. :P4(x0);:P3(x1); S(x0; x1)

17. :P3(x0);:P2(x1); S(x0; x1)

18. :P2(x0);:P1(x1); S(x0; x1)

19. :P2(x0);:P1(x1);:R(x1; x0)

20. :Q1(x0);:P1(x1);:R(x1; x0)

21. :P4(x0);:P3(x1); R(x1; x0)

22. :P5(x0);:P3(x1);:R(x1; x0)

23. Q0(f(x0));:P4(x0)

24. :P4(x0); R(x0; f(x0))

25. Q0(f(x0));:P5(x0)

26. :P5(x0); R(x0; f(x0))

The problem has been tried by the binary resolution (no restrictions or optimizations). In order to

increase the database size and the number of forward subsumptions, we switched back subsumption

o�. This problem have been tried with di�erent weight restrictions. Typical clauses used in the

found proof are the following:

5. R(x

1

; f

0

(x

1

)) _ :P

5

(x

1

).

14. R(x

1

; x

2

); R(x

1

; x

3

);:Q

0

(x

3

);:R(x

2

; x

4

);:Q

0

(x

4

);:S(x

2

; x

1

);:P

0

(x

2

);:P

0

(x

1

).

1277. :P

0

(c

5

);:P

0

(c

4

);:Q

0

(x

1

);:R(c

4

; x

1

);:Q

0

(x

2

); R(c

5

; x

2

); R(c

5

; c

4

).

There are no deep terms involved in the proof search, as in the �rst problem. But subsumption-

checks for this problem are even more di�cult for the following reason. This problem generates

only a very small number of relatively short clauses. Most of clauses have from 7 to 11 literals.

(The algorithm subsume on clauses with m and n literals, must perform m

n

matches in the worst

case.)

We used a counter which counted the number of subsumption-checks which would have been

executed if subsumption had been implemented on the clause-to-clause basis. The results are given

in Figure 6.1 on page 28:

As one can see from this table, Vampire achieved the speed of more than 200,000,000 subsump-

tions per second on unit clauses, where code sharing is very high. The speed is still very high

(about 4,000,000 subsumptions per second) on multi-literal clauses with up to 15 literals.

We compare the performance of Vampire with that of Otter (Otter uses discrimination trees)

on forward subsumption in Figure 6.2 on page 29.

In the case of unit clauses, the di�erence in performance is not high, since Otter uses a version of

discrimination trees which encodes essentially the same information as code trees. The two provers

use slightly di�erent way of clause generation, so the number of kept/subsumed clauses is slightly

di�erent. In the case of the Steamroller problem, the binary resolution algorithms used by the

27



Problem/options Kept

clauses

Subsumed

clauses

Clause-to-

clause

subsumptions

Forward

subsumption

time

Subsumptions

per second

Database

subsumptions

per second

Condensed

detachment

(weight = 20)

30,509 497,141 1,581,472,615 20.14 78,523,963 26,199

Condensed

detachment

(weight = 24)

163,509 534,456 17,763,995,378 81.37 218,311,360 8,577

Steamroller

(weight = 17)

12,161 872,061 2,861,295,196 355.53 8,059,986 2,491

Steamroller

(weight = 20)

11,012 803,982 2,173,049,289 539.44 4,028,342 1,510

Steamroller

(weight = 22)

26,185 2,074,607 9,695,480,345 2422.34 4,003,088 867

Steamroller (no

restrictions)

41,743 3,048,078 17,133,045,644 4287.16 3,996,362 711

Note. For the weight = 24 case a proof was not obtained due to insu�cient memory. The �gures

in the table are given up to the moment when Vampire ran out of memory after using about 62

megabytes

Figure 6.1: Experiments with subsumption

28



Typical clause Kept Forward

subsumed

Forward

subsum-

ption

time

Ratio

Condensed detachment (maximal weight = 20)

Vampire P (i(i(i(i(i(x

1

; x

2

); i(x

2

; x

3

)); 30,509 497,141 20.14 2.36{2.53

Otter i(x

4

; i(x

2

; x

3

))); x

5

); i(x

6

; x

5

))) 28,390 482,119 46.04

Steamroller (maximal weight = 17)

Vampire :Q0(x0);:Q0(x1);:P2(g);:P0(g); 12,161 872,061 404 17.3{23.1

Otter :S(g; g); R(g; x1);:R(g; x0) 9,091 56,579 453

Steamroller (maximal weight = 20)

Vampire :Q0(x0);:Q0(x1);:Q1(x2);:P4(x2);:P3(x1); 11,012 803,982 539 17.7{18.8

Otter :P0(x3);:P0(x1);:S(x1; x3);:R(x1; x0) 10,384 57,752 687

Steamroller (maximal weight = 22)

