
EasyChair Preprint

№ 1441

Smooth Local Planning Incorporating Steering

Constraints

Freya Veronika Fleckenstein, Wera Winterhalter,
Christian Dornhege, Cédric Pradalier and Wolfram Burgard

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

September 1, 2019



Smooth Local Planning
Incorporating Steering Constraints

Freya Fleckenstein, Wera Winterhalter, Christian Dornhege, Cédric Pradalier and
Wolfram Burgard

Abstract Individually controllable and steerable wheels provide vehicles with greater
flexibility and efficiency. A key challenge in the context of such vehicles lies in the
effective planning of the motion commands in order to properly deal with the po-
tentially large required changes in the steering angles and to properly incorporate
the given motion constraints. Especially large vehicles often perform large steering
angle changes only while standing to prevent physical damage to the robot. In this
paper we introduce a novel planner for vehicles with individually controllable and
steerable wheels and two novel methods to incorporate steering constraints. The lat-
ter are designed to provide smooth changes of the instantaneous center of rotation
(ICR). Extensive experiments in simulation and on the real robot reveal that our
methods allow for an effective planning of steering commands, reduce the travel
time by decreasing the time spent standing for wheel reconfigurations, and addi-
tionally enable the vehicle to accurately follow a given path.

1 Introduction

Mobile autonomous robots have become increasingly important in agricultural and
industrial environments. Compared to standard equipment such as tractors, they
have the advantage of being more lightweight thus reducing soil compression and
being more flexible thus providing the potential to lower the utilization of chemicals.
However, the variability of the crop production requires an appropriate flexibility of
the robots with respect to wheel adjustments, such as with the robot depicted in
Figure 1.

Freya Fleckenstein ·Wera Winterhalter · Christian Dornhege ·Wolfram Burgard
University of Freiburg, Germany, e-mail: {fleckenf,winterhw,dornhege,burgard}@
tf.uni-freiburg.de

Cédric Pradalier
GeorgiaTech Lorraine-UMI 2958, GeorgiaTech-CNRS, Metz, France, e-mail: cedric.
pradalier@georgiatech-metz.fr

1

{fleckenf,winterhw,dornhege,burgard}@tf.uni-freiburg.de
{fleckenf,winterhw,dornhege,burgard}@tf.uni-freiburg.de
cedric.pradalier@georgiatech-metz.fr
cedric.pradalier@georgiatech-metz.fr


2 Fleckenstein et al.

The core capability of the navigation system is to generate and execute a collision-
free trajectory. A common approach is to use a global planner to compute a path
consisting of a list of poses the robot should traverse. In addition, a local planner is
used to generate motions connecting through these waypoints. Usual requirements
are that the motions are smooth, safe and can accurately be executed even at the via-
points. The robot then has to translate the motions into concrete steering commands
resulting in the proper steering angles of the wheels and the wheel velocities. Our
goal in this paper is to create such a local planner that uses all available degrees of
freedom of a robot with individually steerable wheels to effectively navigate while
still accurately tracking the global path.

Fig. 1 These pictures show the agricultural robot BoniRob with four wheels whose orientation
and rotation can be changed independently. The picture on the right has been taken during an
autonomous run.

In general, there are several hardware limitations that impose constraints on the
available control commands. First, there are the overall velocity and acceleration
limits. Second, there are steering constraints such as maximum steering angle and
steering velocity, i.e., how fast the wheel orientations can be changed. Our algorithm
considers all of these constraints while at the same time generating velocities that
lead to high tracking accuracy and efficient overall movements of the vehicle.

The local planner we present is based on the principle of trajectory rollouts [7]. It
determines a set of candidate velocities close to the current velocity. It then checks
for each candidate whether it satisfies the hardware acceleration and velocity con-
straints and computes a sequence of velocities to reach the desired velocity from the
current one. Finally it computes a score for each sequence and chooses the best one.

