
EasyChair Preprint
№ 10778

Discovery and Simulation of Business Processes
with Probabilistic Resource Availability Calendars

Orlenys López-Pintado and Marlon Dumas

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 25, 2023

Discovery and Simulation of Business Processes
with Probabilistic Resource Availability Calendars

1st Orlenys López-Pintado
University of Tartu

Tartu, Estonia
orlenyslp@ut.ee

2nd Marlon Dumas
University of Tartu

Tartu, Estonia
marlon.dumas@ut.ee

Abstract—In the field of business process simulation, the avail-
ability of resources is captured by assigning a calendar to each
resource, e.g., Monday-Friday 9:00-18:00. Resources are assumed
to be always available to perform activities during their calendar.
This assumption often does not hold due to interruptions, breaks,
or because resources time-share across multiple processes. A
simulation model that captures availability via crisp time slots
(a resource is either on or off during a slot) does not capture
these behaviors, leading to inaccuracies in the simulation output.
This paper presents a simulation approach wherein resource
availability is modeled probabilistically. In this approach, each
availability time slot is associated with a probability, allowing us
to capture, for example, that a resource is available on Fridays
between 14:00-15:00 with 90% probability and between 17:00-
18:00 with 50% probability. The paper proposes an algorithm
to discover probabilistic availability calendars from event logs.
An empirical evaluation shows that simulation models with
probabilistic calendars discovered from event logs, replicate the
temporal distribution of activity instances and cycle times of a
process more closely than simulation models with crisp calendars.

Index Terms—Business process simulation, process mining

I. INTRODUCTION

Business Process (BP) simulation is a technique to predict
how changes to a process will impact on its performance.
It enables analysts to answer “what-if” questions such as
“What would be the impact of switching some resources from
full-time to part-time on the cycle time of the process?”.
The starting point of a BP simulation is a process model,
represented for example in the Business Process Model and
Notation (BPMN) [1], enhanced with simulation parameters
such as the processing times of each activity, the inter-
arrival time between cases, the available resources and their
availability, etc. [2]. Each execution of a BP simulation model
(a.k.a. a simulation run) produces an event log recording the
simulated execution of a number of cases of the process,
alongside aggregate performance statistics.

Resource availability plays a pivotal role in a BP simulation,
as it determines the waiting times of the simulated activity
instances. In mainstream BP simulation approaches, such as
the BPSim standard specification [3], resource availability is
captured by assigning a calendar to each resource or group
of resources, e.g., from Monday to Friday, 9:00-18:00. This
approach assumes that resources are available during every

Work funded by European Research Council (PIX project).

time slot in their calendar. In other words, these approaches
interpret an availability calendar as a crisp set of time-slots: a
resource is either available or not available during a given
time-slot. In practice, this assumption often does not hold
since the availability of resources is affected by interruptions,
breaks, meetings, or time-sharing across multiple processes.

To tackle this limitation, this paper proposes: (1) a business
process simulation approach wherein resource availability is
captured via probabilistic calendars instead of crisp calendars;
and (2) a method to discover such probabilistic availability
calendars from event logs. In the proposed approach, an
availability calendar associates a probability to each time slot
in a calendar, e.g., a resource may be available with 90%
probability on Fridays from 9:00-10:00, and this probability
decreases linearly every hour down to 30% from 17:00-18:00
and then 5% from Friday 18:00 to Monday 8:00. At each
time instant, the resource may be available or not, according
to the probability of the corresponding time slot. The paper
reports on an empirical evaluation aimed at testing the hy-
pothesis that simulation models with probabilistic calendars
discovered from event logs more closely replicate the temporal
performance of a process (as recorded in the event log) than
simulation models with crisp calendars.

The rest of the paper is structured as follows. Section II
discusses related work. Section III describe and formalizes
the probabilistic simulation approach. Section IV proposes the
corresponding method to discover the simulation models. Sec-
tion V empirically compares crisp vs. probabilistic simulation
models, and Section VI concludes and sketches future work.

II. RELATED WORK

Van der Aalst et al. [2], [4] discuss limitations of existing BP
simulation approaches, including insufficient use of execution
data in constructing simulation models and incorrect modeling
of resources, particularly for resources that are not fully dedi-
cated to one single process, but that, instead, time-share across
multiple processes. In this paper, we address these limitations
by proposing a BP simulation approach that uses probabilistic
calendars to model resources that are intermittently available
during certain time-slots, and an approach to discover such
probabilistic calendars from execution data.

Freitas & Pereira highlight another common limitation of
BP simulation modeling approaches, namely the assumption

that all resources in a group (a.k.a., a resource pool) have the
same availability calendar [5]. Some tools like IBM Websphere
Modeler1 support named resources, each having its own avail-
ability calendar. In this paper, we adopt this latter approach
(calendars may be attached to each resource individually), but
we extend it to support probabilistic availability calendars.

Discrete-event simulation tools like Arena [6] can model
probabilistic availability through resource failure models,
which allows for resource availability scheduling and incor-
porating potential failures and downtimes relying on activity
instances. This paper adopts a more direct approach in which
resource availability is always probabilistic, independent of
any activity instance or failures. We also address the problem
of discovering probabilistic calendars from event logs.

Several studies have proposed methods to discover BP
simulation models from event logs. The first generation of
studies in this direction [7]–[9] assumed that resources are
continuously available (24/7). More recent studies [10], [11]
incorporate algorithms for discovering resource calendars from
event logs. In our earlier work, we extended these approaches
to discover availability calendars for individual resources
(instead of resource pools) [12] and implemented it in the
Prosimos open-source BP simulator [13]. However, the above
approaches discover crisp availability calendars, i.e., a resource
is either available or not during each time-slot in the calendar.

The problem of representing probabilistic (or fuzzy) calen-
dars is examined in [14]. The authors define fuzzy calendars
as functions that assign a probability to each interval in a
set of intervals (e.g., every Monday at 9-10 am during the
year 2023). The authors propose a fuzzy algebra for defining
more complex fuzzy calendars. Our approach takes the idea
of a probabilistic calendar as a mapping from (periodic) sets
of intervals to probabilities, and incorporates it into a BP
simulation approach.