Vampire :Q0(x0);:Q0(x1);:Q1(x2);:P4(x2);:P3(x1);:P0(x3); 26,185 2,074,607 2422 15.4{35.3

Otter :P0(x1);:P1(x3);:S(x1; x3);:R(x1; x0) 11,397 58,567 1,052

Steamroller (no restrictions)

Vampire :Q0(x0);:Q0(x1);:Q1(x2);:P5(x3);:P3(x2);:P2(x2); 41,743 3,048,078 4287 49.2{128.9

Otter :P0(f6(x3));:P0(x2);:S(f(x3); x2); R(x2; x1);:R(f6(x3); x0) 15,949 63,970 4430

Note. The minimal ratio in this table is based on the number of subsumed clauses per second, the

maximal ratio takes into account the size of the database (i.e. the number of kept clauses).

Figure 6.2: Comparison of forward subsumption in Otter and Vampire

29



two provers were very di�erent, which resulted in very di�erent numbers of subsumed clauses. the

di�erence is mostly due to th treatment of factoring in Vampire and Otter. However, the average

size of generated clauses was about the same, so the comparison of performance is fair.

Acknowledgments. I am grateful to all people who made a direct or indirect in
uence on

this paper. These are Anatoli Degtyarev, Ewing Lusk, Bill McCune, Micha Meier, Ross Overbeek,

Mark Wallace, David S. Warren and Larry Wos. The motivation to e�ciently implement some

basic procedures is mostly due to the study of the excellent performance of OTTER implemented

by Bill McCune.

30



Bibliography

[AS92] O.L. Astrakhan and M.E. Stickel. Caching and lemmaizing in model elimination theo-

rem prover. In D. Kapur, editor, 11th International Conference on Automated Deduc-

tion, volume 607 of Lecture Notes in Arti�cial Intelligence, pages 224{239, Saratoga

Springs, NY, USA, June 1992. Springer Verlag.

[BMSU86] F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman. Magic sets and other strange

ways to implement logic programs. In Proceedings of the 5th ACM SIGMOD-SIGACT

Symposium on Principles of Database Systems, pages 1{15, Cambridge, MA, March

1986.

[BNRST87] C. Beeri, Sh. Naqvi, R. Ramakrishnan, O. Shmueli, and Sh. Tsur. Sets and negation

in a logic database language (LDL1). In Proc. 6th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pages 21{36. ACM Press, 1987.

[BR87] C. Beeri and R. Ramakrishnan. On the power of Magic. In Proc. 6th ACM SIGACT-

SIGMOD-SIGART Symposium on Principles of Database Systems, pages 269{283.

ACM Press, 1987.

[CD93] M. Codish and B. Demoen. Analyzing logic programs using \Prop"-ositional logic

programs and a magic wand. In Dale Miller, editor, Logic Programming | Proceedings

of the 1993 International Symposium, pages 114{129. The MIT Press, 1993.

[Das92] S.K. Das. Deductive Databases and Logic Programming. Addison-Wesley, 1992.

[Dec86] H. Decker. Integrity enforcements on deductive databases. In Proc. of the 1st Inter-

national Conference on Expert Database Systems, pages 271{285, Charleston, South

Carolina, April 1986.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability. Freeman, San Francisco,

1979.

[GLMS94] C. Goller, R. Letz, K. Mayr, and J. Schumann. SETHEO V3.2: Recent developments.

In A. Bundy, editor, Automated Deduction | CADE-12. 12th International Confer-

ence on Automated Deduction., volume 814 of Lecture Notes in Arti�cial Intelligence,

pages 778{782, Nancy, France, June/July 1994.

[GL87] G. Gottlob and A. Leitsch. On the e�ciency of subsumption algorithms. Journal of

the Association for Computing Machinery, 32(2):280{295, April 1987.

[Gra94] P. Graf. Extended path-indexing. In A. Bundy, editor, Automated Deduction |

CADE-12. 12th International Conference on Automated Deduction., volume 814 of

31



Lecture Notes in Arti�cial Intelligence, pages 514{528, Nancy, France, June/July

1994.

[Lus92] E.L. Lusk. Controlling redundancy in large search spaces: Argonne-style theorem

proving through the years. In A. Voronkov, editor, Logic Programming and Auto-

mated Reasoning. International Conference LPAR'92., volume 624 of Lecture Notes

in Arti�cial Intelligence, pages 96{106, St.Petersburg, Russia, July 1992.

[LST86] J.W. Lloyd, E.A. Sonenberg, and R.W. Topor. Integrity constraint checking in strat-

i�ed databases. Technical Report 86/5, Department of Computer Science, University

of Melbourne, 1986.