The particular challenge when considering limits on steering angles and steering
velocities is that smooth transitions in the velocity of the robot do not necessar-
ily lead to smooth transitions in the wheel angles. For example, to first execute a
small forward velocity and then a small sideways velocity, the wheels always need
to turn by 90 ◦ independent of how small the absolute velocity change is. There-
fore it is necessary to consider changes of the wheel angles explicitly. In this paper,
we present two methods to incorporate steering constraints in the local planner by
transforming the wheel configurations into the space of the instantaneous centers of
rotation (ICR). First, we introduce the constraints in a post-processing filter step on



Smooth Local Planning Incorporating Steering Constraints 3

the velocity command that was computed without regard for steering constraints.
The second approach is to directly incorporate the steering constraints as ICR con-
straints in the local planner. To achieve this, we compute a local path of valid ICRs
towards a candidate velocity and if such a path exists instantiate the ICRs with ve-
locities to gain a trajectory. In addition, we demonstrate how the steering mechanical
constraints can be efficiently expressed in a unified manner.

We evaluate both methods on three trajectories posing different challenges in
simulation and verify the observed behavior in real-world experiments. The results
show that including the ICR constraints with our method greatly reduces the travel
time. At the same time, integrating the constraints directly in the local planner main-
tains high tracking accuracy.

2 Related Work

Many approaches have been presented that compute velocity commands for tracking
a given path. Early methods use a set forward velocity and only control the steering
to stay close to the designated trajectory [11]. They were, for example, successfully
used in controlling vehicles on a motorway [9]. Similarly, several approaches have
been developed that are purely reactive and directly map sensor data to steering
corrections [2]. These approaches are not sufficient for the problem we consider, as
they might lead to great changes in required steering angles. Other methods restrict
the possible paths to be twice differentiable [3]. Our experiments reveal that we do
not need comply with this restriction to get a low tracking error.

Some higher-level approaches use model predictive tracking strategies to esti-
mate the future robot state [5, 13]. Fox et al. and Gerkey and Konolige [6, 7] sample
a set of velocities, predict the robot pose one timestep into the future, compute a
score for each velocity and execute the best. Our approach is similar in that we also
sample a set of velocities and score them.

There are two major differences to our approach. First, we propose to generate
sequences of velocities toward a sampled velocity and include a path prediction in
the score. This allows us to plan further ahead and create more stable sequences. In
particular, mechanical constraints may require the robot to slow down, which we can
incorporate. The pose paths resulting from these velocity sequences are similar to
the motion primitives in state lattice planning [12]. Second, we consider mechanical
steering constraints in the velocity sequence generation. While most local planner
methods incorporate velocity and acceleration limits [10, 6], few of them consider
these additional constraints. For integrating the mechanical steering constraints, we
leverage previous work [4, 14]. Clavien et al. show that the velocity of a ground
vehicle corresponds directly to the ICR coordinates expressed in homogeneous co-
ordinates that can be mapped onto a unit sphere in 3D [4]. The advantage of the
spherical coordinates is that they are bounded and that any transition between two
ICRs can be represented by a segment of a great circle on the sphere. If the seg-
ment crosses the equator, then the robot wheels will temporarily be aligned and the



4 Fleckenstein et al.

path curvature will change sign at this point. Schwesinger et al. demonstrate that
steering velocity constraints can be expressed by half-plane constraints on the ICR
displacement [14]. In this paper, we combine these results and demonstrate how
wheel mechanical constraints can be expressed efficiently in a common frame.

3 Integrating Mechanical Steering Constraints

In this section, we demonstrate how the steering mechanical constraints can be effi-
ciently expressed in a unified manner. We consider three constraints: the maximum
steering velocity, the distance to a wheel and the rotation limit of the steering joints.
In a practical deployment, having an ICR too close to one of the vehicle wheels
leads to mechanical instabilities: a small numerical variation in the ICR least-square
position estimate [4] will result in large steering angle changes, which will put a
continuous strain on the wheel. Additionally, few vehicles have steering joints that
can rotate continuously. E.g., in our system it is important to avoid moving from
steering angle 89o to 91o, as the wheel will have to be rotated by 178o.

