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Abstract. The main objective of incomplete multi-view clustering is
to effectively utilize the existing view information to fill in the missing
data and to mine the complementary information and potential associa-
tions between multiple views to effectively group samples. The existing
primary means for recovering missing information are classified into two
parts: one uses matrix decomposition or low-rank constraints to fill in the
missing views, and the other constructs multiple graph structures and
uses graph regularization to recover the corresponding missing parts.
However, the two methods are relatively independent and are not used
jointly to improve the model performance. This paper proposes an in-
complete multi-view clustering method with complete clustering metrics
and complete anchor graphs (CFAG). Specifically, each view’s missing
samples are recovered by a matrix of consistent clustering metrics and
represented by an anchor graph. The recovered complete data performs
anchor graph construction and anchor learning and utilizes the orthog-
onal variation principle to learn the consistency structure of multiple
anchor graphs to mine the complementary information among multi-
ple views. The clustering metrics are obtained based on the consistency
structure, and the consistency of the clustering metrics is also considered
to obtain the final clustering results. The effectiveness of the proposed
method is verified on multiple datasets.

Keywords: Incomplete multi-view clustering · Missing views recovery
· Anchor graph.
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1 Introduction

In today’s data-driven era, multi-view has become integral to many fields, such
as computer vision, bioinformatics, and social network analysis [14]. Multi-view
data consists of information collected from multiple perspectives or multiple sen-
sors, and its inclusion provides a detailed and complementary description of the
same set of objects [8]. For example, in image recognition, an image can contain
multiple views, such as color, texture, and shape; in bioinformatics, a gene can
have multiple views, such as its expression level, sequence information, and func-
tional annotations. These views are independent and complementary, providing
more comprehensive information for data analysis and pattern recognition [13].
This diversity of information provides more comprehensive data for machine
learning models, especially in the task of clustering analysis [20]. Clustering
analysis is an unsupervised learning method aiming to group similar objects.
While traditional single-view clustering methods utilize data from only a single
view for clustering, multi-view clustering attempts to integrate information from
multiple views to improve the accuracy and robustness of clustering [15].

However, real-world data collection processes are often subject to constraints
such as sensor failures, data transmission errors, or privacy safeguards, leading
to the prevalence of missing views in multi-view data [9]. This incompleteness
increases the complexity of data processing and poses a serious challenge to the
performance of traditional multi-view clustering methods [25]. Therefore, effec-
tively handling missing data to improve the performance of incomplete multi-
view clustering has become a concern.

This year, a variety of methods have been proposed for incomplete multi-view
data, which can be roughly classified into three categories: matrix-factorization-
based methods, graph-based methods, and deep learning-based methods [12].
The matrix-factorization-based methods usually use matrix decomposition or
self-representation to complete the missing data in multi-view and then perform
clustering based on the complete data [16]. The core idea of this class of meth-
ods is to evaluate the missing data using the correlation between views [18].
In self-representation-based methods, a low-rank constraint guarantees that the
multiple view matrices have consistent properties, where kernel-paradigm mini-
mization is often utilized, which guarantees low rank by minimizing the kernel-
paradigm of the matrix, i.e., the sum of singular values [19]. The graph-based
approaches attempt to construct a consistent graph that utilizes complementar-
ities between multiple views to reduce the impact of missing data and enable
clustering on that graph [22]. The deep learning-based methods utilize the power-
ful representation capabilities of neural networks to learn a shared representation
of multi-view data [3]. Such methods typically employ self-encoders or genera-
tive adversarial networks to learn low-dimensional representations of data. In
addition, the subspace learning-based approaches perform clustering by finding
the common subspace of the multi-view data [23].

