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Abstract—The key focus of precision agriculture is the
ability to monitor the health of individual plants. While visual
monitoring was made easier by incorporating autonomous
ground and aerial vehicles, regular sampling of leaves and soil
to perform chemical analysis is still necessary. The focus of this
work is to propose a leaf sampling system that uses a monocular
camera and a 6-DOF robot arm to detect, track, and pick
healthy and unhealthy leaves without prior knowledge about
the plant. The approach focuses on the challenges of operating
in the real world with the aim of increasing the robustness of
the system.

I. INTRODUCTION

The need to monitor crops in fields and orchards is
a well-recognized challenge. Crop monitoring for biotic
yield-reducing factors (pest organisms such as insects, plant
pathogens, and weeds) and abiotic stresses (such as inad-
equate moisture and nutrient levels) is a pivotal component
of integrated crop and pest management systems, but manual
crop scouting by growers or crop consultants is often time-
and cost-prohibitive. Multi- and hyper-spectral satellite im-
agery and, more recently, unmanned aerial vehicles (UAVs)
has been used as a method of remote crop monitoring.
Although such systems can detect plant stresses, they are not
capable of autonomously collecting samples for identification
and verification of the cause of the stress symptom. Improved
field scouting and sampling are instrumental in providing
earlier detection of pests as well as abiotic yield-reducing
factors, thereby preventing crop loss and improving the
efficacy of agrichemical applications.

In order to identify stressed plants we use individual plants
data, particularly their growth rates computed using 4D maps
based on UAV imagery. An unmanned ground robot with a
robotic arm is sent to each of these plants to collect leaf and
soil samples that will be analyzed in a laboratory to identify
the source of the stress. This paper will discuss our approach
to autonomous leaf sampling.

Leaf picking is a challenging task due to high variability
of leaves, relatively small size, and the fact that the system
needs to be robust to various weather conditions in the field.
An additional constraint is the rough operating environment
where the system’s components cannot be expected to main-
tain calibration due to vibrations from terrain and the tractor’s
engine. We demonstrate that a vision-based approach can
be used to effectively pick leaves using a robotic arm with
an eye-in-hand monocular camera. The approach consists of
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performing a scan of the plant while detecting and tracking
leaves, and using matched features to build the estimate of
the leaves’ 3D positions.

In each frame leaves are detected using a Deep Neural
Network that is capable of discriminating between healthy
and unhealthy leaves. The SURF features [1] are computed
in order to match the leaves in spatial and temporal domains,
thus constructing a dictionary of candidate leaves having
information from multiple views. The matched SURF points
associated with a candidate leaf from multiple views are
coupled with the camera poses inferred from the robot arm
odometry. By combining matched feature points in the image
domain with real-world camera positions, a point cloud of
the leaf is constructed in real-world coordinates [2]. This
procedure combines what [3] refers to as “Open-loop visual
control” and “Visual Servo Control”. The position of the leaf
is estimated over a series of images, using techniques such
as Image-Based Visual Servoing (IBVS) [4] and Monocular
Depth Estimation [5] to control for accumulated error. We
perform filtering of the candidates and compute confidence
metrics during the procedure to control the scanning and
picking approach steps of the process. This results in a
system that is able to track a large number of leaves,
dynamically switch between control schemes to maximize
the accuracy of leaf position estimate, and be robust to
errors in leaf detection and tracking. The following sections
will discuss in more detail the vision algorithms, controls
pipeline, as well as present the experimental evaluation of
the system.

II. VISION

Our approach requires addressing several fundamental
computer vision problems. First, it requires accurate iden-
tification of leaves in the image. Second, it requires tracking
candidate leaves between several frames. Finally, it requires
matching feature keypoints between several frames. Addi-
tionally, we evaluate applying instance-based mask segmen-
tation to the problem to ensure the feature keypoints belong
to the target leaf and not other leaves in the bounding box.