3.1 Formalizing Mechanical Steering Constraints

We describe the mechanical steering constraints in ICR coordinates expressed in
the robot coordinate frame. Consider the homogeneous coordinates of an ICR as
3D points. Then, any point P of the homogeneous plane is projected orthogo-
nally on the surface of the unit sphere centered at (0,0,0) by normalizing it as
Π(P). Points at infinity (i.e., straight line motions) project to the equator of the
sphere. The north pole of the sphere corresponds to an ICR representing rota-
tion on the spot. Inversely, from a point (u,v,w) on the sphere, the correspond-
ing ICR can be found as (u/w,v/w) if w 6= 0. As a result, diametrically oppo-
site points are equivalent. For any ICR I in homogeneous coordinates, Π+(I) =
I/‖I‖ and Π−(I) = −I/‖I‖ are its equivalent diametrically opposed projections
on the sphere. We define Π(I) as the tuple (Π−(I),Π+(I)). Then, a segment
J = [I1, I2] in the homogeneous space projects to two great-circle segments Π(J) =
([Π−(I1),Π

−(I2)] , [Π
+(I1),Π

+(I2)]).
We consider a vehicle with wheels Wi, represented in homogeneous coordinates

(xi,yi,1). According to our notation, the line joining the ith wheel to I1 is Li =
I1×Wi. In projective geometry, the cross product of two points is the homogeneous
representation of the line going through them, even for points at infinity. Note that
a line defined by ax+ by+ c = 0 can be represented in homogeneous coordinates
Li = (a,b,c). Hence, the wheel steering is obtained by φi = atan2(b,a).

Steering Velocity Constraints Using the results from Schwesinger et al. [14],
we express the steering velocity constraints by half-plane constraints on the ICR
displacement. Because of the maximum steering velocity, a wheel steering φ can



Smooth Local Planning Incorporating Steering Constraints 5

change by at most±δφ in one timestep. Geometrically, this means that every wheel
defines a cone of ±δφ with boundaries L+

i and L−i resulting from Wi× (−sin(φi±
δφ),cos(φi±δφ),0)T . The intersection of the cones defined by all the wheels is the
set of feasible ICR changes within one timestep. In the R2 plane, this intersection is
a Nef polygon [1, 8], i.e., a polygon that is defined by the intersection of half-planes
and may include points at infinity. The ICR movements and constraints are illus-
trated in Figure 2. Assuming the ICR needs to move from I1 to I2, let us define the
line L = I1× I2 on which the ICR has to move to achieve the requested ICR. The
intersection of L with the cone defined by L+

i and L−i is the generalized segment
Mi = [M−i ,M+

i ]. A feasible ICR will hence have to belong to the intersection of the
n generalized segments Mi due to all the wheel constraints, or the equivalent great
circle segments Π (Mi) on the sphere.

Wheel Distance Constraints If I1 and I2 are not both at infinity, we want to forbid
the ICR from moving within a radius r from wheel i. This requires computing the
intersection C+

i and C−i of L with the circle centered on Wi with radius r. This is
solved with basic geometry in R2, without resorting to projective geometry tricks.
Contrary to the steering velocity constraints, the wheel distance constraints are ex-
clusive, so the ICR must be outside the Ci = [C−i ,C+

i ] generalized segment.

Rotation Limit Constraint of Steering Joints The wheel mechanical constraints
define a specific range of steering that the ICR should not enter. Similar to the
steering velocity constraints, this defines a set of exclusion cones in the ICR
space. The intersection of L with these cones gives a set of generalized segments
Ni = [N−i ,N+

i ] out of which the ICR should always be.

3.2 Constraint Unification

All the above ICR constraints have been expressed as inclusion or exclusion seg-
ments for the ICR, so the next challenge is to fuse all these segments efficiently. To
this end, we use the process depicted in Figure 3: we will project all of them on the
unit sphere. In practice, all the segment ends have been computed numerically, so
we compute the great circle containing all of them using total least squares. Now,
we can represent each ICR P with the coordinates (x,y,0) of its projection on the
great circle, or more efficiently by its angular position θ+(P) = atan2(y,x) which is
equivalent to the opposite angle θ−(P) = atan2(−y,−x). In summary, every gener-
alized segment [p,q] in homogeneous coordinates projects on a tuple of great circle
segment Π ([p,q]), which is expressed as an angle interval union

θ ([p,q]) =
[
θ
− (p) ,θ− (q)

]
∪
[
θ
+ (p) ,θ+ (q)

]
and the challenge is now to intersect a set of intervals in the most efficient way.