III. SIMULATION WITH PROBABILISTIC CALENDARS

We take as a starting point a resource model wherein each
resource has a resource profile. The profile of a resource
determines the activities that the resource may perform, the
performance of this resource (i.e., how much time the resource
takes to perform different activities), the cost per time unit of
the resource, and the availability calendar of a resource. This
model treats resources in a differentiated manner, insofar as
each resource has its own profile, but it does not prevent mul-
tiple resources to have identical profiles. An activity may be
performed by more than one resource, and multiple activities
may share common resources. The time that a resource takes
to perform an activity is captured as a number drawn from a
distribution. Availability calendars consist of the time intervals
during which a resource is available, under the assumption that
a resource is either available continuously or not available
during each of these intervals (i.e., crisp calendar). These
considerations are formalized below.

1https://www.ibm.com/support/pages/download-websphere-business-mod
eler-advanced-v70

Definition 1 (BP simulation model with differentiated
resources - from [12]): A BP simulation model with
differentiated resources DSM is a tuple < E,A,G, F,
RPROF, BP,AT,AC >, where E,A,G are the sets of events,
activities, and gateways of a BPMN model, F is the set of
directed flow arcs of a BPMN model, and the remaining
elements capture simulation parameters as follows:

1) RPROF = {r1, ..., rn} is a set of resource profiles, where
n is the number of resources in the process, and each
resource r ∈ RProf is described by:
• ALLOC(r) ⊆ A is the set of activities that r can

execute
• PERF(r, α) = ALLOC(r) → PDF is a function that

maps each activity α ∈ ALLOC(r) to a probability den-
sity function P ∈ PDF with image over positive real
numbers, representing the distribution of the processing
times of activity α when assigned to r

• AVAIL(r) is the calendar (set of intervals) in which re-
source r is available to perform activities in ALLOC(r)

• COST(r) is the unit cost (e.g. per hour) of resource r

2) BP: F → [0, 1] is a function that maps each flow f ∈ F
s.t., the source of f is an element of G to a probability
(a.k.a., the branching probability).

3) AT ∈ P(R+) is a probability density function modeling
the inter-arrival times between consecutive case creations.

4) AC is a calendar (set of intervals) such that cases can
only be created during an interval in AC.

A Business Process (BP) simulation model, as in Defini-
tion 1 produces an event log when executed in a simulation
engine. An event log consists of events - instances of activities
of a process. Each event contains an activity label, the resource
that performed the activity, and datetimes2 marking when the
activity was enabled, started, and ended. Traces are non-empty
sequences of events. An event log is a set of traces, each
representing a process instance (case). We write ’simulated
log’ to refer to a log produced by a simulation model, and ’real
log’ to refer to a log extracted from an information system.
Several performance metrics can be derived from these logs to
assess process efficiency, for example, waiting time – the time-
span from enabling time to the start of the event; processing
time – the time-span between beginning and end of the event;
cycle time – the time-span between the enabling time and end
of an event; and resource utilization – the ratio between the
time a resource is busy executing activity instances, divided
by its total availability time.

This paper focuses on discovering and representing the
functions AVAIL and PERF in Definition 1. Accordingly,
Definitions 2, 3, 4 formalizes the concepts of time granularity,
probabilistic granularity, and probabilistic resource calendar
proposed in this paper to model AVAIL. The PERF function is
modeled by ADJUSTPROCESSINGTIME in Definition 4.

Time Granularity (Definition 2) refers to segmenting time
into defined, discrete intervals, often called ’granules’. Each

2We write timestamp to refer to a time relative to a start of a day, e.g.,
13:00:00 and date-time to refer to a time including a date and time of day.

https://www.ibm.com/support/pages/download-websphere-business-modeler-advanced-v70
https://www.ibm.com/support/pages/download-websphere-business-modeler-advanced-v70

granule has the same duration (expressed in some time unit,
e.g., seconds, minutes, hours), and these intervals do not
overlap or intersect. So, granules provide the minimum interval
for positioning each event datetime executed in a process.
Then, Definition 3 assigns probability values to time granules
within recurring slots. For example, assuming the days of the
week as recurrent slots, a probabilistic granularity represents
cases like a resource working every Monday (recurrent slot)
from 9:00-10:00 (granule of size 1 hour) with a probability
of 0.5. Thus, it models the availability not deterministically
but instead influenced by various probabilistic factors. Finally,
Definition 4 combines the ideas of time granularity, probabilis-
tic granularity, and methods to model resource availability by
probabilistic calendars.

Definition 2 (Time Granularity): A time granularity ∆τ0,d,n

is a sequence of consecutive timestamps τ0, τ1, ..., τn+1, de-
fined by the tuple < τ0, d, n >. So, two consecutive times-
tamps in ∆ define a time granule, δi = [τi, τi+1), which is a
time interval of duration d, with n being the total number of
time granules in ∆. Besides, the following rules must hold:
∀τi ∈ ∆, τi = τ0 + (i ∗ d), τi − τi−1 = d.

Definition 3 (Probabilistic Granularity): Let Ω be a set
of recurring slots and a time granularity ∆. A probabilistic
granularity is a function P : Ω × ∆ → [0, 1] mapping each
pair (ω ∈ Ω, δ ∈ ∆), named p-granule, to a real number in
[0..1] representing a probability. Recurring slots, ω ∈ Ω are
defined by a unique identifier and a period strictly determined
by the first and last timestamps [τ0, τn+1] in granularity ∆.

Definition 4 (Probabilistic Resource Calendar): A proba-
bilistic resource calendar consists of the following functions:
• ABSOLUTEPROBABILTY, PABS , is a probabilistic gran-

ularity that quantifies the probability of a resource being
available in a p-granule, given that a task that can be
allocated to them is enabled.

