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Abstract. Monitoring data of real-world networked systems could be
sparse and irregular due to node failures or packet loss, which makes it
a challenge to model the continuous dynamics of system states. Repre-
senting a network as graph, we propose a deep learning model, Adversar-
ial Graph-Gated Differential Network (AGGDN). To accurately capture
the spatial-temporal interactions and extract hidden features from data,
AGGDN introduces a novel module, dynDC-ODE, which empowers Ordi-
nary Differential Equation (ODE) with learning-based Diffusion Convo-
lution (DC) to effectively infer relations among nodes and parameterize
continuous-time system dynamics over graph. It further incorporates a
Stochastic Differential Equation (SDE) module and applies it over graph
to efficiently capture the underlying uncertainty of the networked sys-
tems. Different from any single differential equation model, the ODE
part also works as a control signal to modulate the SDE propagation.
With the recurrent running of the two modules, AGGDN can serve as an
accurate online predictive model that is effective for either monitoring or
analyzing the real-world networked objects. In addition, we introduce a
soft masking scheme to capture the effects of partial observations caused
by the random missing of data from nodes. As training a model with
SDE component could be challenging, Wasserstein adversarial training
is exploited to fit the complicated distribution. Extensive results demon-
strate that AGGDN significantly outperforms existing methods for online
prediction.

Keywords: Graph Sequence Prediction · Sporadic Time Series · Con-
tinuous Model · Stochastic Model

1 Introduction

Many systems, such as social networks, vehicle networks, communication net-
works, and power grids, are networked and can be represented as graphs. Al-
though a practical system operates continuously, its states are normally collected
periodically at discrete time instants. Due to practical constraints such as cost,
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unreliable communications, device malfunction or failure, the observations of
systems are often sporadic, which are sparse and irregular in both spatial and
temporal domains. In order to timely and effectively control the systems for reli-
able and intelligent operations, it is important to accurately predict the system
states based on the collected observations. The aim of this paper is to attack
the challenge of modeling the graph dynamics where signals of nodes evolve
continuously but the observations are sporadic.

It is highly non-trivial to learn the structured dynamics from sporadic ob-
servations on a graph. The challenges mainly come from three sources. First,
the signals from nodes are time varying, and it is hard to model the spatial-
temporal interaction across the whole graph. Second, only partial dynamics can
be observed from sporadic data, which makes it difficult to model the underly-
ing process. Last, as the output signals of networked systems may contain both
process uncertainty (e.g. the distributed energy resource control signal of a mi-
crogrid is influenced by the uncertainty of its input.) and measurement noise,
the distribution of data can be complicated and difficult to estimate.

With the rapid development of Graph Neural Network (GNN) [44, 38, 17],
there are considerable number of studies on learning the dynamics of time se-
ries on graphs [16, 48, 46]. However, existing efforts mostly consider discrete-time
dynamics, assuming systems are fully observed with complete data taken peri-
odically. Although data missing is considered in [39, 4] for graph prediction, the
scheme still considers discrete data samples and can not depict the ground-true
dynamics of the continuous-time network systems in real world. Recently, several
ODE-based models are proposed to learn the continuous dynamics of the graph
time series [35, 31, 12, 8, 2], but ODE is only applied to learn the deterministic
dynamics. Neglecting the process uncertainty of the system, they are unable to
capture the complicated distribution of observations in real-world systems.

We propose a continuous-time graph-based recurrent neural network, Adver-
sarial Graph-Gated Differential Network (AGGDN), to capture the underlying
dynamics on the graph structure from sporadic observations of node signals.
AGGDN models the stochastic process of dynamic states of networked systems
with a novel compounded infrastructure with ODE modulated SDE running
continuously over a graph. On the one hand, SDE module can supplement the
deterministic ODE module with a stochastic variation; on the other hand, ODE
part can work as a control signal to modulate the SDE propagation. In addition,
in order to address the challenge of learning the complete system states with
incomplete data samples, we first propose a soft-masking scheme that can better
extract disentangled hidden features of partial observations to well explore the
spatial-temporal relation in the graph. Furthermore, to more accurately param-
eterize the ODE module, we enhance diffusion convolution [20] with the learning
of impacts of nodes in the graph and call it as dynamic Diffusion Convolution
(dynDC). The SDE component is incorporated to efficiently capture the process
uncertainty of the underlying system dynamics with a flexible tracking of data
distribution. However, optimizing an SDE model is difficult, so we further exploit
Wasserstein adversarial training to efficiently train AGGDN.
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The contributions of this paper can be summarized as follows:

