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Abstract. The bearing's relevance, technical uses are clear in many applica-
tions. It is subjected to various types of loading. The rolling bearing may be 
cracked because of fatigue loading. The presence of a crack causes a change in 
the physical properties of a bearing and thus reducing the stiffness of the rolling 
bearing, where the invisible natural frequencies are being reduced. The essential 
signatures of vibration of bearing analysis are crack depth and location. The 
current study used Finite Element Analysis (FEA), experiments data and Parti-
cle Swarm Optimization (PSO) technology to create methodologies for fracture 
detection of a solitary crack in a rolling bearing. Different crack location effects 
are taken into account, and the results are compared to different rolling bearing 
crack depths. Then PSO algorithm has been developed using the first three rela-
tive natural frequencies taken from FE analysis and experiments data. For com-
parative study, both Standard PSO and APSO are used for crack diagnosis of 
the bearing. The feasibility of proposed PSO techniques is compared through 
error analysis. The research paper, the objective has been related to the design 
of a Particle swarm optimization technique for more accuracy and less time 
consumption to the prediction of crack location and crack depth in cracked 
bearing. 
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1 Introduction 

The bearing components of any rotating machine is one of the major components of 
all type of technology mechanical power transmission systems. The failure of the 
bearing due to fatigue caused the breakdown of the whole production line. Condition 
monitoring and the diagnosis of bearing fault are used to extract information from 
signals which are characteristics of the certain fault mechanism. The advanced artifi-
cial intelligence techniques for diagnosis the accurate fault locations. The primary 
objective is to develop the bearing’s fault at an incipient stage. The diagnosis process 
should be robust and able to operate effectively under system noise. 
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Damage occurs in the bearing then there is a change in its dynamic properties and 
natural frequency, and also there is an increase in modal damping and variation of the 
modal shapes. Here, PSO is a bio-inspired population-based evolutionary optimisation 
method that uses swarm intelligence to attain its objective of the optimization. Ken-
nedy and Eberhart [1] presented a technique that can optimize non-linear functions by 
the use of a particle swarm and defined a relationship among both artificial and genet-
ic algorithms and particle swarm by executing on a model. Li et al. [2] presented a 
method that can identify any fault in the roller bearing of a motor with the help of 
neural networks & vibration assessment on the time-frequency domain. In the paper 
concluded that neural networks along with real-time experimental results can be very 
effective in bearing fault identification. Qiu et al. [3] have focused on signal denoising 
approaches and compared the performance of the two most used techniques, which 
are created on wavelet decomposition and wavelet filter on defect signals, and con-
cluded that wavelet filter is more consistent by executing these methods on both simu-
lation & trial information. 
De-noising and extraction of the weak signature are crucial to fault prognostics in 
which case features are often very weak and masked by noise. The wavelet transform 
has been widely used in signal de-noising due to its extraordinary time-frequency 
representation capability. Here, the performance of wavelet de-composition-based de-
noising and wavelet filter-based de-noising methods are compared based on signals 
from mechanical defects. The comparison result reveals that wavelet filter is more 
suitable and reliable to detect a weak signature of mechanical impulse-like defect 
signals, whereas the wavelet decomposition de-noising method can achieve satisfacto-
ry results on smooth signal detection. To select optimal parameters for the wavelet 
filter, a two-step optimization process is proposed. Minimal Shannon entropy is used 
to optimize the Morlet wavelet shape factor. A periodicity detection method based on 
singular value decomposition (SVD) is used to choose the appropriate scale for the 
wavelet transform. The signal de-noising results from both simulated signals and 
experimental data are presented and both support the proposed method. De-noising 
and extraction of the weak signature are crucial to fault prognostics in which case 
features are often very weak and masked by noise. The wavelet transform has been 
widely used in signal de-noising due to its extraordinary time-frequency representa-
tion capability. Here the performance of wavelet decomposition-based de-noising and 
wavelet filter-based de-noising methods are compared based on signals from mechan-
ical defects. The comparison result reveals that the wavelet filter is more suitable and 
reliable to detect a weak signature of mechanical impulse-like defect signals, whereas 
the wavelet decomposition de-noising method can achieve satisfactory results on 
smooth signal detection. In order to select optimal parameters for the wavelet filter, a 
two-step optimization process is proposed. Minimal Shannon entropy is used to opti-
mize the Morlet wavelet shape factor. A periodicity detection method based on singu-
lar value decomposition (SVD) is used to choose the appropriate scale for the wavelet 
transform. The signal de-noising results from both simulated signals and experimental 
data are presented and both support the proposed method. Antoni and Randall [4] 
have used spectral Kurtosis (SK) for the health monitoring of rotary components by 
sensing unstable vibration signals and proposed a kurtogram in which the optimal 
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band pass filter could be determined. They have explained these methods using real-
life situations. Antoni [5] has tried to formalize the Spectral Kurtosis (SK) with the 
help of short time Fourier transform-based method to relate theoretic concepts with 
hands-on applications.  Zarei and Poshtan [6] have used stator current as the parame-
ter for the health monitoring of bearing in Induction Motors by comparing energy 
differences as a fault indicator. It is shown the dominance of this method by effective-
ly executing experimental signals. Sawalhi et. al [7] have presented an algorithm to 
enrich the Spectral Kurtosis (SK) by combining the Minimum entropy deconvolution 
(MED) system and show the dominance of this method by executing on a test rig and 
gearbox bearings successfully. Nanda et al. [8] have presented a method to locate the 
crack, centred on incremental Particle Swarm Optimization (PSO) and compared with 
standard PSO. They concluded that the method can detect and estimate the extent of 
the damage by formulating objective functions from finite element simulation. Qian et 
al. [9] have presented HOA which stands for hybrid optimization algorithm with the 
combination of particle swarm optimization (PSO) and the simplex method (SM) to 
resolve the nonlinear optimization problem and executed this on different examples of 
separation along a plane. Kishore et al. [10] have used distribution information of the 
population to estimate evolutionary states and developed Adaptive PSO (APSO) so 
that optimization problems can be solved and developed adaptive control strategies. 
Rane et al. [11] have presented a method based on the measurement of natural fre-
quencies to locate and estimate the size of the crack in the cantilever beam. In this 
paper concluded the result based on finite element analysis of the beam having a 
crack and the beam having no crack. 

