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Abstract

Metagenomic studies identify the species present in
an environmental sample usually by using procedures
that match molecular sequences, e.g., genes, with
the species taxonomy. Here, we formulate the prob-
lem of gene-species matching in the parsimony frame-
work using phylogenetic gene and species trees under
the deep coalescence cost and the assumption that each
gene is paired uniquely with one species. In particular,
we solve the problem in the cases when one of the trees
is caterpillar. Next, we generalize the solution and pro-
pose several heuristic algorithms. Finally, we present
the results of computational experiments on simulated
and empirical datasets.

keywords: deep coalescence, metagenomics, species
taxonomy, gene tree

1 Introduction

One of the primary goals of metagenomic studies
is to identify the species present in an environmental
sample. Such identi�cation from metagenomics data is
usually computationally demanding and requires com-
plex work�ows in which molecular sequences identi�ed
in the sample, i.e., reads, genes or contigs, can be
matched with the species taxonomy. The gene-species
matching can be expressed by using a partially labeled
phylogenetic tree, where a gene tree inferred from a set
of homologous sequences extracted from the sample
is matched with the known species taxonomy. Here,
we formulate the problem in the parsimony framework
using gene and species trees under the deep coalescence
model and the assumption that each gene is paired
uniquely with one species.

Deep coalescence is a major process that can lead to
a discordance between a gene tree and its species tree.
It occurs when the time at which lineages of alleles co-
alesce, predates speciation events of the alleles' species
[1, 2]. The discordance caused by deep coalescence can
be measured by using the deep coalescent cost which,

given two labeled trees, is e�ciently computable in
linear time [3]. Consequently, the cost has been studied
in the context of classical problems in computational
biology, e.g., gene tree parsimony [4�7], tree reconcilia-
tion [8], error correction [9] or tree rooting [10, 11].

In this article, we analyze the deep coalescence cost
for a pair of bijectively labeled gene and species trees.
We investigate into gene-species matching problem
expressed as the minimisation problem, that is, given
two unlabeled trees �nd bijective leaf-labelings for these

trees that minimise the deep coalescence cost. While
several variants of the dual maximising problem can be
solved in polynomial time [12�14], little is known about
the minimising problem. The closest is the minimisa-
tion problem for the general leaf-labelings, i.e., without
the requirement of bijectivity. Usually, such a problem
can be solved by a dynamic programming in polynomial
time [15�17].

In this article, we solve the gene-species problem
for bijectively labeled leaves in the cases when one
of the trees is caterpillar by using two tree ordering
operations. Next, we generalize the solution and
propose several heuristic algorithms the problem for
any gene and species tree topology. Finally, we present
the results of computational experiments on simulated
and empirical datasets.

2 Basic de�nitions

A tree in this article is a rooted binary tree T =
〈V (T ), E(T )〉 such that the edges of T are directed
towards leaves, i.e., if 〈v, w〉 ∈ E(T ) then v is the parent
of w. The edges incident to the root are called top.
By T (v) we denote a subtree of T rooted at a node
v. A cluster of v, denoted CT (v), is the set of all
leaves of T (v). By |T | we denote the size of T , that is,
the number of its leaves. By h(T ) we denote the height
of T , i.e., the maximal number of edges on the path
from the root to a leaf of T . If v is a non-root node,
then vP is the parent of v and vS is the sibling of v.

Let X = {x1, x2, . . . , xn} be a �xed set of n > 1 taxa.



A labeled tree over X is a tree having exactly n leaves
bijectively labeled by the elements from X. A labeled
tree is often ordered. In such a case, each internal
node v has the left and the right child, denoted vL and
vR, respectively. An ordered tree T induces a labeling

ΛT : [n] → X,1 such that ΛT (1),ΛT (2), . . . ,ΛT (n) are
the taxons obtained from the leaves by the left to right
traversal of T . A labeling that satis�es ΛT (i) = xi, for
i ∈ [n] will be called simple. For a node v, the subtree
T (v) has the labeling inherited from T .

Each edge e ∈ E(T ) can be uniquely identi�ed by
the child, therefore, in notation, we often use an edge
and its terminating node (the child) alternatively. For
instance, the subtree S(v) can be denoted as S(e) if
e = 〈vP , v〉.
In computational biology, we recognize two types of

trees: a gene tree and a species tree. In this article,
they are both labeled trees over the same set of taxa.
Now we introduce the least common ancestor mapping,
in short, LCA-mapping, from a gene tree G to a species
tree S. An example is depicted in Fig. 1.