1. We propose a novel AGGDN architecture to accurately predict system states
of a networked system, given sparse and irregular data samples and system
uncertainty. It accurately models the continuous-time process over graph
with a compounded ODE-SDE structure, where SDE tracks the stochas-
tic variation of states to capture system uncertainties and ODE provides a
modulation for the whole model propagation.

2. We design a dynDC-ODE module with ODE empowered with the dynamic
diffusion convolution to learn different impacts of nodes, that our model can
well adapt to the dynamic changes of graph.

3. We introduce soft-masking that AGGDN can better learn from the partial
observations of a networked system to more effectively infer missing data.

4. We employ Wasserstein adversarial training for our continuous-time AGGDN
model, rather than taking variational inference methods (assumed by most
SDE models) that are inefficient for high-dimensional data.

The rest of this paper is organized as follows. The problem formulation and
related works are introduced in Sec. 2. The detailed architectures and training
method of our model are proposed in Sec. 3. Extensive experiments and analysis
are given in Sec. 4 and conclusions are made in Sec. 5. The source code and data
are available at https://github.com/SBU-YCX/AGGDN.

2 Background

2.1 Problem Formulation

Notations We denote a graph with time-varying signals at nodes by G =

{V, E , {Xtn ,Mtn , tn}Nn=0}, where V = {vi}|V|
i=1 is the set of nodes and E =

{(vi, vj)|vi, vj ∈ V} is the set of edges between nodes. The cardinalities |V|
and |E| denote the number of elements in V and E . We further denote the 0-1
adjacent matrix of a graph as A. In a given network {V, E}, the dynamic states
are described by a sequence of N frames. A frame contains a multi-variate signal
Xtn ∈ R|V|×d captured at the discrete time tn ∈ R+, where d is the correspond-
ing dimension of the signal. Since sensing or transmission problems in real-world
systems often cause sample missing, in each frame, a mask Mtn = {0, 1}|V|×d is
used to indicate if there exists a signal in the corresponding dimension. There-
fore, the actual observation sequence O = {Xtn ⊙Mtn}Nn=0 fed into the model is
a sporadic time series with irregular data in both temporal and spatial domains.
Otn = Xtn ⊙ Mtn denotes the input data at time tn, where ⊙ represents the
element-wise multiplication between two matrices.

Objective Given a collection of data D = {G(k)}|D|
k=1, where G(k) is a data

sequence introduced in Notation part above and |D| is the total number of
such sequences in the dataset, our goal is to learn a continuous-time recurrent
predictive model G to maximize the masked log-likelihood:
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Lll(G) = EG(k)∈D

N∑
n=1

Mtn ⊗ logPG(Xtn |Ot0:tn−1 , A), (1)

where ⊗ is defined as the sum of element-wise product of two matrices, PG(·)
denotes the probability density of each element in the feature matrices. We want
to emphasize that the log-likelihood is only evaluated on the observed training
data indicated by the binary masks instead of full data. Therefore, the objective
described in (1) can be regarded as an unsupervised one.

2.2 Related Works

Graph Convolution It is the core operation of Graph Convolutional Network
(GCN) [6, 17, 20]. To explore the relation among multi-hop neighbors in a graph,
diffusion convolution was proposed in [20]. Rather than only using a binary
adjacency matrix to indicate if there exist edges between nodes, we are interested
in actively learning the relation among nodes for the more accurate modeling and
thus more accurate prediction of dynamic system states. Our model, however,
does not depend on the choice of graph convolutional operators and can be
straight-forwardly adapted for other graph convolution methods.