Although the appeal methods deal with the problem of incompleteness to
a certain extent, they still have some limitations. While these methods recover
missing data, they do not take into account the consistency between the missing
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data. Graph-based methods are less efficient in dealing with high-dimensional
data and simple graph fusion, thus failing to utilize complementary information.
The consistency between multiple clustering indicator matrices is not considered
when obtaining clustering labels. The paper proposes an incomplete multi-view
clustering model based on conceptual decomposition (CFAG) to address the
above issues, which utilizes cluster consistency to fill in missing data. Specifi-
cally, in missing data recovery, the clustering metrics of each view are combined
with the original data matrix using conceptual decomposition, which adds a
correlation matrix due to the different samples missing from each view. Based
on this, anchor points and anchor graphs are used to explore further the data
relationships between existing and missing data. Also, orthogonal variations are
utilized to explore complementary and consistent information between multiple
anchor graphs. The matrix decomposition is used to learn the clustering met-
rics for each view using the learnt consistency structure to align it with that in
the conceptual decomposition. To integrate information from all views for global
consistency, weighted spectral rotation is introduced to learn the final clustering
results. The main contributions of this paper are as follows:

(i) The proposed method explores potential associations between incomplete
data through conceptual decomposition and anchor graph learning, which
recovers missing instances in incomplete data and complete data used for
anchor learning.

(ii) To take advantage of the complementary information between multiple views,
orthogonal changes are introduced to bridge the anchor graphs of the views.
The clustering metrics for each view are not obtained in a single way but by
both conceptual decomposition and consistent structural decomposition in
order to explore the semantic associations between the views.

(iii) Spectral rotation is integrated into data recovery and consistency structure
learning to obtain stable clustering results.

2 Related work

The following section focuses on two methods this paper uses: concept factor-
ization and anchor graph learning.

2.1 Concept factorization

The principle of concept decomposition is to utilize multi-view consistency in-
formation to recover missing instances. Its main way is to utilize the correlation
between different views to extract shared underlying concepts from multiple
views. The core idea is that data from different views may reflect the same
underlying structure, although they are represented differently. For example,
Lu et al. used concept factorization to fuse helpful information and added two
regularizations to force coefficient matrix smoothing and learn latent clustering
structures [10]. Khan et al. dealt with the incomplete problem of views using
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weighted concept factorization, using common regularization constraints to ob-
tain the shared structure, and introducing smoothed regularization to prevent
overfitting [4]. Liu et al. used concept factorization in high-dimensional space
to distinguish different classes of sample points and employed multiple graph
regularization constraints to extract flow shape information from different views
[6].

2.2 Anchor graph clustering

Anchor graph learning is used to reduce computational complexity, and the
anchor points are usually representative sample points in the dataset to extract
the intrinsic structure and underlying concepts of the data despite incomplete
views. For example, Dai et al. projected the original space into the latent space
and constructed multiple view-specific anchor graphs that were stacked into a
graph tensor to capture higher-order correlations [2]. Li et al. learned inter-view
anchor graphs and fused them into a consensus sparse anchor graph in which fast
spectral clustering was applied to produce a single clustering result [5]. Zhang
et al. adaptively learned discriminative anchors for each view, utilized matrix
decomposition of the anchor graph matrix, and reached a consensus matrix prior
to the k-mean algorithm [24].

3 Methodology

3.1 Preliminary

In the paper, uppercase font denotes matrices (X ∈ Rm×n) and lowercase font
denotes vectors (x ∈ Rm). For matrix X, Xij , Xi:, and X:j denote the (i, j)th
element of the matrix, the ith row vector, and the jth column vector, respectively.
XT , X−1, and Tr(X) denote the transpose, inverse, and trace of the matrix X,
respectively. Meanwhile, ||X||F =

√∑
i,j X

2
ij denotes the Frobenius norm of

matrix X. For clarity, the mathematical symbols and explanations involved in
the text are listed in Table 1.