A. Detection

Our prior work [5] demonstrated the applicability of
Deep Neural Networks for the leaf detection problem. In
particular, complex and variable leaf appearance, challenging
backgrounds, and changing natural lighting make devising
any hand-crafted features very difficult for this problem. The
goal of discriminating between healthy and unhealthy leaves
makes the task even more challenging.



Our object detector is based on a Faster R-CNN architec-
ture [6] that integrates a region proposal network with the
classification and bounding box regression network. As our
feature extractor during the experiments we used Resnet101,
although smaller MobileNets and VGG provide sufficient
accuracy for the system to function. While some lighter
architectures are applicable for the problem (e.g., SSD-based
approaches [7]), they generally perform worse on smaller
objects. Additionally, Faster R-CNN can be used as a base for
additional tasks, such as semantic segmentation (see section
II-C).

We perform transfer learning by using a model pre-trained
on the ImageNet [8] and COCO [9] datasets and fine-tuning
it on a dataset of 138 images, each containing on average 30
leaves. To improve the model’s generalizability, the dataset
contains images of the leaves from the field in different
weather conditions and stages of growth, as well as example
images indoors. The experimental results on an indoor plant
(see section IV-B) acquired in the setting different from that
in the dataset images show the model’s ability to pick up
general representation of leaves. The training images contain
examples of healthy and unhealthy leaves in the field, as
identified by an expert. The focus of the work is to identify
the abiotic stress (caused by water or nutrients deficiency),
so the primary signs of an issue are the yellowish color and
more visible leaf veins. We treat healthy and unhealthy leaves
as two different classes. This allows us to select which set
of leaves to track and sample during the test time. Example
detections on the leaves in the field are presented in Fig. 1.

Fig. 1: Detection of healthy and unhealthy leaves.

B. Leaf and Feature Tracking

Once the leaves in the image are identified, we need to
track them between several frames. Considering that matched
feature keypoints is a required input for the distance estimate,
the tracking is based on SURF features [1]. For each new
frame, we create a binary mask containing detected leaves
and compute SURF features for those leaves. We match
the features to N previous frames, which typically results
in accurate matches for candidate leaves between frames
(see Fig. 2). To filter outliers, we run RANSAC for each

leaf’s matches to get the final list of matched features. Next,
we perform a generic check of the computed homography
to make sure it is not extreme, which corresponds to a
wrong transformation. We simply take four corners of the
image and compute the ratio of the area within the corners
before and after applying the transformation. If the ratio is
unreasonably high (> 4) or small (< 0.25), we reject the
match. Optionally, we compute an epipolar constraint based
on known camera movement, which allows pre-filtering
potential leaf matches. However, this is beneficial only if
one target leaf is tracked at a time and is disabled when
matching all the leaves between frames in one step.

Fig. 2: Matched leaf features between two frames.

The algorithm results in a list of candidate leaves, each
containing pairs of matched features and associated frame
timestamps. Matching deeper than one previous frame allows
us to handle the event when a given leaf failed to be detected.
Thus, the controls algorithm has multiple candidates pre-
sented to it after each move allowing it to compare several
leaves and pick the best candidate. Crucially, temporarily
or completely lost leaf track does not require restarting the
leaf-picking procedure, as all possible leaf tracks are being
initialized and followed during the candidate search phase.

C. Instance-based semantic segmentation

Finally, we address the issue that may affect the accuracy
of distance estimate in some cases: features outside of the
target leaf. As previously discussed, the individual leaves
are described by a bounding box produced by the object
detector. Often this leads to the background and other leaves
being present in the corners of the bounding box. Since the
points in the background reside on a different plane they
will affect the distance estimate to the leaf. To mitigate the
issue, we trained the leaf detector to additionally compute
a segmentation mask for each leaf that can separate the
pixels belonging to the leaf from the background within
its bounding box. Thus, instead of using mask based on
bounding boxes to compute SURF features, we use the
associated segmentation mask.

It is known that producing segmentation ground-truth is
very labor-intensive, particularly for small and numerous
objects like leaves. Hence, we implemented the algorithm
that automatically generates masks from bounding boxes
based on the Grabcut algorithm [10]. The insights to training
from weak labels are available in [11]. Fig. 3 visualizes the
segmentations based on the masks used for training.