Graph Recurrent Networks Most existing sequential graph models are pro-
posed for discrete-time data [48, 36, 28, 47, 7, 29], and assume that the data se-
quence is fully observed. Recurrent models have also been applied to non-sequential
data on static graphs, for applications such as graph generation [45, 22, 23, 37,
3] and feature learning [14, 21, 40, 13]. DynGEM [10] and dyngraph2vec [9] are
deep learning models for tracking the structure evolution of the graph topology.
Our study, however, focuses mainly on modeling the stochastic process of the
signals on the graph [11, 43], especially under partial observations.

Neural Differential Equations (NeuralODE) NeuralODE [1] incorporates
a deep learning module to parameterize nonlinear ordinary differential equation
(ODE). In order to better model the continuous-time process of the vectorized
data sequence, the structure of NeuralODE is further extended [34, 5] by intro-
ducing a recurrent component to efficiently integrate the data information into
the feature trajectories. Some ODE-based studies [35, 31, 12, 8, 2] are made to
learn the continuous-time dynamics of node features on a graph, assuming that
the underlying dynamics are deterministic and neglecting the process uncertainty
existing in many real-world systems. These models can merely parameterize a
simplified data distribution, not to say capture the complicated stochastic pro-
cess of the systems with both process and measurement uncertainties.

To better model the randomness of data, neural stochastic differential equa-
tion (NeuralSDE) is proposed to bridge the gap between nonlinear SDE and deep
learning models [25, 30, 18, 42, 41, 19]. In [25, 30, 18], neural network components
are introduced into SDE to define more robust and accurate deep learning ar-
chitectures to solve supervised learning problems such as image classification.



Adversarial Graph-Gated Differential Network (AGGDN) 5

A scalable method is proposed in [19] to compute the gradients for optimizing
NeuralSDE. To the best of our knowledge, most NeuralSDE models [24, 26, 27,
19] are proposed for vector or matrix data but not for representing time series
on graphs. Our focus, however, is on accurately predicting system states under
dynamics and data missing through sequential learning over graphs.

We develop a compound model with the integration of NeuralODE and Neu-
ralSDE into one infrastructure. It not only extends over a graph to capture the
spatial interaction of data in multiple hops but also simultaneously track the
deterministic dynamics and process uncertainty through our proposed dynamic
Diffusion Convolution (dynDC). In a single ODE or SDE model, the propagation
within an interval between two time stamps only relies on the preceding observed
values and make an update at any time point directly. Instead, our model first
gets an approximate prediction through the ODE part, which is then used as
a control signal to modulate the latent state thus the final data predicted have
more continuous changes. The natural cubic spline interpolation method [15,
2] makes a three-degree polynomial assumption about the curve between two
observations, but needs a full time series to construct the underlying process
approximation. Instead, ODE module allows creating the corresponding con-
trol signal as time evolves. We further introduce a learning-based soft-masking
scheme to work with our dynDC-ODE components that AGGDN can adapt
to spatially irregular observations for a more accurate modeling and apply the
Wasserstein adversarial training to efficiently train our model.

3 Methodology

We propose a flexible continuous-time recurrent model, Adversarial Graph-Gated
Differential Network (AGGDN), which is capable of learning the continuous
graph dynamics from spatial-temporal irregular observation sequences. We first
introduce its architecture, then provide the details of the key components. To
effectively train the stochastic part, we adopt the adversarial training strategy
and will discuss the training details at the end of this section.