3.2 Proposed method

Concept decomposition is introduced to explore the association between incom-
plete views and concepts, where concepts are identified as a matrix of clustering
metrics for each view. Traditional conceptual decomposition decomposes the
original data matrix into two matrices with potential dimensions c. The number
of categories is substituted for c to avoid excessive discussion of c. This low-
dimensional representation effectively reduces the dimensionality of the data and
improves clustering performance. One of the matrices in the decomposition is
represented by the existing data because at least one sample of the same medium
category exists in this view to recover missing data, implying that the existing
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Table 1: Commonly used notations.
Notations Explanations
Xv ∈ Rdv×nm The incomplete multi-view data matrix of the vth view
X̃v ∈ Rdv×n The multi-view data matrix of the vth view after missing data filling
W v ∈ Rnm×k The association matrix of the vth view
Rv ∈ Rk×n The indicator matrix of the vth view
Bv ∈ Rdv×m The anchor matrix of the vth view
Zv ∈ Rm×n The anchor graph of the vth view
A ∈ Rm×n The essential anchor graph
Gv ∈ Rm×m The orthogonal graph of the vth view
P ∈ Rm×k The cross-view projection matrix
F ∈ Rn×k The clustering label matrix
Qv ∈ Rk×k The rotation matrix of the vth view
dv The feature dimension of the vth view
nm The number of existing instances of the vth view
n The number of instances
k The number of clustering categories
m The number of anchors

data can represent the missing data. For this purpose, the objective function is
expressed as

minX̃v,Wv,Rv

l∑
v=1

||X̃v −XvW vRv||2F s.t. W v ≥ 0, (1)

where X̃v ∈ Rdv×n denotes the multi-view data matrix after recovering the
missing data. Xv ∈ Rdv×nm denotes the incomplete multi-view data matrix.
W v ∈ Rnm×k denotes the association matrix, which means the degree of corre-
lation between the data matrices and the concepts. W v ≥ 0 implies that this
correlation must be positive. Rv ∈ Rk×n denotes the indicator matrix.

The feature dimension dv and the number of instances n of the original data
matrix is much larger than the number of clustering categories k, resulting in a
closely related computational cost for the process. A self-representation strategy
is introduced to represent each data point using the original data to reduce
this cost. However, there is a large amount of redundancy in the original space,
so a small number of data points are selected to reconstruct the subspace. An
anchor point strategy is used for this purpose, but now the anchor point strategy
is divided into two parts: selection of anchor points and anchor graph learning,
which are relatively independent. In order to combine these two processes, anchor
points are learned using all samples, and the anchor graph is optimized at the
same time. Based on this, the following objective function is constructed as

minX̃v,Bv,Zv

l∑
v=1

||X̃v −BvZv||2F s.t. BvT

Bv = I, Zv ≥ 0, ZvT

1 = 1, (2)
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where Bv ∈ Rdv×m denotes the anchor matrix of the vth view and Zv ∈ R(m×n)
denotes the anchor graph. In the experiment the number of anchor points is fixed
as the number of clusters. The orthogonality constraint BvT

Bv = I ensures that
the anchor points are independent of each other. The constraint on Zv ensures
that the relationship between each sample and anchor point is in a certain range.
From Eq. (2), it is clear that the process not only learns anchor points and anchor
graphs but also reconstructs the incomplete multi-view data matrix. To ensure
that the missing data recovered by Eq. (2) and Eq. (1) are consistent while
avoiding parametric effects, the following objective function is constructed as

minWv,Rv,Bv,Zv

l∑
v=1

||XvW vRv −BvZv||2F

s.t. W v ≥ 0, BvT

Bv = I, Zv ≥ 0, ZvT

1 = 1.

(3)

Eq. (3) recovers the missing data but does not utilize the complementary
information of multiple views. The consistency structure is learned from the
anchor graphs, but there are inconsistencies in the anchors across views. An
orthogonal variation strategy is introduced to fuse multiple anchor graphs. The
main element of this strategy is that for the matrix (X,Y ) corresponding to the
two dimensions, if Y is an orthogonal matrix, then ||X||2F = ||Y X||2F . Based on
this, assuming that X is the anchor graph for each view, a basic anchor graph
can be learned using change of change with

minA,Gv ||A||2F s.t. GvT

Gv = I, Zv = GvA,A ≥ 0, A1 = 1, (4)

where Gv ∈ Rm×m corresponds to Y denoting the orthogonal matrix of the vth
view. A ∈ Rm×n denotes the basic anchor graph. Complementary information
between multiple views can be learned by varying the orthogonality of all anchor
graphs.

