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Abstract—Bayes’ rule provides an undoubtedly powerful
framework for statistical inference; however, the assumptions
inherent in Bayesian filtering often cannot be realized in physical
systems. Oftentimes, the true Bayesian posterior probability
density function (pdf) is infinite-dimensional and lacks tractable
implementations, in addition to errors induced by inaccurate
realizations of the prior and likelihood pdfs. Though particle-
based methods can provide versatile and computationally efficient
approximations of Bayes’ rule, they lack the theoretical ability to
mitigate estimation errors incurred by erroneous measurement
modeling. This work merges Stein Variational Gradient De-
scent, a nonlinear particle flow update scheme, with generalized
variational inference, a method for formulating optimal non-
Bayesian posteriors, to produce tractable variational posterior
pdfs that remain robust to modeling errors. The new framework
is demonstrated to outperform conventional filtering approaches
in a simplified relative spacecraft navigation scenario.

Index Terms—statistical inference, nonlinear estimation, infor-
mation theory, generalized variational inference, particle flow

I. INTRODUCTION

The most fundamental problem in data fusion is the optimal
combination of existing information for an uncertain state vari-
able, x, with an external and noisy observation, z. When prior
state knowledge is given by the underlying probability density
function (pdf), the most statistically complete incorporation of
an observation is dictated by Bayes’ rule,

p(x|z) ∝ p(z|x)p(x) , (1)

where p(x) is the prior state density, p(z|x) is the measure-
ment pdf conditioned on the state, referred to as the likelihood
function, and p(x|z) is the posterior state pdf. Proportionality
in Eq. (1) is resolved by ensuring the posterior is a proper
pdf, i.e., p(x|z) integrates to unity across its support x ∈ X,
yielding the Bayes’ normalization constant,

c = p(z) =

∫
X
p(z|x)p(x)dx .

Unfortunately, as observed in [1], Bayes’ rule is predicated
on three fundamental assumptions: i) the prior is correctly
specified, ii) the likelihood function associated with the mea-
surement model is statistically accurate; and iii) the posterior
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can be tractably calculated. Though the Bayesian framework is
an undoubtedly powerful inference tool, practical applications
of Eq. (1) frequently demand violation of one or more of these
assumptions. In many instances, the prior (i) and likelihood
(ii) are intentionally misspecified to recover a computationally
cheap analytical solution (iii). Perhaps the most prominent
example of this violation are “linear-Gaussian” filters, wherein
the measurement is approximated as a linear combination of
the states and noise while both the prior and likelihood pdfs
are represented as Gaussians [2] or Gaussian mixtures [3].
Linear-Gaussian schemes are popular for their algorithmic
equivalence to the extended Kalman filter; however, errors
incurred from the linearization and/or Gaussian assumptions
can accumulate, leading to filter inconsistency or divergence.
For most practical systems, when (i) and (ii) are retained, Eq.
(1) does not beget an analytical solution. Even in instances
where the Bayesian posterior can be derived analytically,
the result is not guaranteed to be a conjugate (belonging
to the same distributional family) of the prior or to possess
a finite parameterization, preventing closed-form recursions.
Furthermore, numerical implementations of Eq. (1) are often
computationally prohibitive, as integration of the normaliza-
tion constant grows exponentially expensive with the state
dimension.

An alternative to parametric estimation is particle filtering
[4], which leverages Monte Carlo methods to approximate
solutions for Bayes’ rule. However, traditional particle fil-
tering is well-documented to suffer from both the “curse of
dimensionality,” wherein the number of particles required to
accurately represent the state pdf grows exponentially with the
dimension of the system, and particle degeneracy, where the
majority of particle weights degenerate to (numerically) zero
rapidly [5]. The primary culprit behind particle degeneracy is
the stagnant nature of particle filtering updates. As the filter
progresses through time, the prior distribution of particles may
be insufficient to properly encapsulate posterior probability
mass, particularly when uncertainty decreases rapidly. This
necessitates sequential resampling from a new importance dis-
tribution [4], which can be difficult to implement recursively.
To circumvent instances of particle degeneracy, a “particle
flow” update can be utilized. Rather than updating the particle
weights, particle flow, alternatively, transports, or “flows,” the



particles through the state space from prior to posterior, such
as in [6], [7].

