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Abstract—Network technologies for large areas based on sub-
GHz have emerged as a way to provide long-range communica-
tion with low cost and complexity. Among the various existing
solutions, LoRa is arguably the most adopted and promising
in this context. Its main application has been allowing the
possibility of ubiquitous connectivity to IoT from a simple
network and management structure. Some factors must be taken
into account when proposing a LoRa network. The type of
application directly affects the LoRa network communication,
such as the center frequency, the spreading factor, the bandwidth,
and the coding rates chosen by each node. We will observe in this
work the characteristics of LoRa physical-layer and its automatic
configuration based on the quality of the perceived signal-to-noise
ratio (SNR). In this way, we propose an adaptable protocol for
LoRa networks with low overhead and complexity. The results
obtained by a real scenario show that only 23% of the observation
time make changes in the configuration and has an average gain
of 4.68% for SNR.

Index Terms—LoRa, Wireless Cognitive Radio, Signal-to-Noise
Ratio, IoT, Sub-GHz.

I. INTRODUCTION

Support for communication technologies over long distances
has aroused interest in the most diverse areas. From smart
cities to Industry 4.0, they are adopting new technologies to
help to solve their challenges. Some solution examples are
health monitoring, safety monitoring, and intelligent transport
systems (ITS - Intelligent Transport System) [1]. These ser-
vices are linked to a growing concept, the Internet of Things
(IoT) [1], [2]. The number of IoT devices connected by these
technologies is expected to grow by 10 billion from 2015 to
2021 [2]–[5]. To connect these devices in large geographic
areas, we have long-range networks (LoRa) and its protocol,
LoRaWAN [1], [6]. LoRa is responsible for communication
at the physical-layer level in this environment. Although it
supports the open LoRaWAN protocol, this layer is like a black
box. Thus, understanding the LoRa operation and applying its
improvements is essential to adopt it.

This paper is proposing the use of a cognitive way to
change/shift the frequency range and parameters of the LoRa
modulation for wireless signal resilience over long distances.
With a simple spectral analysis technique and adjustment of
the LoRa configuration on the devices, it is possible to gain in
signal quality and, consequently, in the network throughput.

As a result, LoRa solutions tend to become easier to apply in
the real world.

Based on the observation of the signal-to-noise ratio (SNR)
of the nodes connected to the LoRa network, an adaptation
algorithm in the physical-layer is proposed. The gains are,
on average, 4.68% concerning the SNR, generating only 23%
of shifts of configuration for 24 hours. The algorithm is
efficient and straightforward to aware the LoRa network. In
comparison to state-of-the-art, this work presents the first
cognitive algorithm with adaptation-aware based on SNR in
the physical-layer of LoRa-based networks.

The remainder of this paper is structured as follows: section
II introduces the main concepts to understand the LoRa
modulation; section III shows the related work comparing with
our proposal; section IV introduces the adaptative algorithm
for LoRa in two different frequencies; section V shows and
discuss the results obtained on a real scenario; concluding this
paper with section VI.

II. OVERVIEW OF LORA

The LoRa is a digital modulation scheme based on the
spectral spreading technique called CSS (Chirp Spread Spec-
trum) to transmit messages, giving high communication rates
for range and energy consumption. Another benefit of this
modulation is the resistance to Doppler and multi-path effects.
Its modulation consists of the representation of bits 0 and
1 as a linear variation of frequencies. Figure 1 contains a
representation of bits 0 and 1, the corresponding symbol for
each bit, and a representation of the frequency variation of
the symbol. The shift rate of frequency is controlled by a
parameter called SF (Spread Factor). The higher this value,
the better is the signal’s immunity against noise, and the lower
is the data transmission capacity of the link.

C = B × log2

(
1 +

S

N

)
→ S

N
≈ C

B
(1)

The left of the equation 1 is the Shannon-Hartley theorem
which represents a relationship between the communication
capacity C expressed in bits/s as a function of the bandwidth
B (Hz) and the strengths of the signal S (mW ) and noise
N (mW ). Simplifying the theorem, we have the equation
on the right side, which shows that the higher the signal
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Fig. 1. Bit representation for LoRa-based networks.

bandwidth, the lower the signal-to-noise ratio (SNR) of the
communication.

LoRaWAN is a wireless communication protocol that pro-
vides long-range connectivity with a low bit-rate based on
LoRa modulation (physical-layer). Consequently, it supports
the spreading spectrum of the LoRa spectrum over factors 7
to 12 [6].

Several parameters are available for customizing LoRa mod-
ulation: bandwidth (BW), spreading factor (SF), and code rate
(CR). LoRa uses an unconventional definition of propagation
factor as the base two logarithms of the number of chirps
per symbol. Such parameters influence the effective bit rate
of the modulation, its resistance to noise interference, and
its decoding. Bandwidth is the most important parameter of
LoRa modulation. A LoRa symbol consists of 2SF chirps,
which covers the entire frequency band. Since there is 2SF

chirps in a symbol, a symbol can effectively encode SF bits
of information.