When dealing with incomplete multi-view data, the missing instances differ
between views, resulting in a suboptimal learned metrics matrix Rv at high
missing rates. While exploring the intrinsic structure of multiple views, the global
consistency of the intrinsic structure should also be considered, i.e., the indicator
matrix Rv can be obtained from the underlying anchor graph. Therefore, cross-
view consistency can be achieved by introducing the projection matrix, which
takes advantage of the property that the multi-view data describes the same
set of things, projecting Rv into the basic anchor graph. Thus getting rid of
the inaccuracy of the indicator matrix Rv learned from Eq. (3). The objective
function is expressed as

minP,Rv

l∑
v=1

||A− PRv||2F s.t. P TP = I,RvRvT

= I, (5)

where P ∈ Rm×k denotes the cross-view projection matrix. The orthogonal
constraint RvRvT

= I ensures that the indicators are independent. Eq. (5)
not only ensures the accuracy of the learned metrics matrix but also restricts
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each other with anchor graph learning, making the recovery data reliable and
mitigating the negative impact of view-specific missing data.

The indicator matrices of the complete views do not take into account the
differences between the views and, therefore, cannot be used for the final cluster-
ing, but they have the same clustering structure. Therefore, spectral rotation is
introduced to obtain the final clustering results, and its main objective is to min-
imize the distance between RvT

Qv and the final clustering label matrix, where
Qv is an orthogonal rotation matrix. The objective function is expressed as

minF,Rv,Qv

l∑
v=1

||F −RvT

Qv||2F s.t. QvTQv = I, F ∈ Ind, (6)

F ∈ Ind ensures that the clustering labelling matrix F ∈ Rn×k has only one
element of 1 in each row, and the rest are 0.

Combining concept decomposition, anchor graph learning, and clustering
structure learning will help explore the underlying connections between data
in incomplete multi-view to reduce the impact of missing instances. In addition,
orthogonal transformations and spectral rotations are used to make the indi-
cator matrices consistent across learning processes to obtain stable clustering
results. Considering the different contributions of each view, adaptive weights
are introduced to measure them. The overall objective function is obtained by
combining Eqs. (3), (4), (5), and (6) as

minΨ

l∑
v=1

||XvW vRv −BvZv||2F + λ1||A||2F +

l∑
v=1

(
λ2α

v2

||A− PRv||2F

+ λ3β
v2

||F −RvT

Qv||2F
)
s.t. W v ≥ 0, BvT

Bv = I,RvRvT

= I, Zv ≥ 0,

ZvT

1 = 1, GvT

Gv = I, Zv = GvA,A ≥ 0, A1 = 1, PTP = I,QvTQv = I,

F ∈ Ind,

l∑
v=1

αv = 1, αv ≥ 0,

l∑
v=1

βv = 1, βv ≥ 0.

(7)

where Ψ = {W v, Rv, Bv, Zv, A,Gv, P, F,Qv, αv, βv} denotes the variables to be
optimized. λ1, λ2, and λ3 are balance parameters.

3.3 Optimization
Eq. (7) is solved using alternating iterations and introducing the intermediate
variable Y v to solve the equation constraint Zv = GvA. Eq. (7) is transformed
using the Lagrange multiplier method.

LΩ =

l∑
v=1

||XvW vRv −BvZv||2F + λ1||A||2F +

l∑
v=1

(
λ2α

v2

||A− PRv||2F

+ λ3β
v2

||F −RvT

Qv||2F +
ρ

2
||Zv −GvA+

Y v

ρ
||2F
) (8)
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In Eq. (8), Ω = {W v, Rv, Bv, Zv, A,Gv, P, F,Qv, αv, βv}, Y v is the Lagrange
multiplier, and ρ is the penalty factor. Transform Eq. (8) into the following
stepwise optimization problem:

Bv-subproblem : When the remaining variables are fixed, the optimization prob-
lem for Bv transforms into

minBv

l∑
v=1

||XvW vRv −BvZv||2F s.t. BvT

Bv = I. (9)

Since Bv is independent of each other between views, Eq. (9) transforms to

maxBvTr(BvT

Mv) s.t. BvT

Bv = I, (10)

where Mv = XvW vRvZvT . By performing an SVD decomposition of Mv, the
optimal solution of Bv is UV T , and U and V are the left and right singular value
matrices of Mv, respectively.