We choose to represent a collection of angle intervals by a sorted list of endpoints
and a Boolean flag stating if ±π is included or not in the collection. If it is, the
first value in the list is the end of the first interval, otherwise, it is the start. This



6 Fleckenstein et al.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-8 -6 -4 -2 0 2 4 6

Fig. 2 ICR movement constraints. The robot is depicted in gray, with four wheels. The ICR is
initially on the green disk, linked by the green lines to the four wheels, and is requested to move
to the red position. The magenta line highlights the ICR path, which crosses the steering velocity
constraints in red and the wheel distance constraints in blue. The black dots depict the intersections,
the blue disk is the furthest the ICR can move in one timestep.

representation has a quick complement operator by toggling the flag as well as a
quick union operator which just fuses the sorted list in linear time. The intersection
is computed using the complement of the union of the complement.

The unified constraints is the intersection I of all the constraints:

I =
p⋂

i=1

θ (Mi)∩θ (Ci)∩θ (Ni) (1)

If I is empty, then the current ICR is too close to the wheels or the mechanical lim-
its and there is no feasible movement to reach a suitable ICR within one timestep. In
general, I will be a collection of intervals, out of which we select the one contain-
ing 0, i.e., θ(I1). If it also contains θ(I2), then I2 is feasible and safe. Otherwise, the
interval endpoint closest to θ(I2) is selected. If I does not include 0, then the cur-
rent ICR is not acceptable, but there is a feasible ICR at reachable distance. In this
case, the selected interval is the one closest to 0. From the optimal value of θ(I∗),
we can easily recover Π(I∗) and a safe ICR I∗. In practice, we can run this process
in less than 10µs, which is a critical requirement to integrate it into the trajectory
rollout presented in Section 4.

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3 -2 -1 0 1 2 3 -1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1-1

-0.5

0

0.5

1

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Fig. 3 ICR constraint unification process. Left: the ICR initial and requested configuration in 2D,
and the best feasible ICR in blue. Center: projection of the ICR and constraints on the unit sphere,
and extraction of the great circle containing all the projections. Right: the ICR constraint on the
great circle θ(.). Black and white disks correspond to opposed constraints.



Smooth Local Planning Incorporating Steering Constraints 7

4 From Paths to Velocity Commands

To follow a path, the robot executes velocity commands v = (vx,vy,ω). At each
timestep, we determine a set of candidate velocities. For each candidate, we compute
a trajectory rollout of discretized velocities and poses stretching over a constant
rollout time. Then we compute a cost for each rollout and choose the best.

Trajectory Rollouts We define a fixed discretization of the velocity space and com-
pute a set of candidate velocities around the current velocity that satisfy the velocity
and acceleration constraints of the robot. Assuming maximum acceleration towards
the candidate velocity in vx,vy and ω , a velocity rollout is generated. If the candidate
velocity is reached before the rollout time ends, this velocity is kept for the remain-
ing time. The pose rollout is then computed by successively applying the velocities
from the velocity rollout with a given timestep to the current pose.

Velocity Cost During path execution, the robot has to trade off efficiency and ac-
curacy. For example, in a 90◦ turn, the most accurate execution would be going
straight, stopping, turning, and going straight. In contrast, the more efficient, but
less accurate solution would be to cut the corner in favor of a smoother and faster
execution. As a measure of accuracy, we use the integrated distance d(P,T ) of the
trajectory rollout T to the path P. For each point in the trajectory rollout, we de-
termine the closest point on the path and compute the distance between those two
points. We approximate the integrated distance by the sum over these distances. We
model the efficiency by the length of the covered path segment l(P,T ). The cov-
ered path segment is defined by the first and last trajectory rollout matches onto the
path. We balance the effects of these two costs by introducing the path length scale
s ∈ [0,1]. The velocity cost is then given as c(P,T ) = (1− s) · d(P,T )+ s · l(P,T ).
For larger values of s, the length of the covered path segment gains more weight so
that the local planner will prefer rollouts that cut corners.