Though traditional particle flow approaches may result in
tractable recursions, Bayesian methods are inherently subject
to errors induced by inaccurate modeling. For practical sys-
tems, where model fidelity is inevitably scarified in favor of
computational expedience, model-based errors are mitigated
by ad hoc methods, such as measurement underweighting
[8] or residual editing [9]. Rather than limit the information
available to the filter by altering Bayes’ rule, it may be
beneficial to define an alternative update framework, such
as generalized variational inference (GVI) [1]. GVI is an
information-theoretic approach that recasts statistical inference
as an optimization problem over a loss function, representing
information ingested by the filter from the observation, and
a statistical divergence, which weights the filter’s faithfulness
to the prior realization of the state pdf. By making informed
decisions on the loss and divergence functions over which the
optimization occurs, it is possible to design optimal filters that
are inherently robust to errors in system modeling.

This paper is a continuation of previous work by the
authors in [10] that extends Stein variational gradient descent
(SVGD) [11], a form of nonlinear particle flow, to determine
optimal non-Bayesian posteriors formulated using GVI. The
paper is organized as follows. Section II defines SVGD
and demonstrates its application to both Bayesian and non-
Bayesian inference. Section III provides an example of a GVI
applied to the popular Gaussian filtering scheme. Section IV
provides results for a test scenario involving relative space
object tracking, and Section V provides concluding remarks
and outlines future research avenues.

II. SVGD FOR STATISTICAL INFERENCE

The objective of any particle flow update scheme is to
transport a collection of particles from some initial ensemble,
whether that be samples from the prior pdf or an arbitrary
reference, to some target measure. This approach can be
viewed as a pseudo-Monte-Carlo method, where the posterior
ensemble should imitate direct sampling of the target density.
By leveraging Stein’s identity to minimize a discrepancy
measure, SVGD [11] provides a means for sampling target
densities that are known up to a proportionality constant.
Additionally, it does not restrict the posterior to specific
distributional families, such as Gaussians in [6], [7].

A. SVGD Particle Flow

Let q(x) be the variational density approximating some in-
tractable, potentially infinite-dimensional, pdf ρ(x). A natural
selection for the discrepancy measure between q and ρ is the
Kullback-Leibler (KL) divergence, defined as [12]

DKL [q ||ρ ] =
∫
X
q(x) ln

(
q(x)

ρ(x)

)
dx . (2)

From an information-theoretic perspective, the KL divergence
as written in Eq. (2) can be viewed as a measure of information
loss in approximating q as ρ, where “measure” indicates that

DKL is, in general, non-symmetric and not a proper metric.
Additionally, the KL divergence possesses two favorable prop-
erties: it is convex in q and non-negative, with equality if
and only if the two pdfs are identical (almost everywhere)
[12]. Non-negativity for the KL divergence, known as the
self-identifying property, allows the sampling problem to be
formulated as

q∗(x) = argmin
q(x)

DKL [q(x) ||ρ(x)] ,

where the global minimum, q∗, exactly recovers ρ. In many
instances, such as Bayes’ rule, it is only possible to define ρ
tractably up to a normalizing constant. Let ρ̃ be proportional
to the true target density, ρ(x) ∝ ρ̃(x), and cρ̃ be the
(possibly unknown) normalization constant, allowing Eq. (2)
to be written as

DKL [q ||ρ ] =
∫
X
q(x) ln

(
q(x)

(1/cρ̃)ρ̃(x)

)
dx .

From the properties of logarithms and the linearity of integra-
tion, the previous equation can be separated to

DKL [q ||ρ ] =
∫
X
q(x) ln

(
q(x)

ρ̃(x)

)
dx+

∫
X
q(x) ln cρ̃dx

=

∫
X
q(x) ln

(
q(x)

ρ̃(x)

)
dx+ ln cρ̃ ,

where the second simplification results from cρ̃ being deter-
ministic. Because the minimization of Eq. (2) is not influenced
by the addition of a constant, a new cost functional, J [q ||p ],
sharing the same minimum can be formulated as

J [q ||ρ ] =
∫
X
q(x) ln

(
q(x)

ρ̃(x)

)
dx , (3)

where q∗ is now derived from

q∗(x) = argmin
q(x)

J [q(x) ||ρ(x)] ,

without necessitating knowledge of the proportionality con-
stant.