• RELATIVEPROBABILTY, PREL, is a probabilistic granu-
larity that quantifies the probability of a resource to be
available in a p-granule < ω, δ > relative to how often
other resources are available in < ω, δ >.

• Γ is a function that retrieves the corresponding recurring
slot and time granule from a given datetime.

• ISAVAILABLE is a function that, given a p-granule <
ω, δ >, applies Bernoulli distributions to decide whether
the resource is available (or not):
(True with PABS(ω, δ), False with 1 - PABS(ω, δ)) or
(True with PREL(ω, δ), False with 1 - PREL(ω, δ))

• NEXTAVAILABLETIME is a function that, given a date-
time σ, retrieves the nearest datetime σ′ in which the
resource will be available as follows: minσ′ : σ′ ≥ σ ∧
ISAVAILABLE(Γ(σ′)) = True.

• ADJUSTPROCESSINGTIME is a function that receives a
datetime σ and a floating number pt representing an
ideal processing time, i.e., assuming the resource is fully
dedicated and available during that pt period. Then,
it returns a datetime σ′ after adjusting pt by adding
the time the resource is unavailable according to their
calendar, i.e., σ′ = σ + pt +

∑isAvailable(δ)=False
δ |δ|,

Fig. 1: Probabilistic Weekly Calendar with granularity ∆ =
(τ0 = 00 : 00 : 00, d = 1 hour, n = 24 hours).

δ ∈ {Γ(σi+1) : σi+1 = σi + d}σ′

σ , being d the time inter-
val duration defined by the corresponding granularity.

Figure 1 sketches the time granules for a probabilistic
weekly calendar. In this calendar, the recurrent slots are the
weekdays, i.e., they repeat every seven days, each split into
n = 24 granules (δ0, ..., δ23), each of size d = 1 hour, and
starting at midnight τ0 = 00 : 00 : 00. Granules on Saturday
and Sunday have an associated probability value (p-granules),
for example, pointing out that the resource is always available
on Saturdays from 21:00 to 23:00 and never on Sundays
from 00:00 to 03:00. The bottom of Figure 1 illustrates how
the function Γ retrieves the corresponding p-granules given
two datetimes, i.e., both correspond to a Sunday, but to the
granules δ21 and δ22 in which the resource is available with
a probability of 1.0 and 0.8 respectively. Finally, the function
NEXTAVAILABLETIME probabilistically determines that if re-
quested on 12/11/2023 at 02:35, the resource will be available
the same day but at 21:00 at the earliest. Note that although
not illustrated in the figure, function NEXTAVAILABLETIME
may retrieve a different (future) date, i.e., one that does not
correspond to the input datetime.

Characterizing a resource calendar by combining absolute
(PABS) and relative (PREL) probabilities in Definition 4
deserves further explanation. On the one hand, PABS measures
availability by counting the frequency ratio of a resource
from all the occurrences of related events in a given p-
granule. However, a uniform task allocation to resources may
negatively impact this value. For example, assume a task
always scheduled on Mondays from 9:00-10:00 and a pool
of 10 resource candidates. In this case, if a different resource
is appointed alternately every Monday, each will exhibit a low
probability of 0.1 after the first rotation, even when they were
always available. In cases like that, a relative value comparing
the resources with the busiest one in the granule leads to a
more accurate estimation. On the other hand, PREL evaluates
resource frequency relative ratio to the most occupied resource
in a granule, potentially disadvantaging resources with lighter
workloads. For example, a frequently allocated resource within
a given p-granule could substantially lower the probability of
other resources that were consistently available but not needed
due to the lack of enabled tasks. Consequently, our method
combines absolute and relative probabilities to capture a more
comprehensive range of resource availability.

Algorithm 1 Probabilistic Resource Allocation
1: function ALLOCATERESOURCE(e: ENABLEDEVENT, RQ: PRIORITYQUEUE, pt)
2: r, σ ← POPMIN(RQ)
3: if enabledAt[e] > σ then
4: σ ← NEXTAVAILABLETIME(σ)
5: startedAt[e] ← σ
6: completedAt[e] ← ADJUSTPROCESSINGTIME(σ, pt)
7: ENQUEUE(RQ, r, NEXTAVAILABLETIME(completedAt[e]))

Algorithm 1 illustrates the overall semantics for allocating
a resource to an enabled event e when simulating a process
modeled by Definitions 1- 4. All the resources are stored by
the following datetime in which they will be available (or
operational) in a priority queue RQ. Thus, line 2 procures
the earliest active resource, r, alongside its corresponding
available datetime, σ. Although r is operational at σ, the
event enablement datetime may occur in a granule posterior
to the one of σ. Therefore, lines 3-5 ensure the resource is not
assigned (and starts) a task before its enablement. Then, line
6 computes the event completion datetime by adjusting the
preliminary (under ideal conditions) processing time pt as r
might be unavailable on some of the intervals spanned by pt.
Finally, line 7 reinserts r to the queue RQ with a new datetime
corresponding to the next available time after completing the
current event. Note that function NEXTAVAILABLETIME is
stochastic, which implies it may return different granules if
invoked several times from the same datetime. Therefore, since
the resources in RQ are already marked as available, it is not
advisable to invoke the functions NEXTAVAILABLETIME or
ISAVAILABLE for the same granule because they execute a
coin flip again, potentially altering the status of the granule
from available to unavailable and vice versa.

IV. DISCOVERING PROBABILISTIC RESOURCE
CALENDARS

Algorithms 2-4 describe our approach to discovering differ-
entiated probabilistic calendars, which model resource avail-
ability from an event log. This approach considers the pre-
cise datetime when tasks are enabled and executed and the
resources implicated in each task. To accomplish this, Al-
gorithm 2 receives an event log L, a time duration d′ in
minutes, and an angle β ∈ [0, 1] as inputs. The angle β will
be instrumental in determining the probabilities within each
granule. Initially, lines 2-6 map every resource within L to a
granularity ∆, starting at δ0 = 0 (equating to midnight) with the
input duration d′ and a total number of granules n = 1440//d′,
i.e., spanning the entire day (1440 minutes). For example, if d′

is 60 minutes, the probabilistic calendars of each resource will
have 24 granules (i.e., ∆ = δ0, ..., δ23) starting at midnight for
every day of the week. More specifically, the matrices λ and
Λ tally, respectively, the frequency at which a resource r was
detected to be operational (λ) and when it was required (Λ)
within a specific time granule δ on a day of the week ω in the
log L. The matrix M counts the frequency at which the most
utilized resource was operational within each p-granule.