In LoRa, the chirp rate depends only on the bandwidth:
it is equal to the bandwidth (i.e., chirp per second

BW in Hz ). The chirp
has several consequences on modulation, including concerning
signal strength and adequate bandwidth achieved. The symbol
rate and bit rate at a given spread factor are proportional to
the frequency bandwidth - so that doubling the bandwidth
effectively doubles the transmission rate. It is possible to see
in Equation 2, which correlates the duration of a symbol (TS)
to the bandwidth and the spreading factor.

TS =
2SF

BW
(2)

In addition, LoRa includes a FEC (Forward Error Correc-
tion) code, where the code rate (CR) is equal to 4/(4 + n),
with n ∈ 1, 2, 3, 4. Considering this, as well as the fact that
SF bits of information are transmitted by symbol, Equation 3
allows us to calculate the useful bit rate (Rb). For example, for
a configuration with BW = 125kHz, SF = 7, CR = 4/5,
there is a bit rate of Rb = 5.5kbps. Following the Equation
3, for all CR values supported, the three biggest bandwidths
and the available spreading factors, the Table I shows the bit
rate for each configuration.

Rb = SF × BW

2SF
× CR (3)

III. RELATED WORK

LoRa-based networks is an active research topic, exploring
its characteristics from scalability to reliability, especially for
smart city scenarios [7], [8].

Pasolini et al. [8] highlight the importance of setting LoRa
parameters correctly to ensure low packet loss in smart city
applications. The authors show the benefits of using the correct
configuration of parameters to obtain gain in throughput.
However, the authors show the way to change the configuration
only offline, without any intelligence to proceed it automati-
cally.

Bor et al. [9] analyze the impact of SF configurations
through experimental evaluation in an urban built-up envi-
ronment. They find that the scalability of networks increases
when the parameters are configured to minimize the message
airtime. With this simple experiment, the authors show the
possibility of performance enhancement occupying less the
spectrum. This kind of technique is useful to increase the
scalability and can be used to configure the LoRa parameters
automatically. Unfortunately, the authors did not propose it,
verifying only its benefits to configure it offline without any
adaptation online, as we propose in this paper.

Another paper that verifies the scalability of LoRa-based
networks is Varsier and Schwoerer [7]. This paper describes
the increase in packet loss in LoRa networks as the number of
deployed smart meters increases. This work presents a theoret-
ical evaluation of LoRa scalability based on interference and
overlap spectrum. However, any evaluation or consideration
about change the configuration of LoRa parameters online was
investigated.

In the theoretical field, it is possible to cite other works.
Reynders et al. [10] present a heuristic to assign SFs and
transmission power (TPs) to nodes in networks with a single
gateway calculating an optimal proportion of SFs based on the
objective of minimizing the maximum probability of collisions
in any SF. Abdelfadeel et al. [11] use a similar approach
based on the optimal proportion of SFs proposed [10] under
the assumption that each node can reach the gateway with
any combination of SF and TP. Different from others, Jeon
et al. [12] are unique to propose an adaptation of the LoRa
parameters. It was conducted based on the uplink data rate,
and not of any other metric. In this way, our paper is the first
to verify the impact and benefits of observing the SNR values
in a real LoRa-based network in order to obtain the maximum
link resilience. The Cognitive-LoRa is a physical/spectrum-
level strategy to optimize the network throughput, showing
be a considerable candidate to be incorporated on high-
level frameworks as Cognitive-LPWAN [13]. The next section
introduces our proposal.

IV. COGNITIVE LORA

The decision to choose the wireless spectrum concern sev-
eral metrics. For example, decisions can be made considering



TABLE I
RELATION BETWEEN SF, BW, AND MAXIMUM THROUGHPUT VALUES IN KBPS.

Bandwidth (kHz)
125 250 500

CR
4/5 4/6 4/7 4/8 4/5 4/6 4/7 4/8 4/5 4/6 4/7 4/8

7 5.5 4.6 3.9 3.4 10.9 9.1 7.8 6.8 21.9 18.2 15.6 13.7
8 3.1 2.6 2.2 2.0 6.3 5.2 4.5 3.9 12.5 10.4 8.9 7.8
9 1.8 1.5 1.3 1.1 3.5 2.9 2.5 2.2 7.0 5.9 5.0 4.4SF 10 1.0 0.8 0.7 0.6 2.0 1.6 1.4 1.2 3.9 3.3 2.8 2.4 kbps

11 0.5 0.4 0.4 0.3 1.1 0.9 0.8 0.7 2.1 1.8 1.5 1.3
12 0.3 0.2 0.2 0.2 0.6 0.5 0.4 0.4 1.2 1.0 0.8 0.7