5 Integrating Steering Constraints into the Local Planner

While the approach described above takes into account low-level hardware con-
straints, it does not consider mechanical steering constraints. As we explained
above, these constraints can be expressed in the ICR space in a unified manner.
To exploit this model of the steering constraints, we project the velocities (vx,vy,ω)
into the ICR space expressed in homogeneous coordinates (−vy,vx,ω) [4]. If ω 6= 0,
the ICR coordinates in the R2 plane are (−vy/ω,vx/ω). Otherwise, the robot is
moving straight, which corresponds to an ICR at infinity in the direction (−vy,vx),
which is exactly what homogeneous coordinates (−vy,vx,0) express. There are
two possibilities to integrate ICR constraints into the velocity command execution
pipeline. First, the ICR constraints can be enforced in a post-processing Filter step.
Second, the ICR constraints can be integrated directly into the trajectory rollout
computation.



8 Fleckenstein et al.

5.1 Mechanical Steering Constraints in a Post-Processing Filter

To filter the velocity commands in a post-processing step, we first compute the tra-
jectory rollouts in the local planner as described in Section 4. The filter then receives
the requested velocity command from the local planner as (vr

x,v
r
y,ω

r). We compute
the corresponding ICR Ir = (−vr

y,v
r
x,ω

r). Together with the current ICR Ic we find
an acceptable ICR I∗ = (i∗x , i

∗
y ,w
∗) that satisfies the mechanical steering constraints

and is as close to Ir as possible. We then compute the filtered velocity command
v∗ = (v∗x ,v

∗
y ,ω

∗) by projecting I∗ back into the velocity space.
However, an ICR is equivalent to a velocity only up to a scale factor. The last

stage is to scale the ICR to output velocities as close as possible to the requested
command. Two cases must be considered: If ‖(−i∗y , i

∗
x)‖ = 0, then we set ω∗ = ωr

and v∗x = v∗y = 0. Otherwise, we scale (−i∗y , i
∗
x ,w
∗) with a factor α to give (v∗x ,v

∗
y) =

α(−i∗y , i
∗
x) the same norm and direction as (vr

x,v
r
y), which means keeping vr

xv∗x +
vr

yv∗y ≥ 0. This yields a velocity that satisfies the mechanical steering constraints
with the same translational velocity as the requested command.

5.2 Mechanical Steering Constraints in the Local Planner

To integrate the steering constraints directly into the local planner, these constraints
have to be considered when generating candidate velocities as well as during trajec-
tory rollout computation. First, we discard candidate velocities that do not satisfy
the constraints in the ICR space. A more complex problem is generating trajectory
rollouts that are compliant with the steering constraints.

Given the current ICR Ic computed from the current wheel configuration and
the candidate ICR I of the candidate velocity v, we compute an ICR path with a
limited steering angle change in each timestep. If the candidate ICR is not reach-
able within the rollout time, the candidate velocity is discarded. Given the current
velocity vc = (vc

x,v
c
y,ω

c), the candidate velocity v = (vx,vy,ω) and an ICR path
{I0 = Ic, I1, . . . , In = I}, we compute a velocity rollout as follows:

For the previous velocity vi−1 and the required ICR Ii = (ix, iy,w) solve

argminα‖α · (iy,−ix,w)− v‖ s.t. α · iy ∈ (vi−1
x −amax

x · t,vi−1
x +amax

x · t)
α ·−ix ∈

(
vi−1

y −amax
y · t,vi−1

y +amax
y · t

)
α ·w ∈

(
ω

i−1−amax
ω · t,ω i−1 +amax

ω · t
)

where amax
x ,amax

y ,amax
ω are the maximum accelerations and t is the length of one

timestep. The acceleration limits are set according to the hardware limits of the robot
and the timestep is set to the internal control cycle of the firmware. Intuitively, this
provides us with a velocity that is as close to the candidate velocity as possible, while
being within the acceleration limits and compatible with the next ICR in the ICR
path. This yields a velocity rollout with the additional constraint that the steering



Smooth Local Planning Incorporating Steering Constraints 9

angle does not change by more than a given threshold in one timestep. The pose
rollout is computed from the velocity rollout as before.