Fig. 3: Automatic segmentation based on Grabcut used
for dataset labeling. Left: original image, Right: computed
segmentation mask applied to the image.

We trained the instance-based semantic segmentation
model using Mask R-CNN [12], the network based on Faster
R-CNN that adds a mask regression head. We used an imple-
mentation of the approach from Tensorflow Object Detection
APL. [13]. Examples of predicted masks are presented in Fig.

Fig. 4: Predicted bounding boxes and segmentation masks.

III. CONTROLS

Manipulators are often used in situations where the task
is known before execution. However, in this research, the
manipulator is called on to gather leaf samples: a task which
is nearly completely unstructured. Nothing about the size or
position of the leaf is assumed to be known other than a
general approximation of the dimension of the leaves and
the general relative location of the peanut plant (within view
of the camera). Thus, the challenge of this research is to
localize the peanut leaf position relative to the manipulator
position accurately enough so that the end effector can pick
the leaf and collect it for sampling.

A. Previous Method: Single Leaf Approach

In the previous paper [5], the “Monoscopic Depth Anal-
ysis” approach was discussed: a method by which the leaf
position was determined through multiple images in multiple
camera locations. This method is quite reliable. It accurately
gives the leaf position with enough confidence that the leaves
are able to be manipulated. Furthermore, the MDA approach
does not rely on assuming geometric information about the
leaves that are to be manipulated, allowing for the method to
be generalizable to other systems if required. However, the
system has two aspects that are undesirable:

1) Erroneous data at the beginning of the cycle impacted
convergence.

2) Leaves had to be tracked subsequently from beginning
to end to be harvested.

1) Erroneous Data: The reason why erroneous data at
the beginning of the cycle could impact the convergence is
because the system assumes it has an accurate estimation of
the leaf position that it is trying to control against. If the
error of the leaf position is wildly inaccurate, then the initial
commands to control that error will not be directed towards
converging on the target. These commands could cause the
manipulator to behave in an undesirable motion: leading to
a failed attempt at capturing the leaf.

There are three main sources of erroneous data within this
system: incorrect point correspondence, correspondence of
points not within the leaf, and mispositioning of the cam-
era. Incorrect point correspondence leads to faulty distance
estimation, and correspondence of points not within the leaf
leads to a distance estimate that does not accurately describe
the leaf position. Each of these cases has been mitigated by
methods discussed in this paper. High resolution imaging
allows for more detected feature points, allowing for a
greater confidence thresholding in correspondence and more
points to accurately average the leaf position. The mask seg-
mentation ensures that the points found for correspondence
are derived from the leaves and not from the background.
Camera mispositioning can arise if the base or the joints have
slack that is not accounted for in forward kinematic solutions.
This issue is resolved by mechanically ensuring that the
camera is stable on the end-effector. However, even though
the sources of error have been minimized, past testing has
shown that an intermediate step is desirable to confidently
begin convergence towards a target. This procedure will be
discussed in the following section.

2) Subsequent Leaf Tracking: A major time consideration
of the previous leaf picking approach was the limitation that
a leaf had to be tracked throughout all the stages of the
control algorithm. The implication of this method is that
if the identification process of a leaf fails between camera
movements, the information about the leaf position is lost
and the routine has to begin again. Furthermore, even if the
leaf is found using this method, the images that are being
used to track the leaf are only valuable for that one leaf.
Even though other viable candidates are likely within the
image space, data on those leaves are discarded. This is a
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Fig. 5: Flowchart depicting logic used to locate and grab
leaves. At each stage, the strictest filter is applied, and
if it is passed, the leaf is grabbed. If the filter fails to
produce a meaningful point cloud, the next most stringent
filter is applied, resulting in appropriate motion from the
manipulator.

significant waste in data resources, and although the system
works, maintaining data on multiple leaves at a time would
be more efficient.