2 Development of a Condition Monitoring System for signal 
processing 

The following flow chart of the most commonly employed techniques in condition-
monitoring applications of all types of bearings are as shown in Figure: 1 

 
 
 

Fig. 1. Commonly employed techniques in condition monitoring 

3 Vibration Model of Bearing 

Any components without any defects in a machine usually generate light or no vibra-
tion during service. But when a small component of the machine fails, the vibration 
level and shape change at the whole system level. For these reasons, vibration signa-
tures are the best signal of the overall machine condition. It is also the best diagnostic 
apparatus to detect the development of internal defects. 

 

Laboratory testing Knowledge Base Fault Detection Signal Processing Sensor Signals Bearing Faults 
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Fig. 2. An unbalanced bearing generates a sinusoidal Force and response waveform. 

 

 
 

Fig. 3. Ball bearing with localized ball defect. 
 

Figure 2 shows the behaviors of defective rolling elements in the cages of a bear-
ing.  This is the most common method for illustrating and representing vibration is the 
frequency spectrum. It is generally used to identify the source of vibration. Rolling 
element bearings consist of an inner race, outer race, ball, and cage which hold balls. 
Bearing failure often starts with a local defect on any of these elements. Figure 3 is an 
example of a ball bearing with a localized defect on the ball. When the defective ball 
rolls, it will generate repetitive impacts. The response can be measured by mounting 
an accelerometer on a supporting structure near the bearing. 