Subsequently, Algorithm 2 in lines 7-11 computes the
enabling times for each event within each trace T in the log
and applies the trapezoidal method as detailed in Algorithm 3

Algorithm 2 Discovery of Probabilistic Calendars
1: function DISCOVERINTERVALS(L: EVENTLOG, d’: Minutes, β: angle)
2: for each day of week ω ∈ {Monday, ..., Sunday} do
3: M [ω] ← ∆(τ0 = 0, d = d′, n = 1440//d′)
4: for each resource r ∈ L do
5: λ[r][ω] ← ∆(τ0 = 0, d = d′, n = 1440//d′)
6: Λ[r][ω] ← ∆(τ0 = 0, d = d′, n = 1440//d′)

7: for each trace T ∈ L do
8: COMPUTEENABLINGTIMES(T)
9: for each event e ∈ T do

10: TRAPEZOIDAL(e, λ, Λ, M , β, False)
11: TRAPEZOIDAL(e, λ, Λ, M , β, True)
12: for each resource r ∈ L do
13: for each day of week ω ∈ {Monday, ..., Sunday} do
14: for each time granule δ ∈ ∆(τ0 = 0, d = d′, n = 1440//d′) do
15: PABS ← λ[r][ω][δ] / Λ[r][ω][δ]
16: PREL ← λ[r][ω][δ] / Λ[ω][δ]
17: return PABS , PREL

Algorithm 3 Availability Calculation- Trapezoidal Method
1: function TRAPEZOIDAL(e, λ, Λ, M , β, allocated)
2: if allocated then
3: GR ← EXTRACTTIMEGRANULES(startedAt[e], completedAt[e])
4: else
5: GR ← EXTRACTTIMEGRANULES(enabledAt[e], startedAt[e])
6: if |GR| = 1 then
7: UPDATEGRANULES(1.0, e, δ0 ∈ GR, δ0 ∈ GR, λ, Λ, M , allocated)
8: else
9: p← 1.0

10: f ← 1.0 / (|GR| // 2) * β) if β > 0 else 1.0
11: s← 0, e← |GR| − 1
12: while δs < δe do
13: UPDATEGRANULES(p, e, δs ∈ GR, δe ∈ GR, λ, Λ, M , allocated)
14: p← p− f
15: s← s + 1, e← e− 1

to every event e. Finally, in lines 12-16, for each resource in
the event log and each day of the week, Algorithm 2 calculates
the absolute and relative probabilities for each time granule,
which are returned later in line 17. Specifically, the absolute
probability PABS computes the ratio of the frequency at which
a resource was operational to the total frequency at which it
was required for an activity. Note that the required intervals
also count the instances when the resource was operational.
The relative probability PREL measures the ratio between λ
but divided by the most frequent resource in the corresponding
granule. As such, the most frequently engaged resource in a
given p-granule would possess a relative probability of 1.0.

Algorithm 3 describes a trapezoidal method to measure the
resource availability within p-granules related to a given event,
distributing the availability in a trapezoidal shape over the
event duration. So, p-granules containing the event’s start and
end datetimes check the resource as operational. In contrast,
the resource status is vague in the remaining granules between
these points. The trapezoidal method tackles this uncertainty
by assigning a weight of 1.0 to granules matching an event’s
start and end datetimes. Then, it reduces the weight of resource
availability in proportion to the time distance of a p-granule
from the empirically confirmed operational p-granules.

Algorithm 3 takes six parameters as input: an event e, the
matrices λ, Λ and M , to be updated, the angle β shaping the
trapezoid, and a boolean variable, allocated, which defines
two types of intervals. The first type (False) corresponds to
the interval between enabling and starting times of the event,
a period in which the resource is required but not yet available.

Algorithm 4 Update Time Granule Availability Weights
1: function UPDATEGRANULES(p, e, δs, δe, λ, Λ, M , allocated)
2: for δ ∈ {δs, δe} do
3: ω ← DAYOFWEEK(δ, e)
4: for each rCand ∈ TASKRESOURCES[task[e]] do
5: if not ISBUSY[rCand][DATETIME(δ)][δ] then
6: Λ[rCand][ω][δ] ← +1

7: if allocated then
8: λ[resource[e]][ω][δ] ← +p
9: Λ[resource[e]][ω][δ] ← +1

10: M [ω][δ] ← MAX(M [ω][δ], λ[resource[e]][ω][δ])

The second type (True) refers to the interval between starting
and ending times of the event, a period in which the resource
might be operational executing the related task.

Algorithm 3 operates as follows: lines 2-5 extract the
sequence of granules according to the allocated parameter
types. Then, lines 6-15 differentiate two cases to update the
availability. If the duration of the event spans only one granule,
then it is weighted twice with 1.0, as the resource started and
ended the event within it (lines 6-7). When the event spans
multiple granules, the initial weight is 1.0 at the boundaries
and decreases towards the center (lines 9-15). The rate of this
decrement relies on the angle β as described by the formula
on line 10. A β = 0.0 assigns a weight of 1.0 to the boundary
granules and 0.0 to the remaining ones. In contrast, a β = 1.0
decreases the weight of each granule in the sequence by a
factor f given by 1.0/(|GR|//2) ∗ β). For example, given
five granules, β = 0.0 results in [1.0, 0.0, 0.0, 0.0, 1.0], and
β = 1.0 in [1.0, 0.5, 0.0, 0.5, 1.0].