3.1 Architecture

As shown in Fig. 1, our model consists of two trajectories: one hidden feature
trajectory to integrate the topological relation in the graph and one latent state
trajectory to capture the system uncertainties. As a continuous-time model to
predict the system states at any time t ∈ R+, these two trajectories need to
evolve continuously and simultaneously in the temporal domain. The two trajec-
tories are realized with two major components, an ordinary differential equation
(ODE) module parameterized with dynamic Diffusion Convolution, named as
dynDC-ODE, and a stochastic differential equation (SDE) module. The former
one encodes the stable parts and the topological information into the hidden fea-
tures Ht ∈ R|V|×dh(t ∈ R+) while the latter one embeds the system uncertainties
into the stochastic latent states Zt ∈ R|V |×dz (t ∈ R+). Although a single ODE
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Fig. 1. The architecture of our proposed AGGDN.

or SDE is a continuous model, the observations are discrete, and the propagation
within the interval between two observations always rely on the preceding ob-
served data. As a result, the hidden state trajectory only makes an update at an
observation point, and thus changes abruptly. To address this issue, in AGGDN,
the ODE module first gives an approximation of Ht about the underlying hidden
state, which is used to modulate the SDE module so that the latent state Zt has
a continuous dependency on the data, which in turn further refines the coarse
hidden features Ht to get the final accurate output.

3.2 Component – Improved dynDC-ODE Module

Given an observation at a time instant tn, our dynDC-ODE module extracts
the topological relations of the graph and the stable properties of signals, which
are embed into the continuous-time features Htn . The dynDC-ODE module has
two functions: one is to employ a nonlinear encoder G(·) to directly integrate the
information from data Otn observed at tn, and the other is to apply a propagation
function F (·) to update the features Ht within the interval (tn−1, tn).

Specifically, for the encoder G(·), we adopt the Diffusion Convolution Gated
Recurrent Unit (DCGRU) [20] to integrate information from multi-hop neighbors
for each node in the graph, which can be expressed as

Htn = G(Htn−δt,Otn , A), (2)

where A is the binary adjacency matrix of the graph. To capture the different
impacts of neighbors during the integration, we learn another weight matrix
WA during the training and use the element-wise multiplication of two matrices
WA ⊙ A to replace A in (2), forming our dynamic Diffusion Convolution Unit
(dynDCGRU). Therefore, at the observation time tn, we can rewrite (2) as

Htn = G(Htn−δt,Otn ,WA ⊙A), (3)



Adversarial Graph-Gated Differential Network (AGGDN) 7

For the propagation function F (·), we parameterize the dynamics of hidden
features during the interval (tn−1, tn) using ODEs:

dHt

dt
= F (Ht,WA ⊙A),

Ht = Htn−1 +

∫ t

tn−1

F (Hτ ,WA ⊙A)dτ, (4)

where the first-order derivative F (·) is formed through our dynamic Diffusion
Convolution Networks (dynDCN). For simplicity, we compute the integration in
(4) by Euler Method, which can be expressed as

Ht = Ht−δt + F (Ht−δt,WA ⊙A)δt, (5)

where δt is the propagation step size of the ODE module during the interval.
The observable data Otn = Xtn ⊙Mtn are often irregular in the spatial do-

main due to the sample missing caused by sensor malfunction or transmission
loss frequently appearing in the real-world networked system. To make our model
adaptive to different missing locations (i.e., data loss from different nodes), we
further introduce a soft-masking function into our dynDC-ODE module. The
hidden feature Ht is then composed of a feature factor Ht,f to extract the infor-
mation and properties of the network, and a masking factor Ht,m ∈ (0, 1)|V|×dh

to modulate the values in the feature. So the final feature would be

Ht = ρ(Ht,mWm + bm)⊙Ht,f , (6)

where ρ(·) denotes the nonlinear activation function, Wm and bm are the weight
and bias parameters of a feed-forward network. Both Ht,f and Ht,m are learnt
from the observed input and processed with (3) and (5). During the interval
(tn−1, tn), the two factors will be updated by dynDC-ODEs as

Ht,f = Ht−δt,f + Ff (Ht−δt,f ,WA ⊙A)δt,

Ht,m = Ht−δt,m + Fm(Ht−δt,m,WA ⊙A)δt, (7)

At an observation time tn, the new information from input data will be integrated
by encoders as

Htn,f = Gf (Htn−δt,f ,Otn ,WA ⊙A),

Htn.m = Gm(Htn−δt,m,Otn ,WA ⊙A). (8)