Algorithm 1: Cognitive LoRa for Two Frequencies
// range of frequencies

1 F = {433, 915};
// range of spread spectrum

2 SF = {10, 11, 12};
// range of bandwidth

3 BW = {125, 250, 500};
// number of control packet to send

4 γ ←− 9;
// only a loop control

5 control←− 0;
/* function responsible to get the best
configuration parameters based on packets’ SNR
listened */

6 Function SNR_Packet(f, sf, bw):
7 SNR←− snr.packet[f ][sf ][bw];
8 if SNR > Φ then
9 Φ←− {f, sf, bw};

10 end if
11 return Φ;

/* function responsible to receive the
parameters combination */

12 Function Request_SNR(F, SF,BW):
13 foreach f in F do
14 foreach s in SF do
15 foreach bw in BW do
16 Φ←− SNR Packet(f, sf, bw);
17 end foreach
18 end foreach
19 end foreach
20 return Φ;

// the main code.
// first request of the best configuration

21 α←− Request SNR(F, SF,BW );
/* send data packets gamma times and verify
again the best parameters configuration */

22 while exist packet to be send do
23 Send one packet using α values;
24 if control < γ then
25 control = control + 1;
26 else

// update the best configuration
27 α←− Request SNR(F, SF,BW );
28 end if
29 end while

the SNR and received signal power, regarding handover and
QoS (Quality of Service) [14]. In IEEE 802.11 and LTE
networks, the SNR and RSSI (Received Signal Strength Indi-
cation) are the main parameters supported for decision making
regarding proceed with a handover, the bandwidth selected,
and the channel configuration to be used [15].

In the scenario of long-range networks, there are several

sources of signal that can generate interference, deteriorate
quality, and make communication between two points more
difficult. In this work, we propose a study of the signals
collected in a real LoRa network. These data are used to
improve a cognitive protocol and identify the best configu-
ration and frequency range in a given moment. The SNR is
a good physical-layer metric for the received signal quality.
Therefore, in this proposal, SNR is the metric used to make
the configuration changes of LoRa nodes.

The Algorithm 1 is responsible for performing the config-
uration based on network-aware, changing the parameters of
frequency, spread spectrum, and bandwidth. As a result, there
is a change of configurations in the nodes in order to maximize
the SNR. The algorithm is responsible for sending LoRa
data packets/datagrams γ times using the frequency, spread
spectrum, and bandwidth (F, SF,BW ) settings determined as
the best configuration, represented for α. Once the number of
data packets to be sent is reached, a new evaluation is carried
out. For this, a control packet is generated for each config-
uration of F, SF,BW , using the function Request SNR.
This function sends a control packet and measures the SNR
through the function SNR Packet, which evaluates the best
configuration, and returns it to the main code, where the
algorithm decides to make or not a shift on the α parameters.

V. RESULTS

The evaluation of the algorithm on the LoRa was supported
in a real environment with a ESP32 client and gateway with
the SEMTECH SX1276 and SX1278 chips, which implement
LoRa physical layer and a Raspberry Pi 3 server. Communica-
tion was carried out between one client node and the gateway
operating on 433MHz and 915MHz frequencies (2 separate
antennas). The SF values considered for the evaluation are
10, 11, and 121. Regarding the bandwidth (BW), the values
of 125kHz, 250kHz, and 500kHz were adopted, which are
the same bands used by LoRaWAN. The coding rate (CR -
Coding Rate) was maintained in all experiments as 4/5. Table
II summarizes the values described, and Figure 2 shows the
evaluation environment. The SNR values were correlated for
distances between 1 and 800 meters and it was found that in
the evaluated outdoor environment, measures of approximately

1The SF values of 7, 8, and 9 were ignored due to previous measurements
and the correlation between lower SF values implying worse transmitter
sensitivities [6].



10 meters of distance between the nodes were sufficient to
demonstrate the necessity for node aware and parameters
changing to improve SNR. The Figures 3 to 11 shows the
change/shift points made and the biggest three SNR percentage
improvements are assign on each figure with an arrow.

Fig. 2. Evaluation scenario.

TABLE II
SUMMARIZED SETTINGS AND RESULTS.

Configuration # SF BW CR Percentage of shifts
1 10 125kHz 4/5 28.45%
2 10 250kHz 4/5 32.48%
3 10 500kHz 4/5 12.93%
4 11 125kHz 4/5 27.59%
5 11 250kHz 4/5 31.90%
6 11 500kHz 4/5 11.50%
7 12 125kHz 4/5 28.83%
8 12 250kHz 4/5 22.64%
9 12 500kHz 4/5 20.95%

Figures 3 to 5 correspond to the spreading factor (SF)
equals to 10, and we can see that the lowest level of the
number of configuration shifts occurred for the frequency of
500kHz, showing 12.93% of frequency changes of the total
evaluations performed. However, the one with the highest
number of frequency shifts was the 250kHz bandwidth, with
a total shift rate equals to 32.48%. Finally, the frequency of
125kHz presented a median level of shifts in configurations,
with 28.45% of the total evaluations.
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Fig. 3. LoRa settings: SF = 10, BW = 125kHz for both frequencies
(433MHz and 915MHz).