De�nition 1. LCA-mapping from a gene tree G to

a species tree S is a function LCAS : G → S such that

for a node v of G, LCAS(v) is the lowest node s of S,
such that each taxon from G(v) is present in S(s).

Based on the LCA-mapping we can embed a gene
tree G into S by mapping every edge 〈v, w〉 of G
to the path in S whose endpoints are LCAS(v) and
LCAS(w). The edges of such paths are called lineages.
Embeddings can be visualized in the form depicted in
Fig. 1. If both trees are equal, then the LCA-mapping
is a bijection, and an edge is bijectively mapped to
an edge. Otherwise, the embedding has some number
of extra lineages present on edges of the species tree.
For an edge e ∈ E(S), the number, denoted xl(G, e),
can be de�ned formally as [13]

xl(G, e) = |CS(e)| − ce − 1,

where ce is the number of internal nodes of G that are
mapped to nodes of S(e).

Having this, we de�ne the deep coalescence cost.

De�nition 2. For a gene tree G and a species tree

S the deep coalescence cost is de�ned as dc(G,S) =∑
e∈E(S) xl(G, e).

Equivalently, it can be shown that dc(G,S) =∑
〈v,w〉∈E(S) ‖ LCAS(v), LCAS(w)‖ − 1, where ‖s, s′‖

denote the number of edges on the shortest path
connecting s and s′.

Now, we will investigate into the minimal deep
coalescence cost for �xed tree topologies. For a given

1[n] = {1, 2, . . . , n}
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Figure 1: Left: An example of a gene tree G
and a species tree S over X = {a, b, c, d, e, f} with
the LCA-mappings of internal nodes of G. Right:

The embedding, or evolutionary scenario [18], explains
the di�erences between G and S by drawing G inside
S. Here, dc(G,S) = 2 as each top edge of S has one
extra lineage.

tree T (labeled or not) by S(T ) we denote the set of all
labeled trees T ′ over X such that V (T ) = V (T ′) and
E(T ) = E(T ′). In other words, the elements of S(T )
share the tree topology.

Problem 1 (MinDC). Given trees G and S. Find

the minimal dc(G′, S′), denoted d̃c(G,S), in the set of

all pairs 〈G′, S′〉 from S(G)× S(S).

From the practical point of view, the most critical
problem is to infer the minimal labelings, which encode
the gene-species mappings. This can be expressed by
seeking for the optimal gene tree as follows.

Problem 2 (Gene-Species Matching). Given a tree

G and a species tree S. Find G∗ ∈ S(G) such that

dc(G∗, S) = d̃c(G,S).

3 Results

In this section, we show how to solve our problems
when one of the trees is a caterpillar, i.e., the maximum-
height tree Cn.

3.1 Caterpillar species tree

We say that an ordered tree T is size-ordered if for
each internal node v we have |T (vL)| ≤ |T (vR)|.

Theorem 1. Given a size-ordered gene tree G and

a size-ordered species tree Cn. If both are simply labeled

then d̃c(G, Cn) = dc(G, Cn). Furthermore,

d̃c(G, Cn) = d̃c(GL, C|GL|) + d̃c(GR, C|GR|) + |GL| − 1,
(1)

where GL and GR are the left and the right subtree of

G, respectively.

Proof. Without loss of generality, we assume that
the labeling of G is simple. Let us consider any labeling
of Cn. First, we embedGL andGR separately, and then,



we join them by embedding the top edges. We can write
that,

dc(G, Cn) = dc(GL, C|GL|) + dc(GR, C|GR|) + K, (2)

where K > 0 is the number of additional extra lineages
from the top edges and the intersection of subtrees in
the embedding. Here, the labelings of C|GL| and C|GR|
are inherited from Cn. An example is depicted in Fig. 2.

K = 4, dc(G,S1) = 5 K = 2, dc(G,S2) = 3

Figure 2: Embeddings of a simple labeled gene tree G =
((a, (b, c)), ((d, e), (f, g))) into Cn with two labelings.
The lineages of GL = (a, (b, c)) are red, GR =
((d, e), (f, g)) are green, while the lineages of top edges
of G are black. The contribution to dc is marked next
to edges. The right embedding is optimal, as the tree
is simple labeled and the lineages of GL and GR are
disjoint.