Zv-subproblem : When the remaining variables are fixed, the optimization prob-
lem for Zv of each view transforms into

minZv ||XvW vRv −BvZv||2F +
ρ

2
||Zv −GvA+

Y v

ρ
||2F . (11)

Optimizing each column Zv
:j of Zv alone, Eq. (11) transforms to

minZv
:j

1

2
ZvT

:j Cv
ZZ

v
:j + fZZ

v
:j s.t. Zv

:j ≥ 0, ZvT

:j 1 = 1, (12)

where Cv
Z = 2BvT

Bv + ρI, fZ = Y vT

:j − 2(XvW vRv)T:jB
v − 2AT

:jG
vT . Eq. (12) is

a quadratic programming problem.

W v-subproblem : When the remaining variables are fixed, the optimization prob-
lem for W v of each view transforms into

minWv ||XvW vRv −BvZv||2F s.t. W v ≥ 0. (13)

Find the derivative of Eq. (13) with respect to W v and let the derivative be
0 and the optimal solution to W v that can be obtained using the KKT condition
as

W v
ij =

(
(XvT

BvZvRvT

)ij
(XvTXvW vRvRvT )ij

) 1
2

W v
ij . (14)
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Rv-subproblem : When the remaining variables are fixed, the optimization prob-
lem for Rv of each view transforms into

minRv ||XvW vRv−BvZv||2F +λ2α
v2

||A−PRv||2F +λ3β
v2

||F −RvT

Qv||2F . (15)

Its optimization problem is similar to Bv, the optimal solution of Rv is
UV T , and U , V are the left and right singular value matrices of W vT

XvBvZv−
λ2α

v2

PTA− λ3β
v2

QvFT respectively.

A-subproblem : When the remaining variables are fixed, the optimization prob-
lem for A transforms into

minAλ1||A||2F +

l∑
v=1

(
λ2α

v2

||A− PRv||2F +
ρ

2
||Zv −GvA+

Y v

ρ
||2F
)

s.t.A ≥ 0, A1 = 1.

(16)

This optimization is similar to Zv, and optimizing A:j alone yields

minA
1

2
AT

:jC
v
AA:j + fAA:j s.t. A:j ≥ 0, AT

:j1 = 1, (17)

where Cv
A = (2λ1 + 2λ2

∑l
v=1 αv2

+ ρl)I, fA =
∑l

v=1(Y
vT

;j Gv − 2λ2R
vT

;j PT −
ρZvT

;j Gv). The optimal solution of A can be obtained using the quadratic pro-
gramming function.

Gv-subproblem : When the remaining variables are fixed, the optimization prob-
lem for Gv transforms into

minGv||Zv −GvA+
Y v

ρ
||2F s.t. GvT

Gv = I. (18)

Similar to Bv, the optimal solution of Gv is UV T , and U , V are the left and
right singular value matrices of (Zv − Y v

ρ )AT , respectively.

P -subproblem : When the remaining variables are fixed, the optimization prob-
lem for P transforms into

minP

l∑
v=1

αv2

||A− PRv||2F s.t. P TP = I. (19)

Similar to Bv, the optimal solution of P is UV T , and U , V are the left and
right singular value matrices of

∑l
v=1 α

v2

ARvT , respectively.
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Qv-subproblem : When the remaining variables are fixed, the optimization prob-
lem for Qv transforms into

minQvβv2

||F −RvT

Qv||2F s.t. QvT

Qv = I. (20)
Similar to Bv, the optimal solution of Qv is UV T , and U , V are the left and

right singular value matrices of βv2

RvF , respectively.