B. Current Method: Multi-Leaf Approach

The current working method has two major additions to
the task of harvesting leaves for sampling. The first modi-
fication is the addition of an Image-Based Visual Servoing
(IBVS) routine for initial convergence. Fundamentally, IBVS
methods require feature points in the image space to create
an error that can be minimized. This is why the IBVS method
was initially dismissed from this application: leaves are
variable enough that reliable feature points or characteristics
cannot be identified in a meaningful way. However, IBVS
could be used to determine initial motion by examining the
bounding box used to define the leaf in the image space.
By creating a “desired” bounding box in the center of the
image, and by setting a low gain on the motion of the arm,
even if the bounding box created by identifying the leaves
is dissimilar to the desired bounding box, the error values
are sufficient to initially determine the motion of the arm
towards convergence with the leaf. This initial motion allows
for multiple camera angles to examine the leaf, and thus the
position of the leaf can be more accurately estimated. Once
a certain confidence in the position of the leaf is reached,
the MDA approach can take over and minimize the error in
Cartesian space. Thus, the approach phase of the previous
pipeline has now been broken into: “Approach IBVS” and
“Approach MDA”. This algorithm is represented in Fig. 5.
In this figure, filters are representative of a confidence level
about the shape of the point cloud. The confidence level
regarding the point cloud and its association to the desired
leaf dictates the action of the manipulator.

Another significant change to past algorithms is the con-
sideration of multiple leaves from a given image. This
allows for the collection of information about a leaf while
approaching other leaves. Thus, the pipeline can now occur
for multiple leaves at a time, speeding up the process of
estimating leaf position and collection. A diagram of the
curent picking pipeline demonstrating interaction of vision
and control parts is shown in Fig. 6.
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Fig. 6: Diagram showing flow of information in the complete
leaf-picking pipeline.

IV. EXPERIMENTAL RESULTS

A. Leaves detection and disease identification

The Mask R-CNN ResNet101 model used in the experi-
ment was trained for 40K iterations with the initial learning
rate of 3e-3. We reduced the learning rate by 10X after
20K and 30K iterations. The following data augmentation
was used: random horizontal, vertical flip, and 90-degree
rotation. The performance of healthy and unhealthy leaves
detection was evaluated using Pascal VOC metric [14], which
requires intersection over union (IoU) value of at least 0.5.
The model achieves mean average precision (mAP) of 0.753
(see Table I). The experiment presented in this paper focuses
on leaf picking using a healthy plant, and the practical
evaluation with both healthy and unhealthy leaves present
will be performed as part of our future work.

Category AP
Healthy leaf 0.759
Unhealthy leaf | 0.746
Mean 0.753

TABLE I: Leaf detection performance using Pascal VOC
metric.

B. Leaf Sampling

The success of the leaf sampling is reliant on two separate
functions: the ability to estimate the leaf position in Cartesian
space and the action of grasping the leaf. To accomplish
this, feature points are corresponded in disparate images in
order to estimate the position of the feature point relative to
the camera. The collection of these points is then built into
a point cloud for individual leaves. Once the leaf position
is confidently estimated, the manipulator reaches for the
leaf position and attempts a grasp. For the purpose of the
application, it is assumed that the manipulator is sufficiently
accurate. Therefore, the priority of this research is to attempt
to describe the leaf pose relative to the manipulator as
accurately as possible.



Fig. 7: Experimental setup to determine the effectiveness
of the leaf acquisition algorithm. In this setup, the camera
begins in a position roughly the same distance to the plant
as it would in a field test.

The error exists within the data collected. The position
estimation relies on the target being stationary, but small
amounts of air movement and other external variables may
cause the leaves to move. Furthermore, the position of the
camera is subject to small variations. Also, the corresponding
feature points may not always be accurate. All of these
variables and more can lead to erroneous data in the point
cloud. The leaf is estimated to the best of the system’s
abilities by the methods previously mentioned, but in order
to determine where the leaf is, eventually a filtering method
is employed that determines the algorithm’s confidence in a
leaf’s position. One of the few assumptions made is that
the leaves are roughly flat, and thus, the estimated point
cloud should resemble a plane. Therefore, the system can
be confident in the position of a leaf if the estimated points
lie on a plane relatively close together. The following steps
are taken in filtering out “good” vs. “bad” leaf bounding
boxes to determine which leaves should be attempted for
harvesting.