6 Evaluation

We evaluated our approach in simulated and real world experiments to show how
an ICR-aware local planner affects the navigation of the robot and which way of
integrating ICRs performs better. In particular we investigate if considering ICRs
leads to higher efficiency during path execution as the robot does not have to stop to
turn the wheels. At the same time we investigate how much the accuracy is impacted.
To this end, we considered three different paths to follow: First, a path of smoothly
connected lines and arcs; second, a field-like path with long straight lines and tight
180◦ turns; and third, a rectangular wave path with varying side length, shown in
Figures 4, 5, and 8. All experiments were conducted with maximum velocities set to
vmax

x = vmax
y = 0.2m/s,ωmax = 0.1rad/s and vmax

x = vmax
y = 0.4m/s,ωmax = 0.2rad/s

respectively. We will reference these two settings as maximum velocity 0.2 and 0.4
in this section. We additionally modified the influence of the covered path length on
the velocity rating, using path length scales of 0.08, 0.1, and 0.12. All experiments
were performed in simulation with three repetitions. In addition, we evaluated the
field path with 0.4 maximum velocity and a path length scale of 0.08 in a real-
world scenario on our BoniRob robot shown in Figure 1 to verify the results of the
simulation experiments. We used the odometry to determine the pose of the robot.

We analyze several criteria that are relevant for the local planner performance:
A plot of the path to follow in comparison to the executed trajectory to judge how
closely the robot is able to follow a given path; the tracking accuracy along the
path; the overall mean execution time and, to gain a closer insight on the last point,
the time spent standing to perform wheel orientation changes. As a measure for the
tracking accuracy, we use the maximum error between the path and the executed
trajectory. We show experiment results for our approach with different variants of
how to include ICR constraints: including the ICR constraints directly in the tra-
jectory rollouts of the local planner yielding an ICR-aware local planner (Planner),
no ICR-awareness (None), and without ICR-awareness but an additional filter run
between the local planner output and the command execution (Filter).

First of all, Table 1 clearly shows that considering the necessary wheel angle
changes notably reduces the execution time, both with a post-processing filter and
when incorporating the constraints directly into the planner. The approach None is
always slower than both other variants, by up to a factor of 1.7 (Field, maximum
velocity 0.2). Shown are the results for path length scale 0.08; For other path length
scales the results are similar.

The lines and arcs path does not pose a challenge to any of the algorithm variants
as it only contains straight lines and wide arcs and thus does not force the robot
towards its steering constraints. Figure 4 shows the results for path length scale
0.12, for other path length scales the results are similar. It is already visible in the



10 Fleckenstein et al.

Table 1 The mean execution times for path length scale 0.08 for all trajectories and all evaluated
algorithms with different velocities.

Maximum Velocity 0.2 Maximum Velocity 0.4
Filter None Planner Filter None Planner

Lines and Arcs 385s 492s 383s 182s 214s 182s
Field 169s 257s 152s 147s 192s 122s
Rectangular Wave 235s 324s 221s 292s 374s 302s

Vel Poses Maximum Error Time Standing

0.
2

m
/s

50 55 60 65

10

5

0

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0

5

10

15

20

25

0.
4

m
/s

50 55 60 65

10

5

0

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0

5

10

15

20

25

Fig. 4 The results for the lines and arcs path with path length scale 0.12.

trajectory overlay that all variants have a good tracking accuracy. This is confirmed
by an overall maximum tracking error of about 35 cm. Neither the filter nor the
ICR aware planner spent any considerable time standing, while the planner without
regard for its wheel configurations does. All in all, these results demonstrate that on
a smooth path with wide arcs, it is beneficial to consider the wheel configuration,
but it suffices to avoid unnecessary wheel changes in a post-processing Filter.

The field path contains tight 180 degree turns. Here, the influence of the path
length scale becomes more visible as it allows the robot to shortcut the turns (Fig-
ure 5). Nevertheless, one might choose a larger path length scale to allow the robot
to perform smoother curves, thus reducing standing times. This effect is indepen-
dent of considering ICR constraints. Figure 6 shows that the maximum error in-
creases when increasing the path length scale, especially for a maximum velocity of
0.4. In Figure 7 we see an explanation for the overall higher efficiency of the ICR
aware variants Filter and Planner: They both have notably smaller standing times
than without considering ICRs in None. The ICR aware variants are able to use the
increased path length scale and show reduced standing times almost down to zero.
This is not the case for None with the larger maximum velocity of 0.4 as it does not



Smooth Local Planning Incorporating Steering Constraints 11

Vel Path length scale
0.08 0.1 0.12

0.
2

m
/s

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

0.
4

m
/s

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

52 54 56 58 60 62 64

4

2

0

Fig. 5 The evaluated trajectories for the field path. Stops are marked with x.