Algorithm 4, called in lines 7 and 13 of Algorithm 3,
updates the granules determined by the trapezoidal method.
This algorithm requires eight input parameters: the availability
weight p, computed from β, two granules δs and δe that are
at equal distance from the interval boundaries, the matrices λ,
Λ, and M , and the boolean variable allocated.

For each of the two granules δ received, Algorithm 4
proceeds as follows: Line 3 identifies the day of the week on
which δ occurs. Subsequently, the loop in lines 4-6 increments
by one the frequency of pair < ω, δ > in the matrices Λ
for each non-operational resource capable of performing the
task defined by the event e. This adjustment relies on the
idea that all available resources potentially suited to the task
were considered eligible but were ultimately not selected. This
modification applies to granules within both interval types,
from the event’s enablement to start and from start to end.
Then, lines 7-10 update p-granules within the intervals where
a resource might be operational, i.e., engaged in the event
execution from start to end. Thus, the matrix λ of the resource
executing e is updated with the estimated availability factor p.
The frequency of < ω, δ > in the matrix Λ increments by 1,
acknowledging that the resource was indeed required. Finally,
the algorithm checks and updates whether a new, most frequent
resource has emerged for that p-granule in matrix M .

When processing the event log, the allocated resources
would ideally work on the corresponding tasks without in-
terruption. However, according to their calendars, they can
have some resting time in between. Accordingly, Algorithm 5
recalibrates the processing times observed in the event log

Algorithm 5 Fit Processing Times to Probabilistic Granules
1: function FITPROCESSINGTIMES(L: EventLog, PABS , PREL, κ)
2: adjT imes ← [resources ∈ L, tasks ∈ L]
3: resourceTaskEvents ← GROUPEVENTSBYPAIRRESOURCETASK(L)
4: for each r, t ∈ resourceTaskEvents do
5: for each event e ∈ resourceTaskEvents[r][t] do
6: GR ← EXTRACTTIMEGRANULES(startedAt[e], completedAt[e])
7: pTime ← 0
8: for each δi ∈ GR do
9: ω ← DAYOFWEEK(δ, e)

10: if i = 0 or i = n then
11: d′ ← +(δi, e)i ∗max(PABS [r][ω][δi], PREL[r][ω][δi])
12: else
13: d′ ← +dδi

∗max(PABS [r][ω][δi], PREL[r][ω][δi])

14: APPEND(adjT imes[r][t], d′)
15: pTimeDistr ← [resources ∈ L, tasks ∈ L]
16: for each r, t ∈ resourceTaskEvents do
17: if |adjT imes[r][t]| ≥ κ then
18: pTimeDistr[r][t] ← BESTFITDISTRIBUTION(adjT imes[r][t])
19: else
20: pTimeDistr[r][t] ← ∅
21: for each r, t ∈ resourceTaskEvents do
22: if pTimeDistr[r][t] = ∅ then
23: rCandidate ← FINDCLOSESTMEANCANDIDATE(t)
24: if rCandidate ̸= ∅ then
25: pTimeDistr[r][t] ← pTimeDistr[rCandidate][t]
26: else
27: pTimeDistr[r][t] ← BESTFITDISTRIBUTION(∀ t ∈ L)
28: return pTimeDistr

to match granular time intervals identified by the trapezoidal
method. The input of the algorithm consists of the event log
L, the absolute and relative probability functions built by
Algorithms 2-4, and a float number κ referring to the minimum
frequency threshold for a resource-task pair occurrence needed
to estimate their adjusted processing times.

This paper follows the differentiated performance model
presented in [12]. Thus, the processing times are calculated
for each pair resource task in L. Accordingly, lines 2-3
of Algorithm 5 initialize the adjT imes matrix to tally the
adjusted times and group the events in L by resource-task
pairs. Lines 4-14 iterate over each event e for each pair
resource r, task t. First, it extracts the granules δi from the start
to the end of e (i.e., representing the processing time) and iden-
tifies each granule’s corresponding weekday ω. Subsequently,
the adjusted processing time is the sum of each granule
duration (dδi), each multiplied by their maximum probability
between PABS , PREL. The rationale is that granules are
allocated selectively from their probabilities. Thus, multiplying
each granule duration by the corresponding probability factor
maintains or decreases the overall processing time, which, on
average, may converge to the actual operational times. The first
and last granules might only be partially covered. Thus, the
notation (δi, e)i, with i = 0, n represents the actual durations
from the event’s start to the end of the first granule and from
the start of the last granule to the event’s end.

After adjusting the processing times observed in L accord-
ing to the probabilistic calendars, Algorithm 5 calculates a
distribution function to model them. In this regard, for every
resource-activity pair (lines 15-20), the algorithm ensures the
number of processing times calculated fulfills the minimum
level of significance settled by the parameter κ. If this
condition is satisfied, the function BESTFITDISTRIBUTION
constructs a histogram from them. It employs curve-fitting

techniques to identify a probability distribution that offers the
most precise approximation to the histogram, i.e., the one
with the lowest residual sum. In cases where the pairs do not
meet the κ requirement, the distribution function is built by
aggregating (lines 21-27). Specifically, if other resources with
an associated distribution executing the corresponding task
exist, the algorithm assigns the distribution function of that
resource with the closest mean to the non-adjusted processing
times. Otherwise, the distribution aggregates the processing
times observed for all the resources that performed the task.

V. IMPLEMENTATION AND EVALUATION

We implemented the proposed approach by extending the
SIMOD tool for automated discovery of simulation models
from event logs [9]3 and the PROSIMOS simulation en-
gine [12], [13]4 to support probabilistic calendars. Using the
extended versions of SIMOD and PROSIMOS, we conducted
an empirical evaluation aimed at answering the following
question: Does the use of probabilistic calendars improve the
accuracy of business process simulation models discovered
from event logs, compared to crisp calendars?