We show that the best labeling of Cn is simple.
The proof is by induction on the size of T . For n = 1
it is trivial. Assume that the statement holds true for
trees of the size smaller than n. We want to minimize
the value of dc(G, Cn).

Let Λ be the labeling of the species tree Cn and let
m = |GL| ≤ |GR|. Let A and the set of indices of taxons
mapped to Cn from GL

2. If Λ is simple, then A = [m]
andK = m−1 as the lineages of GL and GR are disjoint
and there arem−1 lineages of the top edges (see Fig. 2).
In general, for any A, let 0 = l0 < l1 < l2 < . . . < lk = n
be the maximal sequence such that for 1 ≤ j < k either
lj ∈ A ∧ lj + 1 /∈ A or lj /∈ A ∧ lj + 1 ∈ A. E.g.
for the left tree from Fig. 2, k = 4, n = 7, l1 = 1,
l2 = 3, l3 = 5 and l4 = 7. Now we have [n] split into
k parts Pj := {lj−1 + 1, . . . , lj} for j ∈ [k]. We can
imagine a tree Gj as a tree contracted to the set of
taxons from Λ[Pj ]. When embedding G into Cn, we can
inductively embed GL (and similarly GR) as proposed
in formula (2). This can be done by using every second
Gj 's tree and calculating only additional extra lineages
in embeddings of Gj and Gj+2 that are separated
by the embedding of Gj+1. Including the lineages

2Formally, A = Λ−1(ΛG[{1, 2, . . . ,m}]).

of top edges, to calculate K we have the following
observations. Let sj be the LCA-mapping of the root of
Gj . For every 3 ≤ j ≤ k, Gj has to be connected with
Gj−2, which requires |Gj−1| − 1 lineages, located on
the path connecting sj−1 with the parent of sj , shared
with the lineages of Gj−1. Similarly, G2 needs |G1| − 1
lineages between the parent of s2 and the root of S.
Next, if 2 ≤ j < k, there is one more lineage, i.e.,
the edge whose terminating node is sj , shared with
the lineages connecting Gj−1 and Gj+1. We have that

|Gj | = lj− lj−1, hence K = k−2+
∑k

j=2(|Gj−1|−1) =
lk−1 − 1 ≥ min(m,n − m) − 1 = m − 1. So, for
every labeling of Cn, K is bounded, and this boundary
is achieved only when k = 2. By the inductive
assumption, this statement joined with the previous
observations, completes the proof.

The next theorem shows that to compute the minimal
dc for the caterpillar species tree, it is su�cient to order
the gene tree by size.

Theorem 2. If G is a size-ordered gene tree then

d̃c(G, Cn) =
∑

e∈Lft(G)

|G(e)| − 1, (3)

where Lft(G) is the set of all edges in G that connect

a node with its left child.

Proof. It follows immediately from Thm. 1.

Note that we cannot fully classify the minimal cost
trees by writing that for a gene tree G, d̃c(G, Cn) =
dc(G, Cn) if and only if G is a size-ordered tree and
ΛG = ΛCn . This statement does not hold in general,
e.g., we can swap leaves of f and g in the left species
tree from Fig. 2 and the minimal cost will be preserved.

The compact formula (3), or the recursive formula

(1), allows us to compute d̃c in linear time. Now let us
also �x the topology of G to be a complete balanced tree
of height h, i.e., a tree of the size 2h with all 2h leaves
on the same depth, and calculate deep coalescence
cost. We have: d̃c(Bn, Cn) =

∑h
i=1 2i−1 · (2h−i − 1) =

1
2 (
∑h

i=1 2h − 2i) = 1
2 (h · 2h − 2 · 1−2

h

1−2 ) = 1
2 (n log2 n +

2(1− n)) = n
2 (log2 n− 2) + 1

It shows that d̃c between a complete binary and
a caterpillar tree is ∼ n

2 log2 n. Having this, one

may conjecture, that the maximal d̃c for any gene tree
versus a caterpillar species tree, both of the size n, is
∼ n

2 log2 n.