Vel Path length scale
0.08 0.1 0.12

0.
2

m
/s

Filter None Planner
0.0

0.5

1.0

Filter None Planner
0.0

0.5

1.0

Filter None Planner
0.0

0.5

1.0

0.
4

m
/s

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Fig. 6 The maximum error for the field path.

Vel Path length scale
0.08 0.1 0.12

0.
2

m
/s

Filter None Planner
0

5

10

15

Filter None Planner
0

5

10

15

Filter None Planner
0

5

10

15

0.
4

m
/s

Filter None Planner
0

5

10

15

20

Filter None Planner
0

5

10

15

20

Filter None Planner
0

5

10

15

20

Fig. 7 The total time where the robot was standing in field. Times where the robot was standing,
but not turning the wheels are shaded with x.



12 Fleckenstein et al.

consider steering constraints and thus cannot use the increased path length scale to
prevent excessive wheel orientation changes.

In Figure 5 we also see that the Filter overshoots the turns on multiple occasions
as it prevents turning the wheels to stay within the steering constraints when it would
be necessary to do so for the turn. On the one hand this is an undesirable behavior
that neither the Planner nor the None variant face. On the other hand Table 1 shows
that the Filter succeeds in increasing efficiency. While similar to the Filter and None
the Planner is also affected by the reduced accuracy when increasing the path length
scale, it neither shows overshoots as the Filter nor does it take as long as None.
Due to the shortcuts caused by the path length scale, effects on the accuracy due to
considering ICRs are not clearly visible. It is still a relevant case as it directly maps
to an application in agricultural robotics.

Vel Path length scale
0.08 0.1 0.12

0.
2

m
/s

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

0.
4

m
/s

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

54 57 60 63 66 69 72 75
15

12

9

6

Fig. 8 The evaluated trajectories for the rectangular wave path. Stops are marked with x.

Vel Path length scale
0.08 0.1 0.12

0.
2

m
/s

Filter None Planner
0

10

Filter None Planner
0

10

Filter None Planner
0

10

0.
4

m
/s

Filter None Planner
0

10

20

30

40

50

Filter None Planner
0

10

20

30

40

50

Filter None Planner
0

10

20

30

40

50

Fig. 9 The total time where the robot was standing in rectangular wave. Times where the robot
was standing, but not turning its wheels are shaded with x.



Smooth Local Planning Incorporating Steering Constraints 13

The third experiment on the rectangular wave path poses similar challenges of
tight 90 degree turns, but does not provoke shortcuts as the field path does (see Fig-
ure 8 for the trajectory overlays). Therefore we did not observe any strong relation-
ship of the path length scale to the accuracy. While all variants appear to be mostly
close to the path with some shortcuts, the Filter clearly drifts away from the path in
some cases. In this path, one reason for the increased efficiency when considering
steering angles becomes apparent in Figure 9. While a larger path length scale does
reduce the standing times for each variant, being aware of the ICRs pays off notably
as the None variant keeps the robot standing the most. In contrast, in most cases the
Filter and Planner show similarly small standing times. The exception is the combi-
nation of the smallest path length scale (0.08) with the larger maximum velocity of
0.4 forcing the robot in tight turns. While still better than None, the planner keeps
the robot standing more than Filter for two reasons. First, the Planner keeps the
robot standing when necessary, i.e., in the turns, while None also stands on straight
lines. Second, the Filter only achieves the lower standing times than Planner at the
cost of overshooting the path multiple times. The Filter provides a trade-off tailored
towards smooth driving at the cost of following the path accurately.

Vel Poses Maximum Error Time Standing

0.
4

m
/s

52 54 56 58 60 62 64

4

2

0

Filter None Planner
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Filter None Planner
0

5

10

15

20

Fig. 10 The results for the real world experiment.

The real-world experiment shown in Figure 10 shows this even more clearly.
Based on the results of the simulation experiments, we set a path length scale of
0.08 for the field path and a maximum velocity of 0.4. The comparison of the three
variants on the real robot confirms the results from the simulated data. Filtering
the velocity commands using ICR constraints helps to drastically reduce the time
spent standing and thus increases efficiency, but leads to large tracking errors mainly
when it overshoots the path to keep execution smooth. In contrast, including the ICR
constraints in the local planner also reduces the time spent standing, but retains the
tracking accuracy of the local planner that does not consider ICR constraints and
thus provides the best combination of both options.