F -subproblem : When the remaining variables are fixed, the optimization prob-
lem for F transforms into

minF

l∑
v=1

λ3β
v2

||F −RvT

Qv||2F s.t. F ∈ Ind. (21)

Transform Eq. (21) into a trace as

maxFTr(F
TO) s.t. F ∈ Ind, (22)

where O = λ3

∑l
v=1 β

v2

RvT

Qv, then the optimal solution of F is

Fij =

{
1, if j = argmaxjOij

0, otherwise.
(23)

αv, βv-subproblem : When the remaining variables are fixed, the optimization
problem for αv transforms into

minα

l∑
v=1

αv2

qv s.t. α ≥ 0, α1 = 1, (24)

where qv = ||A − PRv||2F , α = [α1, α2, . . . , αl]T . Eq. (24) is derived for αv and
the optimal solution for αv according to the KKT condition as

αv =
1

qv
(

l∑
v=1

1

qv
)−1. (25)

The optimization of βv is similar to αv. Its optimal solution is 1
pv (
∑l

v=1
1
pv )

−1,
where pv = ||F −RvT

Qv||2F .

Y v, ρ-subproblem : These two variables are updated as

Y v = Y v + ρ(Zv −GvA) (26)
ρ = min (pho ∗ ρ, µ) . (27)

where pho, µ are constants.
The computational complexity of each solution process is calculated to de-

termine the total computational complexity of the proposed method. The total
computational complexity of the proposed method is O(k2dv + lmk3 + lnk3 +
nmk2 + nk2).
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4 Experiments

4.1 Datasets

The experiment consists of five datasets, namely 3Sources, 100leaves, Caltech101,
and HW, whose details are shown in Table 2. Making p instances of each view
in the above dataset missing at random (missing rate is p/n) to construct an
incomplete multi-view dataset.

Table 2: Details of the datasets.
Dataset 3Sources 100leaves Caltech101 HW
# Size 169 1600 1474 2000
# Classes 6 100 7 10
# View1 3560 64 48 240
# View2 3631 64 40 76
# View3 3068 64 254 216
# View4 - - 198 47
# View5 - - 512 64
# View3 - - 928 6

4.2 Comparison methods

The following methods are compared to verify the validity of CFAG.

(i) HCLS_CGL [17]: It constructs a confidence graph on the raw data to learn
a consistent representation and obtains the clustering structure through a
consensus graph across views.

(ii) ETLSRR [21]: It constructs in-view similarity maps, stacks them into third-
order tensors, and uses tensor decomposition to decompose it into sparse
tensors and intrinsic tensors to model noise and underlying real data simi-
larity, respectively.

(iii) JPLTD [11]: It utilizes orthogonal projection matrices to project the original
data into a low-dimensional space, constructs view-specific similarity graphs,
and stacks them into a third-order low-rank tensor, which is robustly clus-
tered using a graph filter based on tensor decomposition.

(iv) FIMVC-VIA [7]: It learns view-independent anchor matrices to explore com-
plementarities while constructing consensus anchor graphs based on a con-
sistent clustering structure.

(v) CGCTD [1]: It utilizes confidence graphs to construct complete graphs,
stacks them into tensors, and introduces the underlying tensor to recover
accurate affine graphs.

4.3 Clustering results and analysis

Table 3 presents the evaluation metrics (ACC, NMI, and Purity) of the proposed
method and the comparison algorithm when the missing rate is 0.1, and the bold
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font in the table indicates the best. The table shows that the proposed method
(CFAG) performs better than the comparison algorithm on all datasets. This
phenomenon indicates that the strategy adopted by the proposed method is ef-
fective in dealing with incomplete data and can fully exploit the complementarity
and consistency between views.