Analytical minimization of Eq. (3) is typically reserved to
a limited number of cases that often align with closure of
Bayes’ rule. When no analytical minimum exists, the convexity
of the KL divergence naturally lends itself to gradient-based
methods. Similar to conventional gradient descent, the goal is
to iteratively transport the variational density from an initial
pdf, q0, to the target, ρ. This is accomplished by defining a
new pseudo-parameter, τ , referred to as pseudo-time (or the
homotopy parameter as in [6], [7]) due to its strong connection
to traditional dynamics. Let the distribution of states evolve
according to the deterministic differential equation,

dx

dτ
= ϕ(x) , (4)

where ϕ(x) is the state pseudo-time rate of change, referred to
as the pseudo-dynamics function. Equation (4) then induces a



pseudo-time rate of change in q(x) governed by the Liouville
equation [13],

∂q(x; τ)

∂τ
= −∇x ·

(
q(x; τ)ϕ(x)

)
, (5)

where the variational density is now parameterized by the
pseudo-time, q(x; τ = 0), and ∇x · is the divergence operator.
Similar to traditional gradient descent, the resulting flow
map for the variational density, i.e., the solution to Eq. (5),
transports the initial pdf to the target density, according to

lim
τ→∞

q(x; τ) = q∗(x) = ρ(x) , (6)

where a superscript asterisk, (·)∗, indicates an optimal quan-
tity. This limit is achieved by defining the optimal pseudo-
dynamics according to

ϕ∗(x) = argmin
ϕ(x)

{
dJ [q(x; τ) ||ρ(x)]

dτ

}
, (7)

such that, heuristically, ϕ∗(x) evolves the variational density
through pseudo-time in the “steepest descent direction” of the
KL divergence. Taking the pseudo-time derivative of Eq. (3)
yields

d

dτ

(
J [q ||ρ ]

)
=

d

dτ

∫
X
q(x; τ) ln

(
q(x; τ)

ρ̃(x)

)
dx

=

∫
X

∂

∂τ

[
q(x; τ) ln

(
q(x; τ)

ρ̃(x)

)]
dx

=

∫
X

(
∂q(x; τ)

∂τ

)[
ln

(
q(x; τ)

ρ̃(x)

)
+ 1

]
dx ,

where the derivative is moved inside the integral using Leib-
niz’ rule and the integrand is simplified from the chain rule.
Substituting Eq. (5) into the previous expression results in

dJ

dτ
= −

∫
X
∇x ·

(
q(x)ϕ(x)

) [
ln

(
q(x; τ)

ρ̃(x)

)
+ 1

]
dx ,

facilitating an application of the divergence theorem [14],
provided q is limited to zero at the boundaries of its support
X, to commute the derivative, such that

dJ

dτ
=

∫
X
q(x)ϕ(x) ·∇x

[
ln

(
q(x; τ)

ρ̃(x)

)
+ 1

]
dx

=

∫
X
q(x)ϕ(x) ·∇x ln

(
q(x; τ)

ρ̃(x)

)
dx ,

where the convention ∇x =
[

∂
∂x1

∂
∂x2

. . . ∂
∂xn

]T
is

used, x is of dimension n, and · is the Cartesian inner
product. Applying the properties of logarithms and the chain
rule, it follows that
dJ

dτ
=

∫
X
q(x)ϕ(x) ·∇x [ln q(x; τ)− ln ρ̃(x)] dx

=

∫
X
q(x; τ)ϕ(x) · [∇x ln q(x; τ)−∇x ln ρ̃(x)] dx

=

∫
X
q(x; τ)ϕ(x) ·

[
∇xq(x; τ)

q(x; τ)
−∇x ln ρ̃(x)

]
dx

=

∫
X

[
ϕ(x) ·∇xq(x; τ)− q(x; τ)ϕ(x) ·∇x ln ρ̃(x)

]
dx.