This is an observation that we make throughout all four experiments: Consid-
ering ICR constraints is necessary to prevent the robot from standing to perform
wheel reconfigurations. As the Filter always prevents excessive wheel rotations it
sometimes grossly overshoots the path. The planner is able to make this trade-off of
preventing unnecessary wheel movements, while at the same time allowing accurate
path tracking.



14 Fleckenstein et al.

7 Conclusions

In this paper, we presented novel approaches based on trajectory rollouts for a local
planner that computes velocity commands for robots with constraints on steering
angles and steering velocities. In extensive experiments, we demonstrated that our
approach leads to higher efficiency by minimizing time spent for wheel reconfigu-
rations. At the same time it is able to highly accurately track the planned path when
integrating the constraints directly in the planner.

Despite these positive results, we still see room for further improvement. In our
future work we will investigate computationally feasible methods that estimate the
true error between path and rollouts more precisely to further increase the tracking
accuracy.

References

1. Bieri, H.: Nef polyhedra: A brief introduction. In: Geometric modelling, pp. 43–60. Springer
(1995)

2. Björn Åstrand and Albert-Jan Baerveldt: A vision based row-following system for agricultural
field machinery. Mechatronics 15(2), 251 – 269 (2005)

3. Cherubini, A., Chaumette, F., Oriolo, G.: Visual servoing for path reaching with nonholonomic
robots. Robotica (2011)

4. Clavien, L., Lauria, M., Michaud, F.: Estimation of the instantaneous centre of rotation with
nonholonomic omnidirectional mobile robots. Robotics and Autonomous Systems 106, 47–57
(2018)

5. Conceição, A.S., Moreira, A.P., Costa, P.J.: A nonlinear model predictive control strategy for
trajectory tracking of a four-wheeled omnidirectional mobile robot. Optimal Control Appli-
cations and Methods 29(5), 335–352 (2008)

6. Fox, D., Burgard, W., Thrun, S.: The dynamic window approach to collision avoidance. IEEE
Robotics Automation Magazine 4(1), 23–33 (1997)

7. Gerkey, B.P., Konolige, K.: Planning and control in unstructured terrain. In: Workshop on Path
Planning on Costmaps, IEEE International Conference on Robotics and Automation (ICRA)
(2008)

8. Hachenberger, P., Kettner, L., Mehlhorn, K.: Boolean operations on 3d selective nef com-
plexes: Data structure, algorithms, optimized implementation and experiments. Computational
Geometry 38(1-2), 64–99 (2007)

9. Jurie, F., Rives, P., Gallice, J., Brame, J.: High-speed vehicle guidance based on vision. Control
Engineering Practice 2(2), 289 – 297 (1994)

10. Klanc̆ar, G., S̆krjanc, I.: Tracking-error model-based predictive control for mobile robots in
real time. Robotics and Autonomous Systems 55(6), 460 – 469 (2007)

11. Micaelli, A., Samson, C.: Trajectory tracking for two-steering-wheels mobile robots. IFAC
Symposium on Robot Control 27(14), 249 – 256 (1994)

12. Pivtoraiko, M., Kelly, A.: Efficient constrained path planning via search in state lattices (2005)
13. Qin, S., Badgwell, T.A.: A survey of industrial model predictive control technology. Control

Engineering Practice 11(7), 733 – 764 (2003)
14. Schwesinger, U., Pradalier, C., Siegwart, R.: A novel approach for steering wheel synchroniza-

tion with velocity/acceleration limits and mechanical constraints. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (2012)


	Smooth Local Planning Incorporating Steering Constraints
	Freya Fleckenstein, Wera Winterhalter, Christian Dornhege, Cédric Pradalier and Wolfram Burgard
	Introduction
	Related Work
	Integrating Mechanical Steering Constraints
	Formalizing Mechanical Steering Constraints
	Constraint Unification

	From Paths to Velocity Commands
	Integrating Steering Constraints into the Local Planner
	Mechanical Steering Constraints in a Post-Processing Filter
	Mechanical Steering Constraints in the Local Planner

	Evaluation
	Conclusions
	References