3.3 Component – SDE Module

In many real-world networked systems, the observations are influenced by the
process uncertainties. For example, in the case of a migrogrid network, the un-
certainty in the control signal of distributed energy resource (DER) will cause
oscillation in the current flows within the microgrid. To capture such uncertain-
ties, we introduce a random latent state Zt and parameterize it with a nonlinear
SDE on the graph:

dZt = µ(Zt, H≤t)dt+ σ(H≤t)dBt,

Zt = Ztn−1 +

∫ t

tn−1

µ(Zτ , H≤τ )dτ +

∫ t

tn−1

σ(H≤τ )dBτ , (9)
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where µ and σ are the drift and diffusion functions respectively, Bt represents
the standard Brownian motion. We define µ(·) as the function of the current
latent state Zt and historical hidden features H≤t. However, σ(·) is only a func-
tion of the historical ODE features H≤t, as including Zt also into σ(·) will bring
additional noise term into the gradient computation [26] and make the train-
ing more difficult. Similar to the computation in dynDC-ODE, we compute the
integration in (9) using Euler-Maruyama Method for simplicity:

Zt = Zt−δt + µ(Zt−δt, H≤t)δt+
√
δtσ(H≤t)ϵt, (10)

where δt is the step size and ϵt ∈ N (0, 1) is the standard Gaussian noise. In im-
plementation, since the hidden features Ht extracted through dynDC-ODE have
already captured the spatial topological relations within the network graph, we
simply use a Gated Recurrent Unit (GRU) to integrate the historical information
H≤t of the ODE feature trajectory. Similarly, the drift function µ(·) and the dif-
fusion function σ(·) in (10) are also parameterized with Dense Neural Networks
(DNNs) on the GRU features.

After computing hidden features Ht and latent states Zt, the dynamic system
states can be predicted with a trajectory of data dynamics and a residual term

X̂t = NX̂(Ht) +N
(res)

X̂
(Ht, Zt), (11)

where NX̂(·) is the function of Ht to predict the smooth and stable trend of
the signals while N

(res)

X̂
(·) incorporates the latent state to estimate the resid-

ual stochastic variations. Both NX̂(·) and N
(res)

X̂
(·) are implemented by simple

DNNs.

3.4 Training Details

Since our model incorporates the latent states to model the system uncertainty,
the log-likelihood in (1) of a single data instance O, under an adjacency matrix
A, can be rewritten as

Lll(O) =

N∑
n=1

Mtn ⊗ logPG(Xtn |Ot0:tn−1 , A)

=

N∑
n=1

Mtn ⊗ log

∫
PG(Xtn |Ztn ,Ot0:tn−1 , A)

× PG(Ztn |Ot0:tn−1 , A)dZtn , (12)

where PG(Ztn |Ot0:tn−1 , A) is the conditional distribution of the latent states
induced by SDE module while PG(Xtn |Ztn ,Ot0:tn−1

, A) is the conditional distri-
bution of the observation.

In general, PG(Ztn |Ot0:tn−1 , A) does not have a closed-form solution as Zt

is computed by the integration of a nonlinear SDE, thus Lll(·) does not have
a closed-form solution either. However, after we synthesize a trajectory of the
latent states {Zt} by (10), an alternative is to simplify the log-likelihood in (12)
as the logarithm of the conditional distribution of observations:
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Lcon(O|{Zt}) =
N∑

n=1

Mtn ⊗ logPG(Xtn |Ztn ,Ot0:tn−1 , A), (13)

where only one latent trajectory {Zt} is enough for estimating PG(Ztn |Ot0:tn−1
, A)

by Monte-Carlo Method. However, there is still a large difference between (13)
and (12), which will compromise the training quality of our model. Conven-
tionally, a state-space model with SDE is usually trained with the variational
inference, where an evidence lower bound of the log-likelihood is given through
an auxiliary inference model. The performance of variational inference is highly
dependent on the accuracy of the inference model, and it often requires a Monte-
Carlo Method with multiple samples to reduce the variance of the evidence lower
bound. But in many real-world applications, if there is a large number of nodes
and signals, an accurate inference model is hard to define and a Monte-Carlo
Method running over a large number of samples is computationally expensive.