The repetition frequency of the impulse train is determined by the location of the 
fault. These bearing-related frequencies are known as fundamental defect frequencies. 
The calculation of the fundamental frequencies of rolling element bearings is useful in 
machinery condition monitoring to detect the fault on the bearing. All rolling element 
bearings have four defect frequencies such as Ball pass frequency outer race (BPFO), 
Ball pass frequency inner race (BPFI), Ball spin frequency (BSF), and Fundamental 
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train frequency (FTF). The relative Natural frequency (RNF) of all types of above 
frequency is calculated by the following equation. 

 

            RNF= 
ி௥௘௤௨௘௡௖௬ ௢௙ ு௘௔௟௧௛௬ ஻௘௔௥௜௡௚ିி௥௘௤௨௘௡௖௬ ௢௙ ஽௘௙௘௖௧௜௩௘ ஻௘௔௜௡௚

ி௥௘௤௨௘௡௖௬ ௢௙ ு௘௔  ஻௘௔௥௜௡௚
     (1) 

 

 
Fig. 4. Healthy bearing condition 

 
 

Fig. 5. Defective bearing condition 
 

From the Figures 4 and 5. shows the healthy and defective frequency spectrum 
bearings. The rolling element bearing failure progress through the stages such as pre-
failure, failure and near catastrophic failure stages. The bearing vibration characteris-
tics of each stage are relatively different and complicated.  

The objective of this study is to detect incipient bearing faults. Therefore, this 
technique is used to extract the small impulsive elements in the presence of vibration. 
After studying the failure stages and techniques to detect bearing faults, here focus on 
the high-frequency resonance technique. Figure 6 shows the variation of relative natu-
ral frequency in 1st mode with the relative depth of crack from the bearing surfaces. It 
shows that, the relative natural frequency increase with the relative depth of the crack. 
This show that if there is any defect present on any surface of the bearing, there will 
be a significate change in natural frequencies. 
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Fig. 6. Graph of Relative depth from the surface of bearing Vs Relative Natural frequency. 
 

4 Methodology 

Artificial intelligent approaches were created to estimate faults in structures faster and 
more accurately. Here they investigate the usage of optimization strategies such as 
Particle Swarm Optimization (PSO) for using vibration characteristics to diagnose 
single cracks in engineering constructions at an early stage. The vibration data, such 
as natural frequencies derived from finite element analysis, is used to determine the 
objective function for crack diagnostics. The PSO and APSO were employed to fore-
cast relative crack depth and location. The PSO and a fuzzy adaptive PSO (APSO) 
were utilized, with the inertia weight dynamically altering based on the variation of 
population fitness. The feasibility of proposed PSO techniques is compared through 
error analysis. 

4.1 Standard PSO 

A swarm of M particles moves in a problem search area in the classic PSO paradigm. 
Each particle is a possible global optimum solution for a specific domain D.  
The position of the ith particle in N-dimensional search space is represented as  
 
Xi = (x୧ଵ, x୧ଶ, x୧ଷ.  . .x୧ୈ) which represents the particle's present location i (1 ≤  i ≤
 N) in a D – dimensional search space. 
 
The new particle position is found at each generation k by modifying the existing 
position with a displacement, where the displacement is equal to a one-time step mul-
tiplied by the particle velocity, as indicated in Equation (2), 
                                           X୧

୩ାଵ  =  X୧
୩  +  V୧

୩ାଵ                                                     (2) 
Where,  X୧

୩ାଵ and X୧
୩ represent the present and the past position of the ith particle 

respectively. 
V୧

୩ାଵ is the current velocity of particle I denoted by 
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                                 V௜ = V୧ଵ, V୧ଶ, V୧ଷ … … . V୧ୈ              (3) 
At each generation, the velocity of each particle is also modified, and it can be written 
as, 
V୧

୩ାଵ  =  V୧
୩  + Cଵ × rଵ × ൫x୮ୠ

୩ −  x୧
୩൯  +  Cଶ × rଶ × ൫x୥ୠ

୩ −  x୧
୩൯                      (4) 

Where, V୧
୩ାଵ and V୧

୩  represent the present and the past position of the ith particle 
respectively. 