A final application of the divergence theorem [14] allows

dJ

dτ
= −

∫
X
q(x; τ) [∇x · ϕ(x) + ϕ(x) ·∇x ln ρ̃(x)] dx

= −Eq {∇x · ϕ(x) + ϕ(x) ·∇x ln ρ̃(x)} , (8)

where Eq {·} is the statistical expectation operator with respect
to the pdf q, defined for a generic function, f(x), as

Eq {f(x)} =

∫
X
q(x)f(x)dx .

Substituting Eq. (8) into Eq. (7) and exchanging the minimiza-
tion of a negative for maximization yields

ϕ∗(x) = argmax
ϕ

Eq {∇x · ϕ(x) + ϕ(x) ·∇x ln ρ̃(x)} .

(9)

Unfortunately, Eq. (9) still does not, in general, possess an
analytical maximum. The key insight of [11] is that restricting
the pseudo-dynamics to a reproducing kernel Hilbert space
(RKHS), ϕ(x) ∈ {Hn s.t. ∥ϕ(x)∥Hn ≤ 1}, where Hn is an
n-dimensional RKHS, results in the analytical solution

ϕ∗(x) = Eξ∼q {∇ξk(ξ,x) + k(ξ,x)∇ξ ln ρ̃(ξ)} , (10)

where k(·, ·) is the kernel of the RKHS, ξ ∈ X is an integration
variable, and Eξ∼q {·} is the expectation with respect to q(ξ).
If one selects Hn to be “sufficiently dense” such that a diverse
space of pseudo-dynamics is available, e.g., the radial basis
function [10], [11], the restriction to an RKHS does not
prevent achieving the limit in Eq. (6).

Approximating the variational density as an ensemble of N
particles, where q(x) = 1

N

∑N
i=1 δ(x− xi), δ(·) is the Dirac

measure, and xi is the ith particle’s state, Eq. (10) can be
written simply as [11]

ϕ∗(xi) =
1

N

N∑
j=1

[
∇ξk(ξ,xi) + k(ξ,xi)∇ξ ln ρ̃(ξ)

]∣∣∣∣
ξ=xj

.

(11)

Propagating the particles according to Eqs. (4) and (11), where
dxi/dτ = ϕ∗(xi), until convergence results in an ensemble
that approximates independent identically distributed samples
of the underlying target density that (weekly) converges to ρ
as N → ∞ [11]. The two components in Eq. (11) produce
distinct dynamical characteristics in the resulting flow. The
second term, containing the gradient of the (proportional) log-
density, attracts particles to regions of high probability in ρ.
The first term, dependent solely on the gradient of the kernel
function, acts as a repulsive force preventing over-convergence
and encouraging particle trajectories that explore alternative
modes of the target density. This process can be viewed as a
deterministic analog to Markov-Chain Monte Carlo methods
and the Langevin process induced by Eq. (3). It can also be
viewed as a gradient flow of the KL divergence functional,
but, for brevity, the reader is referred to [15], [16] for a more
complete geometric analysis of SVGD.



B. SVGD for Bayesian Inference

The most frequent application of SVGD is particle approx-
imations of Bayes’ rule [11], wherein the proportional density
is readily provided by Eq. (1). It is easy to develop recursive
filtering equations from the method presented in the previous
section [10]; however, there is an additional information theo-
retic intuition that can be gleaned by examining the structure
of the Bayesian formulation. Substituting ρ̃(x) = p(z|x)p(x)
into Eq. (3) yields

J [q(x) ||p(x|z)] = FV I [q] = Eq

{
ln

(
q(x)

p(z|x)p(x)

)}
,

which, from the properties of logarithms and the definition of
the KL divergence, can easily be manipulated to

FV I [q] = −Eq

{
ln
(
p(z|x)p(x)

)}︸ ︷︷ ︸
potential “energy”

+Eq {ln q(x)}︸ ︷︷ ︸
neg. entropy

. (12)