To efficiently train our model and avoid the drawbacks of variational inference
method, we utilize the Wasserstein adversarial training objective:

Ladv(G,F) = E{Xtn ,Mtn}∈D[F({Xtn ⊙Mtn})

− Eϵt∈N (0,1)F({X̂tn ⊙Mtn})], (14)

where G is our proposed model and F is the discriminator in the adversarial
training. D is the dataset while {X̂tn} is the set of predicted states given by
our model, and {ϵt} is the uncertainty term in the SDE module. Based on the
adversarial training, the discriminator is optimized by maximizing (14) while
our model is optimized by minimizing the combination of the conditional log-
likelihood in (13) and the adversarial loss in (14), i.e.

G∗ = argmin
G

(
λLadv(G,F)− EO∈DLcon(O|{Zt})

)
, (15)

F∗ = argmax
F

(
Ladv(G,F)

)
, (16)

where λ is the weight coefficient.
Discriminator: The discriminator in our design is a function to convert the
sporadic observation sequence, including the original one {Otn = Xtn⊙Mtn} and
the predicted one {Ôtn = X̂tn ⊙Mtn}, into a scalar in R. Actually, our proposed
model is independent of the choice of the discriminator, but for simplicity, we
incorporate a DCGRU to extract features from inputs. The extracted feature in
the last frame is applied to compute the scalar for each load in the microgrid. The
output of the discriminator is given as the summation of all these scalar values.
To meet the K-Lipschitz requirement in the Wasserstein adversarial objective,
we apply Spectral Normalization (SN) to all the weight parameters in DCGRU
and the output layer in the discriminator.

4 Experiments

We demonstrate the effectiveness of each component in our proposed model and
show its robustness under different conditions through experiments on several
datasets.
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4.1 Experimental Setups

Datasets We first introduce the benchmarks and the pre-processing of data as
follows:

IEEE33-Nodes: As a typical microgrid instance, the IEEE-33 Bus System
contains 5 electricity sources and 28 load nodes. The 2-dimentional DQ cur-
rent signals going through each node are generated using a hardware-based tool
RTDS [33]. We collect 50 trajectories with signals sampled at the interval of 3
milliseconds for 21 different network topologies. For each trajectory, we split the
sequence of samples into segments of 100 frames for training and testing. Before
fed into the model, all data are normalized with the mean and the standard
derivation in the temporal domain of the corresponding node.

METR-LA [20]: This traffic dataset records the speeds of vehicles on the
highway of Los Angeles County. The data are collected by 207 sensors every 5
minutes. We split the data samples into segments of 36 frames and normalize
the samples with the global means and standard derivations of all sensors in the
temporal domain.

PEMS-BAY [20]: Similar to METR-LA, this is also a traffic dataset col-
lected by 325 sensors every 5 minutes in the Bay Area. The pre-processing is the
same as we did to METR-LA.

Evaluation Metrics We compare the values predicted with our proposed model
based on sporadic observations and fully observable ground-true data using the
metrics Mean Absolute Error (MAE, ↓), Root-Mean-Square Error (RMSE, ↓),
and Mean Absolute Percentage Error (MAPE, ↓).

Implementation Details Our model consists two modules: one dynDC-ODE
module and one SDE module. In the dynDC-ODE module, we use a dynDCGRU
to encode the input signals into 32-dimensional hidden features and a 1-layer
dynDCN with random-walk range K = 3 to parameterize the ODE. In the SDE
module, a simple GRU cell and a 2-layer DNN are used to convert the hidden
features from dynDC-ODE to the corresponding 2-dimensional latent states.
The propagation step of both dynDC-ODE and SDE is δt = 0.1∆T , where ∆T
is the sampling interval of input data. For each trajectory in the datasets, we
synthesize 25 sporadic observation sequences with the random selection, which
we will give details in the following part. After that, all data are split into
training/validation/test sets with ratio 0.8/0.1/0.1. All models are trained by the
ADAM optimizer with the learning rates [10−2, 10−3, 10−4], where 100 epochs
are trained for each rate. λ in the adversarial training objective of (15) is 1.0.