[LT85] J.W. Lloyd and R.W. Topor. A basis for deductive database systems. Journal of

Logic Programming, 2(2):93{109, 1985.

[MAT94] A.M. Maeda, J.-I. Aoe, and H. Tomabechi. Signature-check based uni�cation �lter.

Software | Practice and Experience, 24(7):603{622, 1994.

[MB88] R. Manthey and F. Bry. SATCHMO: a theorem prover implemented in Prolog. In

CADE'88 (9th Int. Conf. on Automated Deduction), Lecture Notes in Computer Sci-

ence, pages 179{216, Argonne, Illinois, May 1988.

[Mas67] S.Yu. Maslov. An inverse method for establishing deducibility of nonprenex formulas

of the predicate calculus. In J.Siekmann and G.Wrightson, editors, Automation of

Reasoning (Classical papers on Computational Logic), volume 2, pages 48{54. Springer

Verlag, 1983.

[McC88] William W. McCune. An indexing method for �nding more general formulas. Asso-

ciation for Automated Reasoning Newsletter, 1(9):7{8, 1988.

[McC90] William W. McCune. OTTER 2.0 users guide. Technical report, Argonne National

Laboratory, March 1990.

[McC92] William W. McCune. Experiments with discrimination-tree in indexing and path

indexing for term retrieval. Journal of Automated Reasoning, 9(2):147{167, 1992.

[Nei90] V. Neiman. Refutation search for horn sets by a subgoal-extraction method. Journal

of Logic Programming, 9(2):267{284, 1990.

[Pel86] F.J. Pelletier. Seventy-�ve problems for testing automatic theorem provers. Journal

of Automated Reasoning, 2(2):191{216, 1986.

[Rob65a] J.A. Robinson. Automatic deduction with hyper-resolution. International Journal of

Computer Mathematics, 1:227{234, 1965.

[Rob65] J.A. Robinson. A machine-oriented logic based on the resolution principle. Journal

of the Association for Computing Machinery, 12(1):23{41, 1965.

[RW69] G. Robinson and L.T. Wos. Paramodulation and theorem-proving in �rst order the-

ories with equality. In Machine Intelligence, volume 4. Edinburgh University Press,

Edinburgh, 1969.

32



[Sti88] M. Stickel. A PROLOG technology theorem prover: Implementation by an extended

Prolog compiler. Journal of Automated Reasoning, (4):353{380, 1988.

[Sti89] M. Stickel. The path indexing method for indexing terms. Technical Report 473,

Arti�cial Intelligence Center, SRI International, Menlo Park, CA, October 1989.

[SR93] S. Sudarshan and R. Ramakrishnan. Optimizations of bottom-up evaluation with

non-ground terms (extended abstract). In Dale Miller, editor, Logic Programming.

Proceedings of the 1993 International Symposium, pages 557{574. The MIT Press,

1993.

[TR94] M. Tambe and P.S. Rosenbloom. Investigating production system representations for

non-combinatorial match. Arti�cial Intelligence, 68:155{190, 1994.

[TS86] H. Tamaki and T. Sato. OLDT resolution with tabulation. In International Confer-

ence on Logic Programming, pages 84{98, 1986.

[Vie89] Laurent Vieille. Recursive query processing: The power of logic. Theoretical Computer

Science, 69:1{53, 1989.

[Vor90] A. Voronkov. LISS - the Logic Inference Search System. In Mark Stickel, editor,

Proc. Int. Conf. on Automated Deduction, volume 449 of Lecture Notes in Computer

Science, pages 677{678, Kaiserslautern, Germany, 1990. Springer Verlag.

[Vor92] A. Voronkov. Theorem proving in non-standard logics based on the inverse method.

In D. Kapur, editor, 11th International Conference on Automated Deduction, volume

607 of Lecture Notes in Arti�cial Intelligence, pages 648{662, Saratoga Springs, NY,

USA, June 1992. Springer Verlag.

[War83] David H. D. Warren. An abstract Prolog instruction set. SRI Tech. Note 309, SRI

Intl., Menlo Park, Calif., 1983.

[War92] D.S. Warren. Memoing for logic programs. Communications of the ACM (invited

paper), 35(3):93{111, 1992.

[WOL91] Larry Wos, Ross Overbeek, and Ewing Lusk. Subsumption, a sometimes underval-

ued procedure. In Jean-Louis Lassez and Gordon Plotkin, editors, Computational

Logic. Essays in Honor of Alan Robinson., pages 3{40. The MIT Press, Cambridge,

Massachusetts, 1991.

[Wos92] Larry Wos. Note on McCune's article on discrimination trees. Journal of Automated

Reasoning, 9(2):145{146, 1992.

33