The Figures 6 to 8, correspond to the SF equals to 11, the
least number of shifts in configurations also occurred for the
frequency of 500kHz, presenting 11.50% of frequency shifts
of the total evaluations performed. In contrast, the one with the
highest number of frequency shift was the 250kHz bandwidth,
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Fig. 4. LoRa settings: SF = 10, BW = 250kHz for both frequencies
(433MHz and 915MHz).
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Fig. 5. LoRa settings: SF = 10, BW = 500kHz for both frequencies
(433MHz and 915MHz).

with a shift rate of 31.90%. Finally, the frequency of 125kHz
again presented a median level of shifts in configurations, with
27.59% of the total evaluations.

Finally, analyzing the Figures 9 to 11, correspond to the SF
equals to 12, the least number of setting shifts occurred again
for the frequency of 500kHz, presenting 20.95% of frequency
shifts of the total evaluations performed. The bandwidth that
presented the highest percentage of shifts was 125kHz, with
a rate of 28.83%. Finally, the 250kHz bandwidth showed a
shift rate equals to 22.64%. Table II summarizes the change
percentages for each investigated configuration.

As we analyze the figures 3 to 11 there is a clear tendency to
have fewer frequency shifts for the adopted algorithm when
opting for 500kHz bandwidth. However, a more significant
number of shifts occurs on the 250kHz bandwidth, not
presenting a perspective of linear behavior. The algorithm does
not appear to present a relationship between the spreading
factor adopted and the number of frequency changes.

In conclusion, the configuration with SF = 10 and BW =
250kHz had the biggest SNR improvement, of 4.54%. As for
the SF = 11 and BW = 250kHz configuration, the biggest
SNR improvement was 4.77%. Finally, for the configuration
of SF = 12 and BW = 125kHz, the biggest SNR im-
provement was 4.74%. Considering the results, an average of



2020-02-18 12:45:23.874
2020-02-18 17:57:06.609

2020-02-18 23:18:44.482
2020-02-19 04:46:46.524

2020-02-19 09:40:18.999

8

9

10

11

12
SN

R 
(d

B)

2.91%

2.5%
2.45%

SF=11, BW = 125.0kHz
433MHz
915MHz
915MHz -> 433MHz (16 shifts)
433MHz -> 915MHz (16 shifts)

Fig. 6. LoRa settings: SF = 11, BW = 125kHz for both frequencies
(433MHz and 915MHz).
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Fig. 7. LoRa settings: SF = 11, BW = 250kHz for both frequencies
(433MHz and 915MHz).

approximately 23% shifts is required regarding all measures.
In our experiment, a total of 1160 measures were collected
in each SF and BW configuration, with 116 possible shifts
each. Even with a low value of shifts, the algorithm behaves
well concerning SNR improvement, presenting an average of
4.68% even in a scenario with little interference. Thus, the
presented algorithm, as well as the results, are relevant to the
IoT field and motivate more studies about cognitive radio in
LoRa.
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Fig. 8. LoRa settings: SF = 11, BW = 500kHz for both frequencies
(433MHz and 915MHz).
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Fig. 9. LoRa settings: SF = 12, BW = 125kHz for both frequencies
(433MHz and 915MHz).
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Fig. 10. LoRa settings: SF = 12, BW = 250kHz for both frequencies
(433MHz and 915MHz).
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Fig. 11. LoRa settings: SF = 12, BW = 500kHz for both frequencies
(433MHz and 915MHz).

VI. CONCLUSION

The number of IoT devices connected is expected to grow
by 10 billion from 2015 to 2021, and to connect them in large
geographic areas, we have LoRa and its protocol, LoRaWAN.
LoRa as the most promise to be used for extended areas
based on wireless communication, but its behavior is not
well-known. Based on the state-of-the-art and proposing an



adaptative-aware protocol, we introduce a concept of LoRa-
cognitive, where the nodes can listen and change their param-
eters’ configuration. With this concept applied to the LoRa-
based networks, it is possible to improve SNR and promote
the IoT long-range solutions. Our results showed a SNR
improvement of 4.68% on average.

As future works, it is possible to observe other metrics from
layers above, e.g., delay and goodput to improve the algorithm.
Besides that, implement a history to prevent the ping-pong
effect on changing the parameters’ configuration, as well as
use the data collected as an input for forecast techniques.
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