4.2 Experiment Results

Overall Performance To synthesize the scenario of the sporadic observations,
we randomly select a ratio pt of the data frames in the temporal dimension as
observed data. For each selected frame, we further assume only signals from
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Datasets IEEE33-Nodes METR-LA PEMS-BAY

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Discrete

STGCN [47] 0.0812 0.1273 18.18% 0.2290 0.4375 37.58% 0.2499 0.4468 49.63%
Graph-GRU [36, 48] 0.0349 0.0643 9.65% 0.1978 0.4226 33.45% 0.1925 0.3725 41.17%

Continuous

Graph-ODE-RNN [32] 0.0306 0.0578 8.36% 0.1918 0.4217 32.73% 0.1774 0.3605 37.34%
Graph-GRU-ODE [5] 0.0313 0.0607 8.49% 0.1947 0.4322 32.90% 0.1726 0.3488 37.44%

Ours

AGGDN 0.0243 0.0457 7.03% 0.1612 0.3480 30.41% 0.1489 0.2739 35.32%

Table 1. Testing Performance of different models on various datasets (pt = 0.5, ps =
0.8)

ps of the nodes are observed. Therefore, the data fed into our model has only
pt × ps values remained, which can be regarded as sparse and also irregular in
both temporal and spatial domains due to the random selection. Table 1 shows
the performance comparison between our method and some other representative
literature works on (pt = 0.5, ps = 0.8) case. From the table, we can see that our
proposed method has a better performance on all datasets.

Ablation Study We perform experiments on the IEEE33-Nodes dataset to
demonstrate the effectiveness of each component in our proposed model, includ-
ing the continuous-time modeling, the dynamic diffusion convolution and the
soft-masking function in the dynDC-ODE module, the usage of the SDE module
and the adversarial training strategy.

Continuous-time Modeling: From Table 1, we can see that no matter
our proposed model or other continuous-time models are superior to traditional
discrete-time models, which only update features at the observation time in-
stants. Continuous models make the updates ∆T/δt times between two neigh-
boring observations, where the propagation step δt is much smaller than the
sampling interval ∆T (we set δt = 0.1∆T in the experiment). When used with
graph convolutions, the integrated information from adjacent nodes will contin-
uously help correct and update the states of the current node. Therefore, even
though we use the simplest Euler-Method to approximately calculate the inte-
gration, the predicted trajectory fits the original one better than the trajectory
provided by discrete models. Moreover, since the propagation step can be arbi-
trary small, the continuous-time model can provide predictions at any time to
enable timely control, rather than only discretely on observation time points.

Dynamic Diffusion Convolution: Unlike most literature works using Graph
Convolution (GC), Diffusion Convolution (DC) in our model integrates the infor-
mation from neighbors within K hops (we set K = 3). This is especially helpful
when data are sparse and superior to traditional graph convolution, which only
collect and share information among 1-hop neighbors. Besides, our model learns
the impacts of different neighbors and puts in weights in the aggregation, forming
the dynamic Diffusion Convolution (dynDC), so that the information integra-
tion is more effective and accurate. To illustrate the effectiveness, we conduct
the corresponding experiments and the results are shown in Table 2.
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GC [17] DC [20] dynDC
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

Graph-GRU 0.0349 0.0643 9.65% 0.0341 0.0622 9.64% 0.0319 0.0571 9.13%
Graph-ODE-RNN 0.0306 0.0578 8.36% 0.0279 0.0522 7.83% 0.0264 0.0504 7.49%
Graph-GRU-ODE 0.0313 0.0607 8.49% 0.0298 0.0567 8.18% 0.0272 0.0519 7.65%
Table 2. Performance comparison among models using graph convolution (GC), diffu-
sion convolution (DC) and dynamic diffusion convolution (dynDC) on IEEE33-Nodes
(pt = 0.5, ps = 0.8).