The process of minimizing Eq. (12) is often referred to as
variational inference [17], and the cost functional, FV I , can
be separated into two main components: the negative expected
log-proportional density and the negative differential Shannon
entropy [18], both with respect to the variational density,
q. The former can be viewed as a potential surface whose
“valleys” are regions of state space corresponding to high
Bayesian posterior probability, and the latter, as a negative
entropy measure, promotes uncertainty in the variational den-
sity. Minimizing the potential surface, which can be viewed as
an artificial potential energy, results in variational posteriors,
q∗, that collapse to a single Dirac measure at the Bayesian
maximum a posteriori state. Conversely, the global minimum
of the negative Shannon entropy is a uniform distribution over
the state space, X [18]. The inclusion of both terms ensures
variational probability mass is attracted to the peaks of the
Bayesian posterior pdf without over converging. Additionally,
because Eq. (12) can be written as the sum of a potential func-
tional and a negative entropy functional, the name variational
free energy is typically ascribed to FV I (also referred to as the
negative evidence lower bound [17]), indicating its relation to
the Helmholtz free energy in thermodynamics [19]. Continuing
with the analogy to mechanical work, the variational free
energy can be viewed as a heuristic measure of information
energy freely available to conduct inference.

C. Extension to Generalized Variational Inference

The motivation behind the previous sections derivations is
twofold. First, it provides the explicit definition for Bayesian
SVGD particle flow. Second, it emphases the role information
theory can play in formulating statistical inference laws. This
concept is succinctly summarized by Villani, “Behind many
nonequilibrium equations of statistical mechanics, there is a
variational principle involving entropy and energy, or function-
als alike... [19].” An application of this prospective can miti-
gate estimation errors and statistical inconsistencies stemming
from misspecified prior and likelihood pdfs while remaining
computationally tractable. This is similarly accomplished by

reexamining the inference problem in an optimization-centric
light, where variational posteriors are governed by [1]

q∗(x) = argmin
q(x)

(
Eq {ℓ(x, z)}+D [q(x) ||p(x)]

)
, (13)

where ℓ(·, ·) is a user-defined loss function associated with
the measurement and D[·||·] is a generic statistical divergence
measure. Deriving variational posteriors from Eq. (13) is
referred to as generalized variational inference (GVI). When
an analytical solution to Eq. (13) does not exist, SVGD can
be extended to compute samples from the true GVI posterior.

In order to utilize SVGD, the underlying cost, or discrep-
ancy, functional must be defined as an expectation and linear
with respect to the pseudo-dynamics. This is facilitated most
readily by selecting the divergence as the KL divergence while
leaving the loss function generic. The result is a subset of
GVI known as Gibbs variational inference with free energy
functional, FG, given by

FG[q] = Eq {ℓ(x, z)}+DKL [q(x) ||p(x)] . (14)

Though an equivalent procedure to Sec. II-A could be under-
taken to derive the SVGD pseudo-dynamics in the “steepest
descent direction” of Eq. (14), it is more concise to analytically
derive a proportional optimal variational posterior and substi-
tute the result for the target density in Equation (10). Pursuant
to this approach, Eq. (14) is separated into the requisite energy
and entropy expressions by first applying the definition of the
KL divergence in Eq. (2), resulting in

FG[q] = Eq {ℓ(x, z)}+ Eq {ln q(x)} − Eq {ln p(x)}
= Eq {ℓ(x, z)− ln p(x)}+ Eq {ln q(x)} .

It can easily be shown that variational costs of the form

FG[q] =

∫
X
q(x)Ψ(x)dx+

∫
X
q(x) ln q(x)dx (15)

are minimized, with respect to the density q, by the Gibbs
distribution [20]

q∗(x) ∝ ρ̃(x) = exp {−Ψ(x)} ,

provided
∫
X exp {−Ψ(x)} dx exists. The resulting log-

proportional density is then simply

ln ρ̃(x) = −Ψ(x) ,

with gradient

∇x ln ρ̃(x) = −∇xΨ(x) .