3.2 Caterpillar gene tree

In this Section, we show how to solve our Problems in
the case when a gene tree is a caterpillar. The solution is



similar to the previous case, with the di�erence that we
need a new type of order. For a node v ∈ V (T ) a saving
of v, denoted sav(v), is de�ned recursively: sav(v) =
max(sav(vL), sav(vR)) + |T (v)| − 1, where sav(v) = 0 if
v is a leaf. We say that a tree is sav-ordered, if, for
every internal node v we have sav(vL) ≤ sav(vR). An
example of a sav-ordered tree is depicted in Fig. 3.
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Figure 3: An example of a sav-ordered tree T with
the decoration showing the values of sav for the internal
nodes, and the weights ωi(T ) each leaf. This is one
of the two smallest trees (to obtain the second one
replace ((a, b), (c, d)) by (a, (b, (c, d)))) showing that
sav-ordeding is signi�cantly di�erent than size-ordering.
Furthermore, this example shows that sav-ordering
cannot be replaced by a potentially simpler ordering
based on the height of subtrees.

Let Ei(T ) denote the set of edges on the path
connecting the root of T with the i-th leaf. Let
ωT (i) =

∑
e∈Ei(T ) |T (e)| − 1 be the weight of the i-

th path. First, we show that, for a sav-ordered tree T ,
ωi(T ) is maximized by the rightmost path.

Lemma 1. For any sav-ordered tree T , maxi ωT (i) =
sav(root(T )) − |T | + 1. Moreover, the maximum is

reached by the rightmost path, i.e., for i = n.

Proof. The proof is by induction on the size of T . For
n = 1 it is trivial. We assume that the statements hold
for trees of the size smaller than n. First, we partition
the set of paths: maxi ωT (i) = max(maxi ωTL

(i) +
|TL| − 1,maxi ωTR

(i) + |TR| − 1). Now, from
the induction assumption and the de�nition of saving
this value equals max(sav(root(TL)), sav(root(TR)))
= sav(root(T )) − |T | + 1, which completes
the �rst part of the proof. For the second
path, observe, that the tree is sav-ordered, hence
max(sav(root(TL)), sav(root(TR))) = sav(root(TR)).
Finally, by induction assumption, we have
sav(root(TR)) = ωT (n).

For a tree S and i ∈ [n], by Si we denote the tree
obtained from S as follows.

• Let v1, v2 . . . vk be nodes on the path from the root
to the i-th leaf.

dc(G,S1) = 6 dc(G,S2) = 4

Figure 4: Embeddings of a simple labeled gene tree G =
(a, (b, (c, (d, (e, (f, g)))))) into species trees S1 and S2.
The rightmost paths are colored in yellow. The number
of extra lineages is shown near the corresponding edges.
S2 has simple labeling, therefore the right embedding is
optimal. In particular, its rightmost path has no extra
lineages.

• For j = 1, 2, . . . , k, if the left child of vj is vj+1

then swap the subtrees of vj .

Obviously, this transformation does not change
the deep coalescence so d̃c(G,S) = d̃c(G,Si) for any
i, G and S. Also, if S is sav-ordered then Sn = S.
Now we can formulate our main theorem for the case
of caterpillar gene trees.

Theorem 3. Let Cn be a caterpillar gene tree, and S
be a species tree. Assume that both are sav-ordered. If

both have simple labeling, then d̃c(Cn, S) = dc(Cn, S).

Proof. For simplicity, let En(S) = E(S) \En(S). Note
that the n-th leaf in a simple labeled Cn is the deepest
node in Cn and ΛCn(n) = xn.

3 By d̃ci(Cn, S) we denote
the minimal dc(Cn, S) in the set of all species trees
S with the labeling satisfying ΛS(i) = xn. We split

the proof into two parts. First, we show that d̃ci(Cn, S)
is determined by the simple labeling of Si and equals∑

e∈En(Si)(|Si(e)| − 1). Secondly, we prove that this
sum is minimal if i = n.

Part I. Let ΛS(i) = xn. Clearly, d̃ci(Cn, S) =

d̃cn(Cn, Si), i.e., we consider Si with the n-th leaf
labeled by xn. Note, that every internal node of
Cn maps to a node from the path En(Si) as xn is
the label of the n-th node from Si and Cn. Hence,
if e = 〈v, w〉 is an edge from En(Si), e is a lineage
for every taxon (leaf) below v when embedding Cn into
Si. Thus, e is exactly |Si(e)| times a lineage, which
gives |Si(e)| − 1 extra lineages. We conclude that

d̃cn(Cn, Si) ≥
∑

e∈En(Si)(|Si(e)| − 1). Now, we show
that this boundary is reached by the simple labeling
of Si. In such a case, for j < n, the lineages of
the edge adjacent to the j-th leaf of Cn are disjoint with
the rightmost path of Si. Moreover, there is no extra

3Recall that xn is the last taxon from the taxon set X.



lineage in En(Si) (see the right embedding in Fig. 4).
This completes the proof of the �rst part.