Table 3: Algorithms’ performance with a missing rate of 0.1.
Datasets HCLS_CGL ETLSRR JPLTD FIMVC-VIA CGCTD CFAG
ACC
3Sources 70.93±0.72 74.20±1.95 73.70±16.21 69.22±0.76 72.71±2.51 79.51±0.89
100leaves 67.76±0.81 56.44±1.94 60.52±0.20 63.06±1.26 65.62±0.50 70.35±0.42
Caltech101 67.72±2.62 67.01±8.30 74.74±21.14 74.68±5.96 71.12±6.74 76.11±4.12
HW 83.04±3.99 85.00±0.20 77.64±15.55 85.00±6.00 75.25±0.34 88.76±2.19
NMI
3Sources 70.93±0.33 72.78±8.75 74.54±16.11 69.22±0.23 74.12±2.94 78.89±0.95
100leaves 68.58±0.80 57.56±2.15 61.57±0.19 62.58±1.25 65.89±0.48 71.00±5.69
Caltech101 66.88±2.70 64.72±0.76 76.02±22.03 75.67±5.98 78.81±5.96 81.18±1.18
HW 80.38±8.65 84.04±1.20 75.73±15.83 80.09±1.38 73.41±0.49 85.07±8.29
Purity
3Sources 71.43±0.28 69.64±4.20 72.61±16.48 60.49±0.16 73.52±2.39 77.09±0.69
100leaves 68.71±0.77 57.19±1.50 61.82±0.17 64.85±1.11 65.23±0.57 69.35±1.72
Caltech101 67.74±2.70 64.93±0.46 66.91±21.66 76.57±5.98 73.16±6.43 78.18±8.18
HW 83.04±9.09 80.49±3.60 79.37±16.29 84.96±2.40 74.78±0.12 88.07±2.85

Considering the effect of the missing rate on all the algorithms, experiments
with different missing rates are conducted, and the experimental results are
shown in Fig. 1. It can be seen that the performance of all algorithms decreases
when the missing rate increases. However, on the 3Sources dataset, the decreas-
ing trend of the performance of the proposed method (CFAG) is obvious when
the missing rate changes from 0.5 to 0.7. In general, the metrics curves of ACC,
NMI, and Purity of the proposed method (CFAG) are at the upper level, which
also indicates the superiority of the performance of CFAG.

4.4 Sensitivity analysis

The proposed method involves three parameters which are λ1 to control the basic
anchor graph learning (||A||2F ), λ2 to control the complete indicator learning
(||A−PRv||2F ) and λ3 to control the clustering matrix learning (||F−RvT

Qv||2F ).
By fixing one parameter to change the others, the model’s performance on the
dataset is used to determine the optimal parameter combination. The variation
of CAFG with different parameter combinations on 3Sources is shown in Fig.
2. From this, it can be seen that CAFG performs better when λ1 and λ3 take
larger values.

4.5 Convergence analysis

This experiment verifies that the proposed optimization method is convergent,
and the variation curve of the objective function is shown in Fig. 3. From this, it
can be seen that the value of the objective function converges when the iteration
is up to 20 times.
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(a) 3Sources: ACC (b) 3Sources: NMI (c) 3Sources: Purity

(d) 100leaves: ACC (e) 100leaves: NMI (f) 100leaves: Purity

Fig. 1: ACC VS. missing rate on the 3Sources and 100leaves.

(a) 3Sources: λ1, λ2 (b) 3Sources: λ1, λ2 (c) 3Sources: λ2, λ3

Fig. 2: Variation of ACC of CFAG on 3Sources with different parameters.

(a) 3Sources (b) 100leaves (c) Caltech101 (d) HW

Fig. 3: Variation of the objective function value with iterations.
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5 Conclusions

This paper proposes a unified framework for recovering missing instances by
joint concept decomposition and anchor graph learning. The proposed method
exploits the consistency between views through conceptual decomposition and
combines anchor graph learning to reduce the impact of missing data in the
original space. Based on this, orthogonal variations are utilized to exploit the
complements between views while combining with spectral rotation to achieve
one-step clustering. Although the experiments show the effectiveness of the pro-
posed method, there are some limitations. The number of anchor points in anchor
graph learning is difficult to determine. The model contains multiple variables,
which may lead to a local optimization when optimizing.
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