4.2 Fuzzy Adaptive PSO (APSO) 

A dynamically modified fuzzy system can be used to change the inertia weight. Three 
rules made up the fuzzy system, which had one input and one output. The change in 
global best fitness standard deviation is used as an input, and the change in inertia 
weight is the output. 
Equation (5) is used to represent the fitness function here. 

                                           F୧ =  
ଵ

୓౪౞ ା ୓ౘౠ౟
                                                 (5) 

Where Oth is the threshold value, which can be anything between 0 and 1.0. In the 
current work threshold value has been perceived as 1 to eliminate singularity in the 
domain of solutions Obji is the objective function taken from the selected data. 
The inertia weight is revised by using Equation (6) to estimate the variance “σ2” of 
the population fitness.  

                                     σଶ =  
ଵ

୒
 ∑ ቀ

୊౟ି ୊౗౬ౝ

୊౤
ቁ

ଶ
୒
୧ୀଵ                  (6) 

Where Fi is the population's ith particle's fitness value., 
 The median fitness value of a generation's population of particles is called Favg and Fn 
is the   normalizing factor taken as shown in equation 7, 
                            F୬ =  ൛maxหF୧ −  Fୟ୴୥หൟ , i = 1, 2, 3.......N.                      (7) 
The influence of a particle's past velocity on its current velocity is chosen at random 
using the above formulation, and the inertia weight is adjusted at random based on the 
variance of a population's fitness value. As a result, the particles' local and global 
searching capacities can be optionally coordinated. 

4.3 Objective Function 

The crack in a rolling element bearing causes a change in natural frequencies of vibra-
tion. The objective function as per relative natural frequency can be stated in Equation 
(8). 
Minimize  
                 Obj =𝐾଴ + (𝐾ଵ × 𝑅𝐹𝑁𝐹) + (K2 × RSNF) + (K3 × RTNF)       (8) 
Where, K0, K1, K2, K3 are the constants, RFNF, RSNF and RTNF are the Relative 
First, Second Third natural frequencies respectively. 

Error Calculation 
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The performance study of standard PSO and APSO is presented in terms of % error 
and performance plot for cracked rolling element bearing. The error for different PSO 
techniques used for bearing has been calculated between the predicted and actual 
value as shown in Equation (8), 

                                % Error =  ቚ
୔୰ୣୢ୧ୡୟ୲ୣୢ ୴ୟ୪୳ୣି୅ୡ୲୳ୟ୪ ୴ୟ୪୳ୣ

୅ୡ୲୳ୟ୪ ୴ୟ୪୳ୣ
ቚ  × 100                    (8) 

5 Result and Discussion 

In this research, the swarm optimization technique was used to diagnose the location 
and severities of cracks in rolling element bearing. The suggested modified PSO effi-
ciently uses modifications in natural frequencies due to the existence of cracks to 
foresee structural damage detection. The result has been drawn from both standard 
PSO and APSO and analyses with the help of error analysis. A graphical representa-
tion has been shown in figure 7 for RCL and RCD respectively through error analysis. 

 
Fig. 7. Error analysis of PSO and APSO 
 
Based on results obtained from finite element analysis, the APSO is shown to be 

linked to the least amount of error for prediction of the site of the crack and crack 
depth (0.642%, 0.505%) compared to standard PSO (0.981%, 0.845%) in a rolling 
bearing. 

6 Conclusion 

To compare the efficiency of regular PSO and APSO in identifying cracks, compari-
son is done. The result reveals that the APSO technique is more appropriate than 
standard PSO with minimum percentage error. It shows that this AI technique is a 
simple but robust methodology presented to determine the location and amount of 
crack in the rolling element bearing on the PSO technique. 
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