Part II. Let W (S) =
∑

e∈S(|S(e)| − 1). Note that
W (S) = W (Si). It follows from the �rst part that

d̃cn(Cn, Si) =
∑

e∈En(Si)(|Si(e)| − 1) = W (Si) −∑
e∈En

(|Si(e)| − 1) = W (S) − ωn(Si) = W (S) −
ωi(S). Hence, we have d̃c(Cn, S) = mini d̃ci(Cn, S) =
W (S)−maxi ωi(S). Finally, by Lemma 1 we have that

d̃c(Cn, S) = W (S)−ωn(S), i.e., when i = n and Sn = S
is simply labeled. This completes the proof.

Theorem 4. If S is sav-ordered then

d̃c(Cn, S) =
∑

e∈E(S)\En(S)

|S(e)| − 1. (4)

Proof. Under the notation from the second part of
the proof of Thm. 3 we have d̃c(Cn, S) = W (S)−ωn(S).
The rest follows by expanding W (S) and ωn(S).

The formula (4) allows us to compute the minimal
deep coalescence cost in O(n) time. Now we can com-
pute easily the minimal cost for the complete balanced
species tree when n = 2k. We have d̃c(Cn,Bn) =∑k

i=1(2i − 1)(2k−i − 1) =
∑k

i=1(2k − 2i − 2k−i + 1) =
k2k − (2k+1 − 2) − 2k(1 − 2−k) + k = 2k(k − 2 − 1) +
2 + 1 + k = n(log2 n− 3) + log2 n + 3.

It shows that d̃c for the caterpillar and the complete
binary tree is ∼ n log2 n, which is similar to the results
obtained in the previous section. Having this, one may
also conjecture, that the maximal d̃c for a caterpillar
gene tree versus any species tree, both of the size n, is
∼ n

2 log2 n.

3.3 Algorithms for Gene-Species

Matching

Here, we propose several heuristic algorithms for
solving our problems. The algorithms, given the input
consisting of two unlabeled trees of the same size, alter
the ordering of nodes and infer labelings that approx-
imate the minimal deep coalescence cost. Then, to
compute the dc cost for such trees, we use the classical
O(n) algorithm based on LCA queries [3].

Algorithm 1: The simple algorithm

1: Input: Trees G and S of the same size.
2: Output: Approximation of d̃c(G,S).
3: Order G by size and S by saving.
4: Add simple labelings to G and S.
5: Return dc(G,S).

Alg. 1 has a linear time and space complexity. Next, it
follows from Thm. 1 and 3, that the simple algorithm

Algorithm 3: Extended greedy algorithm

1: Input/Output: see Alg. 2.
2: Notation: For a tree T , let K(T ) be the set of maximal

nodes v, such that the left and the right subtree of v
are isomorphic.

3: Order G by size and S by saving.
4: return min(d(G,S),ming∈K(G),s∈K(S) d(G

g, Ss)),
where Gg (and similarly Ss) is a tree obtained from G
by swapping subtrees of vj if, for each j < k, vj+1 is
the left child of vj , where v1, v2, . . . , vk is the path
from the root of G to g.

5: Function d(G,S): all lines ≥ 4 from Alg. 2

is exact if one of the input trees is caterpillar as for
caterpillar trees ordering by size and by saving are
equivalent.

Although the simple algorithm �ts our theorems
perfectly, one could �nd even small counterexample
when the output cost is not optimal. Therefore, we
propose another approach (see Alg. 2), in which we �rst
try to match cherries, which are nodes with precisely
two leaves beneath. Empirical evaluation shows, see
Fig. 5 that the greedy algorithm performs better than
Alg. 1 in terms of the returned cost. Alg. 2 has
a quadratic time complexity. It is also more di�cult to
�nd a counterexample which does not give the lowest
cost.

Extending algorithms. To further improve the perfor-
mance of our algorithms we propose to apply di�erent
kinds of orderings in some nodes of the input trees.
The details how to extend Alg. 2 are depicted in Alg. 3.
Analogously, we extend the simple algorithm. Both
extended algorithms are never worse than the original
ones, and we still have the exact solution for caterpillar
trees. For the other trees, extended algorithms tend
to perform better, which is summarized in Fig. 5. As
the set of nodes K(T ) in Alg. 3 can be computed by
using an O(n log n) the solution proposed by Campbell
et al. [19], the time complexity of the extended greedy
algorithm is O(n4), while the extended variant of
the simple algorithm requires O(n3) time.