Substituting this result into Eq. (10) yields the Gibbs varia-
tional inference SVGD pseudo-dynamics

ϕ∗(xi) =
1

N

N∑
j=1

[
∇ξk(ξ,xi)− k(ξ,xi)∇ξΨ(x)

]∣∣∣∣
ξ=xj

.

(16)

Letting Ψ(x) = ℓ(x, z) − ln p(x) for a given observation z,
where

∇xΨ(x) = ∇xℓ(x, z)−∇x ln p(x) ,



Eq. (16) can be used to sample potentially infinite dimensional
non-Bayesian posteriors that are optimal in the minimum
Gibbs free energy sense. When the loss function is the
negative log-likelihood, ℓ(x, z) = − ln p(z|x), it can easily be
shown that the potential surface is Ψ(x) = − ln[p(z|x)p(x)],
recovering the Bayesian SVGD case and the variational free
energy in Equation (12).

III. GAUSSIAN FILTERING WITH ERRONEOUS
MEASUREMENT MODELING

Oftentimes in practical estimation, such as object tracking or
onboard navigation, it is necessary to operate with incomplete
and possibly inaccurate measurement modeling. To mitigate
the effects of processing errant measurements, ad hoc methods,
such as underweighting [8] and residual editing [9], are
frequently employed. However, there are both theoretical and
practical advantages to retaining optimality and robustness
when filtering in the presence of measurement model errors.
This section applies the previous theoretical developments
to a single motivating scenario. To remain congruent with
conventional estimators, such as the extended Kalman and
linear-Gaussian Bayes’ filters [2], the prior and likelihood
functions are assumed to be Gaussian.

A convenient and robust loss function, derived from the γ-
divergence for the assumed likelihood function, is the γ-loss
given by [21]

Lγ(x, z) =
γ

1− γ

(
p(z|x)

[∫
Rm

pγ(s|x)ds
]1/γ)γ−1

,

(17)

where γ > 1. For numerical stability, the negative logarithm
of Eq. (17) is used [20]

ℓ(x, z) = − ln

 γ

γ − 1

[
p(z|x)

{∫
Rm

pγ(s|x)ds
} 1

γ

]γ−1
 ,

where z ∈ Rm. Assuming a nominal, possibly incorrect,
measurement model of the form

z = h(x) + ν , (18)

where h(x) is the deterministic nonlinear measurement func-
tion, v ∼ pg (v;0,R) is additive Gaussian noise, and

pg (a;m,P ) =|2πP |−1/2

× exp

{
−1

2
(a−m)TP−1(a−m)

}
,

is a multivariate Gaussian pdf in a with mean m and covari-
ance P . The model in Eq. (18) yields a Gaussian likelihood
function of the form

p(z|x) = pg (z;h(x),R) .

Substituting the assumed likelihood into the γ-loss function
results in

ℓ(x, z) =− ln

(
γ

γ − 1

[
pg (z;h(x),R)

×
{∫

Rm

(
pg (s;h(x),R)

)γ
ds

} 1
γ ]γ−1

)
, (19)

which can be further simplified from the Gaussian structure
of the likelihood. First, the integral can be evaluated as

C =

∫
Rm

(
pg (s;h(x),R)

)γ
ds

= (1/γ)
m/2 |2πR|(1−γ)/2 .

Substituting C into Eq. (19),

ℓ(x, z) =− ln

(
γ

γ − 1

[
pg (z;h(x),R)C1/γ

]γ−1
)

,

and expanding the loss function from the properties of loga-
rithms yields

ℓ(x, z) =− ln

(
γ

γ − 1

)
−
(
γ − 1

γ

)
lnC

+ (1− γ) ln pg (z;h(x),R) .

From the definition of the Gaussian pdf, the log-likelihood
term can be expanded to

ℓ(x, z) =− ln

(
γ

γ − 1

)
−
(
γ − 1

γ

)
lnC +

1

2
(γ − 1) ln|2πR|

+
1

2
(γ − 1)

(
z − h(x)

)T
R−1

(
z − h(x)

)
.

Recognizing the preceding three terms are constant with
respect to x, the loss function can be further simplified without
altering the underlying minimization to

ℓ(x, z) =
γ − 1

2

(
z − h(x)

)T
R−1

(
z − h(x)

)
.