A. Datasets and Experimental Setup

The evaluation relies on eight synthetic and four real-life
logs. To generate the synthetic logs, we took as starting point
a simulation model of a loan application process.We generated
eight event logs based on this process model. The first four,
denoted by the prefix B in Table II and related to the model
Loan-B in Table I, were generated by assuming resources with
balanced workloads, i.e., allocating the tasks equally among
resources playing the same role. The remaining logs, denoted
by the prefix U in Table II and derived from Loan-U in
Table I, were constructed assuming resources with unbalanced
workloads. Task allocation to resources was unequal, with
resources in each role exhibiting six different workloads, i.e.,
from a batch of 21 tasks, each resource received 6, 5, 4, 3,
2, and 1, respectively. The underlying reasoning is to model
practical scenarios where resources may share a calendar yet
have different workloads.

We constructed calendars for each balanced/unbalanced
group as follows: (1) B-24, U-24 - all resources operate 24
hours, 7 days a week; (2) B-8, U-8 - resources work an 8-hour
shift from Monday to Friday, with working hours from 8:00-
11:00 and 13:00-17:00; (3) B-8/4, U-8/4 - half the resources
work the 8-hour shift outlined in (2), with the remaining half
working part-time, 4 hours from 13:00-17:00, from Monday
to Friday; and (4) B-24/A, U-24/A - resources are divided
equally among the 8-hour shift described in (2), the 4-hour
shift as described in (3), and a schedule where resources work
24 consecutive hours followed by a 48-hour rest period.

The task-resource allocation was systematically rotated
among resources within each role, maintaining the bal-
ance/unbalance ratios previously described. Similarly, the as-
signed calendars were rotated among the resources within

3https://github.com/AutomatedProcessImprovement/Simod
4https://github.com/AutomatedProcessImprovement/Prosimos

TABLE I: Characteristics of the event logs used for evaluation.

Loan-B/ Loan-U/ BPIC12/ BPIC17/ AC-CRE/ CALL/

Traces 2000 2000 8616 30276 954 521779

Events 23332 23288 59301 240854 6829 900374

Activities 17 17 6 8 18 19

Resources 54 54 58 148 561 3021

each role. We then assigned each task-resource pair to a
different distribution function to model the processing times.
Finally, we used the resulting simulation models to generate
synthetic logs using the Apromore simulator. We abstained
from using PROSIMOS (and its associated queuing mechanism)
for synthetic log generation to prevent potential bias, as we
later use PROSIMOS to evaluate the models discovered by our
approach. Each synthetic log contains 2000 cases with inter-
arrival times following a Poisson distribution with a mean of
20 cases from 8:00 to 17:00, Monday to Friday.

The real-life logs in Table I have different complexities.
The first one is a subset of the BPIC-2012 log5 – of a loan
application process from a Dutch financial institution. We
extracted the subset of this log consisting of activities with
start and end timestamps. Similarly, we used the equivalent
subset of the BPIC-2017 log6 - an updated version of the BPI-
2012 log. We extracted the subsets of the BPI-2012 and BPI-
2017 logs by following the recommendations of the winning
teams of the BPIC-2017 challenge.7 The third log AC-CRE
is an anonymized log of an academic recognition process at
a university. It contains a high number of resources with low
participation in the process. The fourth log, CALL, is from a
call center process including a high volume of cases of short
duration, with an average of two activities per case.

For the real-life logs, we did not have a (BPMN) process
model as a starting point (only the log). Given that our
approach is independent of the algorithm used for process
model discovery, we did not generate the models from these
real-life logs automatically. Instead, we discovered the BPMN
models from the event logs using the Apromore platform8

and manually adjusted the discovered models until reaching
a replay-based fitness [15] of 90%. The rationale for adjusting
the models to have similar fitness levels is to reduce the impact
of control-flow-related inaccuracies during the discovery of the
simulation model, given that the accuracy of the branching
probabilities computed by Simod depend on the ability to
replay the traces in the log against the model.

Table I gives descriptive statistics of the logs, including the
number of traces, events, activities, and resources. The first
two columns list the characteristics of the synthetic logs (the
four balanced ones, Loan-B) and the four unbalanced ones
(Loan-U). The remaining columns describe the real-life logs.

To avoid data leakage and overfitting, we split each log
into two sets (training and testing) using a temporal split:

5https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
6https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
7https://www.win.tue.nl/bpi/2017/challenge.html
8https://apromore.com

https://github.com/AutomatedProcessImprovement/Simod
https://github.com/AutomatedProcessImprovement/Prosimos
https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f
https://doi.org/10.4121/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b
https://www.win.tue.nl/bpi/2017/challenge.html
https://apromore.com

the first 50% of traces in chronological order are put in the
training dataset (to discover a simulation model) and other
50% are used for measuring the accuracy of the model. We
evaluate accuracy of each simulation model by simulating it
using PROSIMOS, and measuring the disparity between the
simulated output and the testing subset of the log.

Chapela-Campa et al. [16] propose multiple metrics to
evaluate the quality of data-derived simulation models, along
the control flow, temporal, and congestion dimensions. Since
our study focuses on resource availability, we only consider
temporal and congestion metrics. In the congestion dimen-
sion, [16] proposes two metrics: one for arrival times and one
for cycle times. We discard the inter-arrival metric (out of the
scope). Instead, we take the arrival times from the testing log,
so that errors in the estimation of arrival times do not affect
the results. Thus, we only retain the Cycle Time Distribution
(CTD) metric. On the temporal dimension, [16] proposes
three metrics: Circadian Event Distribution (CED), Absolute
Event Distribution (AED), and Relative Event Distribution
(RED). Since our approach does not estimate inter-arrival
times or seasonality, we omit the AED and CED metrics and
include the RED metric, which captures the ability of the
simulation model to replicate the occurrence of events (and
their datetimes) from the beginning of a case to its end.

The CTD metric evaluates the simulation model’s capacity
to replicate the overall cycle time of a process. It derives
empirical Probability Distribution Functions (PDF) from his-
tograms of cycle times collected from two event logs, L1
and L2, and calculates the CTD distance as the 1-Wasserstein
Distance (1WD) [17] between these histograms. The Relative
RED analyses the ability of the simulator to mimic the
temporal distribution of events relative to the origin of the
case. It adjusts all datetimes in L1 and L2 to originate from
their respective case arrival times (i.e., the initial datetime in
a case is set to 0, with the following datetimes adjusted by
the inter-event times). The RED Distance computes the 1WD
between the discretized event logs L1 and L2.