The evaluation of all proposed algorithms is depicted
in Fig. 5.

4 Experimental Results

We have performed two computational experiments
on empirical and simulated datasets. In the �rst
experiment, we present a comparative study of the re-
construction algorithms, while in the second, we tested
the quality of labeling inference.

Experiment I. To verify which algorithm yields



Algorithm 2: The greedy algorithm

1: Input: Trees G and S of the same size. Output: Approximation of d̃c(G,S).
2: Notation: For a tree T and a set of nodes Z ⊆ V (T ) and i ∈ {1, 2, . . . , |Z|}, by Z[i] we denote i-th node from Z when T

is traversed in post-order. By IT we denote the set of internal nodes of a tree T .
3: Order G by size and S by saving.
4: Add the simple labeling to G. Let i := j := 1. Initialize sets MG := MS := ∅.
5: F := CG(root(G)) - the set of unmapped leaves from G; U := CS(root(S)) - the set of unlabeled leaves in S.
6: While j ≤ n− 1
7: A := |F ∩ CG(IG[i])| and B := |U ∩ CG(IS [j])|
8: If |A| = |B| Then map(A,B); i+=1; j+=1;
9: Else If |A ∪MG| = |B ∪MS | Then map(A ∪MG, B ∪MS); MG := MS := ∅; i+=1; j+=1;
10: Else If |A ∪MG| = |B| Then map(A ∪MG, B); MG := ∅; i+=1; j+=1;
11: Else If |A| = |B ∪MS | Then map(A,B ∪MS); MS := ∅; i+=1; j+=1;
12: Else If |A| < |B| Then MG := MG ∪A; i+=1;
13: Else MS := MS ∪B; j+=1;
14: return dc(G,S).
15: Function map(P,Q):
16: For k = 1, 2, . . . , |P |, set the label of Q[k] to be the label of P [k].
17: F := F \ P , U := U \Q.
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Figure 5: Averaged minimal deep coalescence, com-
puted by all four heuristics.

the lowest cost, we generated random trees from
the Yule model [20]. For each tree size between 1
and 150 we generated 7 random tree pairs. Then, we
computed the approximation of the minimal cost by
using our four algorithms. The result, averaged over
sizes of trees, is depicted 5. We observe that the greedy
extended algorithm is the best performing among all
our algorithms.

Experiment II. In practice, we often have some partial
information on the labeling of leaves. Therefore, we
introduce a more practical variant of our problems:

Given a gene tree G with a partial labeling, i.e.,

some leaves of G are unlabeled, and a species tree S.
Find the total labeling for G that minimize the deep

coalescence cost dc(G,S).

The greedy algorithm can be easily modi�ed to solve
the above problem. In line 5 of Alg. 2, it is su�cient

to remove labeled leaves from F and used taxons being
labels from U .
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Figure 6: Averaged quality, computed by the mod-
i�ed greedy algorithm on the trees from TreeFam

dataset [21].

The test was performed on TreeFam dataset, which
consists of 1274 curated gene family trees from
TreeFam v7.0 [21] spanning 25 mostly animal species.
The species tree was based on the NCBI taxonomy.
First, we extracted 295 gene trees with bijectively
labeled leaves. Next, for each such a gene tree G,
we contracted a species tree to the taxons present
in G. Hence, we obtained 295 pairs of bijectively
labeled trees, with the average size of 17.66 taxons.
Finally, for every pair of trees 〈G,S〉, and for each
i = {2, 3, . . . , |G|}, we removed labels of i random leaves
from G and then applied the modi�ed greedy algorithm
to infer total labeling. The quality of a reconstruction
is determined by the number of properly reconstructed



labels divided by i. The experiment was repeated 10
times. The result, averaged over i, is depicted in Fig. 6.

5 Conclusion

In this article, we gave a closer look at an open ques-
tion of the minimal deep coalescence cost for the �xed
tree topologies and bijective labelings. The particular
cases that we have solved provide a better understand-
ing of the properties of the deep coalescence cost.
While the complexity of our problems remains open,
the methods presented seem to be a good starting
point to the solve the problems in the general case
which we plan to study in future. Also, we plan
to test our solutions on more complex empirical and
simulated datasets, including simulations with more
realistic models.
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