Soft-masking Function: As described in Sec. 3, we introduce a soft-masking
function to modulate the hidden features in our dynDC-ODE module for bet-
ter adapting to the missing data cases. The comparison results in Table 3 have
proved the role of such a design.

MAE RMSE MAPE

AGGDN (w/o soft-masking) 0.0264 0.0504 7.49%
AGGDN (w/ soft-masking) 0.0250 0.0471 7.21%

Table 3. Performance comparison of our dynDC-ODE module with & without the
soft-masking function on IEEE33-Nodes (pt = 0.5, ps = 0.8).

SDE Module: To better capture uncertainties existing in all the real-world
systems, the stochastic modules, i.e. SDE, is included in our model. Different
from ODE models which make strong Gaussian assumptions about the data dis-
tribution, the real distribution is learnt by Monte-Carlo sampling process within
the SDE propagation. We also implement a simplified version, AGGDN(ODE),
that does not have the SDE part for comparison. The experiments results based
on both schemes running on the same data are shown in Table 4, and the im-
provement brought by the SDE module is obvious.

MAE RMSE MAPE

AGGDN (ODE) 0.0250 0.0471 7.21%
AGGDN (full) 0.0243 0.0457 7.03%

Table 4. Performance comparison of our full model and the simplified model without
SDE on IEEE33-Nodes (pt = 0.5, ps = 0.8).

Adversarial Training: Since we incorporate stochastic terms in our model,
the training process becomes more difficult. To better train our model, we utilize
an adversarial training strategy to avoid the possible gradient explosion problem.
For reference, we also attach the comparison results before and after using the
adversarial training in Table 5.

Robustness Study To test the generalization capability of our model, we also
conduct extra experiments using the models trained by IEEE33-Node data with
the observation ratio (pt = 0.4, ps = 0.6), and further evaluate the performance
on data by varying the observation ratios. Besides our AGGDN, our dynamic
Diffusion Convolution (dynDC) also helps improve the baselines and the results
are plotted in Fig. 2. We can see that, compared with continuous-time models,
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MAE RMSE MAPE

AGGDN (w/o adversarial training) 0.0250 0.0473 7.20%
AGGDN (w/ adversarial training) 0.0243 0.0457 7.03%

Table 5. Performance comparison of our model on IEEE33-Nodes (pt = 0.5, ps = 0.8)
before & after using adversarial training.

the Graph-GRU cannot adapt well to different observation ratios and its per-
formance even becomes worse when more data are observed. Compared with
other continuous-time models, our AGGDN consistently performs better, espe-
cially when the observation ratio is small. When ps = 1.0, the simplified version
AGGDN(ODE) is a little bit better than the full version AGGDN(full) since
the effect of uncertainties brought by data missing is reduced and all the data
properties and topological relation can be directly inferred from data.

Fig. 2. Performance of various models with respect to different ratios of observations.

5 Conclusion

We propose a novel continuous-time stochastic model called AGGDN to model
the dynamics of real-world networked systems from sporadic observations. Our
model adopts a compounded ODE-SDE structure to capture the topological in-
formation and the signal properties on the graph while taking the underlying
uncertainties in the system into consideration. The ODE component provides
an approximate estimation of the signal, which further modulates SDE to refine
the ODE result to provide a more accurate output. To better model the interac-
tions among nodes, we propose a dynDC-ODE module with enhanced diffusion
convolutions to learn the impact of different nodes during information integra-
tion. Besides, we introduce a soft-masking function to make our model adapt to
the sparse and irregular data cases. To address the challenge of training with
SDE module, the Wasserstein adversarial objective is incorporated. Experimen-
tal evaluations demonstrate that our model is effective in the state prediction
and outperforms previous works on partial-observable networked systems such
as microgrid and traffic networks.
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