The GVI potential function can then be written as

Ψ(x) =
γ − 1

2

(
z − h(x)

)T
R−1

(
z − h(x)

)
− ln p(x) .

If the prior is also Gaussian, p(x) = pg
(
x;m−,P−), with

mean, m−, and covariance, P−, the potential function can be
simplified to

Ψ(x) =
γ − 1

2

(
z − h(x)

)T
R−1

(
z − h(x)

)
+

1

2
ln |2πP−|

+
1

2

(
x−m−)T (P−)−1

(
x−m−) ,

that, by again removing constant terms not dependent on x,
results in a potential of the form

Ψ(x) =
γ − 1

2

(
z − h(x)

)T
R−1

(
z − h(x)

)
+

1

2

(
x−m−)T (P−)−1

(
x−m−) .



Finally, taking the gradient of the previous equation gives

∇xΨ(x) =− (γ − 1)H(x)R−1
(
z − h(x)

)
+ (P−)−1

(
x−m−) , (20)

where

H(x) =
∂h(x)

∂x
,

is the measurement Jacobian matrix. A common choice for
the kernel in Eq. (16) is the radial basis function (RBF) or
Gaussian kernel, given by

k(ξ,x) = exp

{
(ξ − x)T (ξ − x)

h2

}
,

where h is the user-defined bandwidth parameter.

IV. RESULTS AND DISCUSSION

As a motivating test case, the performance of the proposed
GVI filter is compared to standard estimation schemes for two
simplified scenarios in which the measurement noise statistics
are improperly characterized.

A. Two-Dimensional Example

Suppose that a hypothetical range sensor is employed in a
navigation filter to estimate a two-dimensional position state,
x =

[
x1 x2

]T
, with nonlinear measurement model

h(x) =
√
x2
1 + x2

2 .

From “pre-flight” calibration the sensor noise is approximated
as the zero-mean Gaussian ν ∼ pg (ν; 0, 1) [m]. However, the
true “in-flight” noise is both biased and non-Gaussian, with
pdf ν ∼ pc(ν;

1
2 ,

1
2 ), where

pc(ν; ν0, α) =
1

π

[
α

(ν − ν̄)2 + α2

]
,

is a Cauchy pdf in ν with mode ν̄ and scale parameter α.
The Cauchy density is notoriously difficult to implement,
particularly for minimum mean-square error filters, as it
possess no finite statistical moments [22]. The two noise
pdfs are compared in Fig.1, with specific emphasis placed
on the “heavy-tailed” behavior of the Cauchy, suggesting an
extremely high probability of sampling outside three standard
deviations with respect to the Gaussian.
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Fig. 1. Gaussian and Cauchy (true) measurement noise pdfs.

The result of a single range measurement, z, update with
zero-mean Gaussian prior, p(x) = pg (x;0,P 0), where

P 0 =

[
45 −25

−25 45

]
[m2] ,

is shown in Fig. 2. Figures 2(a) and 2(b) compare the true
Bayesian posterior, resulting from the Cauchy likelihood,
against the assumed Bayesian posterior, derived from the
“calibrated” Gaussian likelihood, pg (z;h(x), 1). The assumed
likelihood function does not prescribe the appropriate prob-
ability mass concentration at either mode compared to the
true Bayesian posterior, nor does it adequately capture the
posterior “tails” connecting both modes. Figures 2(c) and
2(d), respectively, contrast a standard approach, which can
be interpreted as either an extended Kalman filter (EKF) or
linearized Gaussian filter, to the proposed SVGD GVI particle
flow update, with γ = 2.75, N = 1000 and an RBF kernel
using the “mean trick” discussed in [11]. The EKF posterior is
plotted as the ±3 standard deviation (σ) ellipse. A continuous
density can then be fit to the converged SVGD particle set,
Fig. 2(f), using kernel mean embedding (KME) [23] (RBF
kernel with bandwidth h = 0.15), and can be compared to the
GVI optimal posterior in Fig. 2(e). The SVGD update not only
preserves the bimodal nature of the posterior, compared to the
linear EKF update, but by selecting a robust GVI loss function
the proposed update scheme was able to better approximate
the Bayesian posterior while remaining ignorant to the true
likelihood function.