1) Fit a plane to the leaf data.

2) Measure the normal distance from each point to the
plane.

3) Measure the radial distance on the plane from each
point to the center.

4) Find the mean and standard deviation values for the
distance to the plane and distance to the center.

5) Apply a confidence threshold based on the distance to
the plane and radial distance to determine if the point
cloud is a leaf.

These steps help to ensure that the point cloud is roughly
a plane and that the points are grouped, giving the best
insurance possible that erroneous data has not overwhelmed
the estimation of the leaf position. An example of a trial
set is shown in Figs. 8§ and 9. More information on the
data set is listed in Table II. The results in these figures
show the confident location of various leaves identified by
the image processing. Even though only about 20% of the
possible leaves that were identified in the image space had
suitable point clouds, the 41 leaves found far outweighs the
eight leaves required for sampling.

Leaf Filtering Example
Images Taken: 12
Leaves Found in Image Space: 200
Leaves with Corresponding Points: 76
Point Clouds that Passed Filtering: 41

TABLE II: Data regarding the trial in generating the leaf
point clouds.

Trial | Grabbed | Missed | % Grabbed per Total
1 10 2 83.33
2 7 0 100.00
3 10 0 100.00
4 5 2 71.42
5 7 0 100.00
6 10 0 100.00

TABLE III: Given 10 images per trial, this table lists the
number of leaves successfully grabbed versus the number of
leaves missed.

Point Cloud For Multiple Leaves

Fig. 8: Example of the plant point cloud. The estimated
position of the feature points has been used to limit the
chosen bounding boxes to only those which are likely to be
leaves. In this image, the red points are the raw data values
and the non-red points are the values rectified to a plane.
Each leaf is contained in a bounding box of a corresponding
color.

Given a suitable point cloud, the leaves can now attempt
to be sampled. This was done in a lab environment, shown in
Fig. 7. The algorithm in Fig. 5 was implemented and resulted
in about 92% of the leaves grabbed that the system attempted
to grab, which can be seen in Table III. Even though this
was a lab setting, it is expected to behave similarly in the



field. The lighting conditions should not be a factor in the
imaging of the leaves, and the mechanical setup will be
similar, except with the robotic arm attached to a tractor
instead of a table. Importantly, this test measured if the leaf
was “grabbed” as the test did not attempt to “pick” the leaf
for sampling. This procedure was performed to preserve the
health of the plant during extensive testing. This experiment
gives a good indication that the system will be able to meet
performance expectations and a suitable number of samples
can be obtained in a full experimental setup.

Point Cloud For Single Leaf

Fig. 9: Example of a single leaf point cloud. Based on
the associated feature points, this point cloud is likely the
position of a leaf. In this image, the red points are the raw
data values, and the green points are the values rectified to
a plane.

V. CONCLUSIONS

This paper discussed a flexible leaf-picking approach
designed for the field and, thus, addresses the challenges of
working in the real world. These challenges include variable
outdoor operating environments, uniqueness of target objects,
and difficulty of having a persistent calibration between any
external sensors and the robotic arm. This informed some of
our fundamental design choices from using Deep Neural Net-
works to having eye-in-hand camera-based controls, which
allow the system to operate with few assumptions about the
robot platform and the environment.

We focused on the components that increase the robustness
and convergence speed of our approach and addressed the
issues identified during the initial field test. These compo-
nents include semantic segmentation based on automatically
generated labels, multi-leaf multi-frame tracking, and com-
prehensive candidate filtering. Our future work will focus on
performing a field test of the system in the peanut field with
the objective of picking healthy and unhealthy leaf samples
from multiple plants as part of a continuous autonomous
operation.
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