Additionally to the RED and CTD, we measured the mis-
match ratio (MMR) to determine the resource discrepancy
between the real and simulated logs, i.e., MMR = 1 −
|RProfsimulated ∩ RProfreal|/|RProfreal|. A score of 0
means that both logs contain exactly the same resources, while
a score of 1 indicates a complete resource divergence.

B. Experimental Results Discussion

Tables II and III show the evaluation results conducted on
synthetic and real logs, respectively. Besides the probabilistic
method (labeled as Prob.), we evaluated two variations of
the crisp approach. Crisp calendars filter granules, group,
and remove resources whose data in the event log does
not meet the pre-set parameters for confidence, support, and
participation [12]. To avoid resource clustering, the variant
labeled naive (N-Crisp) corresponds to a configuration of these
parameters set to 0. Meanwhile, the full version (C-Crisp)
aligns with the optimal hyperparameters, which could lead to
resource groupings. As for the C-Crisp and Prob methods, we

TABLE II: Results of the metrics on the synthetic logs.

B-24 U-24 B-8 U-8 B-8/4 U-8/4 B-24/A U-24/A

R
E

D

N-Crisp 1.98 2.39 181.71 200.76 249.74 819.42 233.61 604.76
C-Crisp 1.42 1.91 166.67 158.3 205.87 731.06 197.03 452.15

Prob. 7.03 7.82 158.23 95.58 69.56 186.43 111.18 361.13

C
T

D

N-Crisp 2.27 2.63 436.21 445.28 414.48 1100.04 335.42 858.99
C-Crisp 2.70 2.16 383.67 383.58 328.26 924.27 259.45 564.9

Prob. 13.14 16.8 356.56 164.96 149.43 345.05 201.23 536.1

M
M

R N-Crisp 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
C-Crisp 0.0 0.93 0.24 0.93 0.85 0.17 0.78 0.78

Prob. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

TABLE III: Results of the metrics on the real logs.

BPIC12 BPIC17 AC-CRE CALL

R
E

D

N-Crisp 213.42 209.86 85.46 0.63
C-Crisp 192.64 199.4 66.05 0.03

Prob. 187.28 162.74 70.37 0.83

C
T

D

N-Crisp 193.01 284.56 135.49 0.97
C-Crisp 175.1 271.88 158.11 0.04

Prob. 170.55 227.62 97.5 1.34

M
M

R N-Crisp 0.05 0.01 0.69 0.12
C-Crisp 1.0 0.55 0.95 0.99

Prob. 0.05 0.01 0.68 0.13

compare the results corresponding to the optimal hyperparam-
eters that minimize the RES metric. These were determined
using 30 iterations (i.e., the default value recommended by
the Python library bayes opt9) of a Bayesian hyper-parameter
optimizer [18]. Additionally, to mitigate the impact of the
simulations’ stochastic nature on the results, we executed
five simulations in each iteration, excluding the lowest and
highest values and retaining the mean value of the remaining
three. Tables II and III highlight the best approach, i.e., the
most favorable (lower) results in each of the 12 logs assessed
according to the RED and CTD metrics.

Regarding the synthetic evaluation, Table II shows that
the Probabilistic approach tends to provide more precise
results concerning the RED and CTD metrics across most of
the tested configurations. More specifically, the probabilistic
model overshadows the crisp one in the U-8, B-8/4, and U-8/4
in both RED and CTD metrics. In the U-8, the resources work
full-time, but they have uneven workloads, better captured
probabilistically than in a crisp way. In the B-8/4 and U-
8/4, half of the resources work part-time, leading to lower
frequencies that are more challenging to capture with a crisp
model. The combination of part-time and uneven workloads in
the U-8/4 spotlight the most significant differences, illustrating
a scenario in which probabilistic calendars might be more
suitable. Although probabilistic models perform better in B-
24/A and U-24/A, the differences are less significant. The
latest illustrates a limitation of both models, i.e., they are
cyclical (weekly) calendars, and here, some resources are not
following a cyclical schedule. Thus, the probabilistic models
better capture the different resource frequencies, but an extra
dimension to capture seasonal (acyclic) behavior is missing.

In Table II, the N-Crisp approach has superior accuracy only
in B-24 and U-24 scenarios, which are highly crisp schedules

9https://github.com/bayesian-optimization/BayesianOptimization

https://github.com/bayesian-optimization/BayesianOptimization

due to the always available resources (24/7). The probabilistic
approach underperforms here because it only assigns a 100%
probability to a time slot if every resource starts an activity
instance in every single granule in its calendar, every day,
which is improbable. The crisp approach, in contrasts, assigns
a 100% availability to evert granule that achieves the required
confidence and support levels. Finally, in 5 out of 8 logs,
crisp calendars reached MMR ratios over 0.7, indicating that
replicating time accuracy comes at the expense of grouping
resources, retaining only 30% or less. The latest could chal-
lenge the (specific) resource behaviors analysis and detection
of resource-related issues. Conversely, probabilistic calendars
retain all original resources while offering comparable or
superior time estimation accuracy.

Table III also highlights a superior accuracy of the proba-
bilistic approach in the assessed real-life logs, with the lowest
RED in BPIC12 and BPIC17 and the lowest CTD in all the
logs, except the CALL log where C-Crisp outperforms. In the
AC-CRE log, where all approaches show MMR ratios above
0.68, this suggests that only 32% of resources in the training
log appeared in the testing log, potentially introducing noise.
Although C-Crisp approximates RED more closely in this
scenario, the probabilistic approach achieves more substantial
CTD differences, suggesting a better overall performance. The
CALL log is the only dataset where the Crisp calendars
outperform the Probabilistic ones among the real-life logs
evaluated regarding the RED and CED metrics. Although the
Probabilistic model results are close to 1, indicating acceptable
accuracy, the Crisp models’ lower scores suggest that the
events in the CALL log are of a crisp scheduling nature.
However, the high MMR values across all the C-Crisp models
highlight a trade-off between temporal prediction accuracy and
reproducing the exact composition of resources, a limitation
absent in the probabilistic and N-Crisp models, which only
excluded resources absent in the training datasets.