B. Relative Spacecraft Navigation Example

The proposed update scheme can be extended to sequen-
tial Gaussian filtering using the method in [10], where a
continuous prior density is approximated at each time step
from the mean and covariance of the a priori particle set.
The same range sensor, with identical calibrated (assumed)
noise characteristics, is applied to a relative spacecraft navi-
gation scenario. Assuming the two spacecraft share an orbit
plane, the state is comprised of the radial, (·)r, and along-
track, (·)a, components of the relative position and velocity,
x =

[
rr ra vr va

]T
, where r and v are the position and

velocity, respectively, of the chaser spacecraft with respect to
the target spacecraft. Using a Clohessy-Wiltshire model, where
the target is fixed at the origin, the discrete state transition
matrix for motion about the target is analytically known as
[24]

F (∆t) =


4− 3c 0 s/n 2

n (1− c)
6(s− n∆t) 1 − 2

n (1− c) 1
n (4s− 3n∆t)

3ns 0 c 2s
−6n(1− c) 0 −2s 4c− 3


where x(t + ∆t) = F (∆t)x(t), n = 0.0011314 [rad/s],
∆t = 30 [s], c = cos(n∆t), and s = sin(n∆t) for the
modeled scenario. The true trajectory is plotted in Fig. 3
for a one hour tracking arc. The prior at the initial epoch
is Gaussian with mean m0 =

[
0 1000 −0.3 0.1

]T
(units are [m] and [m/s], respectively) and covariance
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Fig. 2. Various update performance for the true Bayesian posterior (a), Bayes’
rule with the assumed Gaussian likelihood (b), extended Kalman filter (c),
SVGD particle posterior (d), optimal GVI posterior (e), and approximated
Gaussian mixture SVGD posterior using kernel mean embedding (f), along
with the true state (+).

P 0 = diag
{
202, 202, 0.052, 0.052

}
(units are [m2] and

[m2/s2], respectively).
Two implementations of the EKF are compared to the

proposed sequential GVI particle flow update in Fig. 4.
The standard, or “vanilla” EKF, Fig. 4(a), quickly diverges
when processing measurements with noise sampled outside
the calibrated 3σ interval. These effects are mitigated by
introducing a residual editing scheme into the EKF [9], where
a measurement outside the calculated residual 3σ interval is
not processed. Though filter divergence is not observed, 7.5%
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Fig. 3. Relative spacecraft trajectory (—), target position (+), and chaser
position at t0 (·).

of the measurements for this case were rejected, restricting the
amount of information available to the filter. The proposed
GVI filter, with γ = 1.5, was able to produce equivalent
estimates without rejecting measurements or linearizing the
underlying models. For computational tractability, the SVGD
scheme is implemented using the RBF kernel with the mean
trick [11] and a covariance-based scaling, as in [25].

V. CONCLUSION

Bayes’ rule defines the most refined posterior probability
density function provided complete statistical knowledge is
available. Unfortunately, tractability and model accuracy are
often in direct competition for practical implementations of
Bayesian filters. One approach that can preserve the fidelity of
nonlinear models while remaining computationally feasible is
particle flow updates, where the a posteriori particle ensemble
resembles independent sampling of the true posterior density.
One form of nonlinear particle flow, Stein Variational Gradient
Descent (SVGD), facilitates deterministic flow dynamics that
are not limited to Bayes’ rule. This flexibility of SVGD lends
exceptionally well to non-Bayesian methods, such as gener-
alized variational inference (GVI). GVI is an information-
theoretic approach for formulating optimal statistical inference
that remains cognizant and robust to model errors. GVI with
the Kullback-Liebler divergence and an arbitrary loss function,
known as Gibbs inference, can be implemented using SVGD.
Such a filter is extended to both a two-dimensional and
spacecraft navigation scenarios and demonstrated improved
performance over traditional methods, such as the extended
Kalman filter. Future work will focus of extension of SVGD
filtering to full GVI with arbitrary statistical divergence func-
tionals.
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