Threats to validity. The findings are subject to the following
threats: (1) internal validity: the experiments rely on 8 syn-
thetic and 4 real-life logs. The results could differ on other
logs. We selected logs with varying characteristics and from
different domains to mitigate this limitation. (2) ecological va-
lidity: we compare the simulation outputs against the original
log. This allows us to measure how well the simulation models
replicate the as-is process, but it does not allow us to assess
the accuracy improvements of using probabilistic calendars in
a what-if setting, i.e., predicting performance after a change.

VI. CONCLUSION

This paper introduced a process simulation approach that
models resource availability via probabilistic calendars, along-
side an approach to discover such calendars from event logs.
An evaluation shows that simulation models with probabilistic
calendars discovered from event logs more closely replicate
the temporal distribution of activity instances and cases, rel-
ative to otherwise equivalent simulation models with crisp
calendars. The proposed approach assumes that the periodicity
of time-slots follows circadian cycles (i.e., weekly, daily,

and hourly periodicity). In practical scenarios, a resource’s
availability might fluctuate along circannual (seasonal) cycles,
e.g., availability differing between summer and winter or even
within monthly cycles (e.g., availability in July is different
from August). Thus, a future research direction is extending
the technique to capture seasonal and even non-periodical
availability patterns. The presented method additionally as-
sumes that resources perform only one task at a time during the
simulation. Another avenue for future work is the probabilistic
modeling of resource multi-tasking, for example by learning
models that estimate the probability of a resource taking on a
new task given their current workload and availability calendar.
Reproducibility. The source code, datasets, models, and in-
structions to reproduce the experiments can be found at: https:
//github.com/orlenyslp/probabilistic resource calendars.

REFERENCES

[1] Object Management Group, “Business Process Model and Notation
(BPMN), Version 2.0.2,” 2013. [Online]. Available: http://www.omg.or
g/spec/BPMN/2.0.2/

[2] W. M. P. van der Aalst, “Business process simulation survival guide,”
in Handbook on Business Process Management 1, 2nd Ed, 2015, pp.
337–370.

[3] Workflow Management Coalition, “BPSim: Business Process Simulation
Specification,” Document Number WFMC-BPSWG-2016-1, 2016, https:
//www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf.

[4] W. M. P. van der Aalst, J. Nakatumba-Nabende, A. Rozinat, and
N. Russell, “Business process simulation: How to get it right?” in
Handbook on Business Process Management 1, 2010, pp. 313–338.

[5] A. P. Freitas and J. L. M. Pereira, “Process simulation support in bpm
tools: The case of bpmn,” 2015.

[6] M. D. Rossetti, Simulation modeling and Arena. Wiley, 2015.
[7] A. Rozinat, R. S. Mans, M. Song, and W. van der Aalst, “Discovering

simulation models,” Inf. Syst., vol. 34, no. 3, pp. 305–327, 2009.
[8] N. Martin, B. Depaire, and A. Caris, “The use of process mining in

business process simulation model construction - structuring the field,”
Bus. Inf. Syst. Eng., vol. 58, no. 1, pp. 73–87, 2016.

[9] M. Camargo, M. Dumas, and O. González, “Automated discovery of
business process simulation models from event logs,” Decis. Support
Syst., vol. 134, p. 113284, 2020.

[10] N. Martin, B. Depaire, A. Caris, and D. Schepers, “Retrieving the
resource availability calendars of a process from an event log,” Inf. Syst.,
vol. 88, 2020.

[11] B. Estrada-Torres, M. Camargo, M. Dumas, L. Garcı́a-Bañuelos,
I. Mahdy, and M. Yerokhin, “Discovering business process simulation
models in the presence of multitasking and availability constraints,” Data
Knowl. Eng., vol. 134, p. 101897, 2021.

[12] O. López-Pintado and M. Dumas, “Business process simulation with
differentiated resources: Does it make a difference?” in BPM 2022.
Springer, 2022, pp. 361–378.

[13] O. López-Pintado, I. Halenok, and M. Dumas, “Prosimos: Discovering
and simulating business processes with differentiated resources,” in
EDOC 2022 Workshops. Springer, 2022, pp. 346–352.

[14] W. Lee and S. Lee, “Fuzzy calendar algebra and its applications to data
mining,” in (TIME 2004). IEEE Computer Society, 2004, pp. 71–78.

[15] A. Rozinat and W. M. P. van der Aalst, “Conformance checking of
processes based on monitoring real behavior,” Inf. Syst., vol. 33, no. 1,
pp. 64–95, 2008.

[16] D. Chapela-Campa, I. Benchekroun, O. Baron, M. Dumas, D. Krass,
and A. Senderovich, “Can i trust my simulation model? measuring the
quality of business process simulation models,” in BPM 2023. Springer,
2023.

[17] E. Levina and P. J. Bickel, “The earth mover’s distance is the mallows
distance: Some insights from statistics,” in ICCV 2001. IEEE Computer
Society, 2001, pp. 251–256.

[18] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimiza-
tion of machine learning algorithms,” in NIPS 2012, 2012, pp. 2960–
2968.

https://github.com/orlenyslp/probabilistic_resource_calendars
https://github.com/orlenyslp/probabilistic_resource_calendars
http://www.omg.org/spec/BPMN/2.0.2/
http://www.omg.org/spec/BPMN/2.0.2/
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf
https://www.bpsim.org/specifications/2.0/WFMC-BPSWG-2016-01.pdf

	Introduction
	Related Work
	Simulation with Probabilistic Calendars
	Discovering Probabilistic Resource Calendars
	Implementation and Evaluation
	Datasets and Experimental Setup
	Experimental Results Discussion

	Conclusion
	References

