
EasyChair Preprint
№ 4590

Supervised Machine Learning Approach for
Software Maintainability Assessment

Stephane Nkeuga Ngueliekam and Mathurin Soh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 18, 2020



UNIVERSITY

OF DSCHANG

Enterprise, Research and Development Forum
(EREDEF-2020)

Artificial Intelligence, Digital Economy and African
Transformation

Algebra • Analysis • Computer Science
mailto://dept.math-info@univ-dschang.org

SUPERVISED MACHINE LEARNING APPROACH FOR
SOFTWARE MAINTAINABILITY ASSESSMENT

Stephane Nkeuga Ngueliekam 1 and Mathurin SOH1
1 URIFIA, Department of Mathematics and Computer Science, University of Dschang, Cameroon

* Corresponding author : stephanenkeuga@gamil.com,mathurinsoh@gmail.com

ABSTRACT: In the highly competitive product market, the importance of quality is no longer an
advantage, but a necessary factor for the success of the company. The work presented in this paper
focuses on software quality assessment using a supervised machine learning approach. Software
quality is a vague and multifaceted concept and varies from person to person. Thus, assessing
quality depends on the perspective we have, making direct quality assessment very difficult. In this
document we evaluate quality from the developer’s point of view. The ISO 9126 standard defines six
factors (internal and external) of high level to characterize the quality of a software product. In the
following we use the standard to identify the quality requirements. The software being an abstract
entity, the essential element for its evaluation is its source code. We use static code extractor to
extract the metrics it contains. These metrics are used as inputs to the machine learning system. The
machine learning system is used to discover the knowledge that is hidden in the data. This is done
by making the best possible approximation to reality. Our work proposes a formula to calculate the
quality of the software. To do this we use supervised machine learning algorithms to optimize the
quality formula. Our quality formula thus offers developers an objective and independent view of the
concept of quality on the one hand, but also to be able to build good quality products on the other hand.

KEYWORDS: software quality, quality metrics, quality factor, software product, supervised machine
learning

1. Introduction

For almost half a century now, computer systems, and more particularly software and
computer programs, have been part of the daily life of mankind. These softwares which
are more and more omnipresent in our daily lives, whatever the sector of activity we are in,
finance, education, health, army to name a few. This very growing presence has taken the
notion of software quality from a need for comfort to a critical need. Indeed, any failure of
a computer system is potentially a source of inconvenience that can, in certain borderline
cases, cause serious damage to the economic integrity of organizations or, worse, to the
physical integrity of individuals. For example, on Sunday, March 10, 2019, the crash of a
Boeing 737 Max belonging to Ethiopian Airlines killed a total of 157 people[1]. The crash

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 1

mailto://dept.math-info@univ-dschang.org


is caused by a new software system called the Maneuvering Characteristics Augmentation
System (MCAS), which the Boeing company has developed to solve the stability problems
in certain flight conditions induced by the aircraft’s new, more powerful engines. The crash
of the Ariane 5 shuttle in 1996, which crashed 40 seconds after liftoff due to a computer
bug in the autopilot system. A bug which caused a loss of 370 million dollars [2]. Or
the online sales site ”Ebay” unavailable for 22 hours in 1999, which resulted in a loss for
the group estimated between 3 and 5 million dollars [2]. Thus all these cases of software
failures mentioned above show the importance and urgency of evaluating the quality of
the software before, during and after the development phase.

2. State of the art

Software quality is still a vague and multifaceted concept, which means different things
for different people. In general, the way we measure the quality depends on the point of
view we adopt [3]. This makes the direct evaluation of very difficult quality. In order to
better quantify quality, researchers have developed Indirect models that attempt to mea-
sure the quality of software products using a set of attributes, characteristics and quality
measures. An important assumption in the definition of these quality models is that the
internal characteristics of the product (internal quality indicators) influence the external
attributes of the product (quality of the product). of use), and by evaluating the internal
characteristics of a product, one can derive reasonable conclusions on the external quality
attributes of the product[3]. This approach based on on the product is frequently adopted
by advocates of software metrology because that it offers an objective and independent
view of the quality context. One of the earliest models of software product quality was
suggested by McCall[4]. McCall’s quality model defines software product quality as a hi-
erarchy of factors, criteria and measures and was the first of several models of the same
form. Another quality model was introduced by Boehm[5]. It is also an important pre-
decessor of the current quality models. Boehm[5] takes into account the contemporary
shortcomings of models that automatically and quantitatively evaluate software quality.
Basically, his model attempts to qualitatively define software quality through a given set of
attributes and measures. There are some recognizable parallels between McCall’s model
[4] and Boehm’s model [5]. For example, both propose a structured hierarchical model
with high-level, intermediate-level, and low-level features. International efforts have also
led to the development of a standard for measuring the quality of software products, ISO
9126, which has its origins in the McCall[4] and Boehm[5] models. It is a generic model
that allows users to develop their own software products. own criteria. This model does
not reach the level of metrics. It leaves it up to users to choice of metrics to be imple-
mented in their model. In this work, Dromeydromey underlines that software does not
directly manifest high quality attributes. Software only has product characteristics that
influence quality attributes. Poor product characteristics reduce its quality attributes. The
dromeydromey model provides a bottom-up methodology for the development of quality
models. All of these models vary in their hierarchical definition of quality, but they share a

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 2



common difficulty. The models are vague in their definition of the details and lower-level
measures needed to obtain a quantitative assessment of product quality. This lack of speci-
ficity in these models provides little guidance to software developers who need to build
quality products. Another difficulty with previous models was the inability to account for
the dependency between quality attributes. If several high-level attributes are used to refer
to product quality, in general, only a subset of these attributes would be relevant for each
different viewpoint. In his work, Bansiya [3] successfully made an association between
metrics and high-level quality attributes. Bansiya[3] redefined the ISO 9126 quality fac-
tors for the object-oriented paradigm. According to Bansiya[3], since quality is calculated
by an aggregate of criteria, the importance of all criteria for quality may not be equal,
therefore, the influence of a quality criterion can be modified by a weighting factor.
However, previous models have provided an excellent framework from which to build
on. possible to proceed. New measures, relationships and weights can be evaluated and
defined in the context of these earlier models. Artificial intelligence is defined as a sci-
ence whose goal is to do, by a machine, what a human being achieves using his or her
intelligence[6]. Machine learning is an application of artificial intelligence (AI) that gives
systems the ability to learn and improve automatically from experience without being ex-
plicitly programmed to do so. It is applied in several fields such as medicine, robotics
and also software engineering. In software engineering machine learning can be used to
predict the quality of a software from the early stages of its development cycle. Machine
learning techniques have been used in many different problem areas, as this field focuses
on building algorithms that have the ability to improve their performance automatically
through experience. The application of machine learning techniques to software engineer-
ing. Pierre Oum Sack[7] has proposed a quality assessment model based on a machine
learning and model transformation approach. This model allows to predict software qual-
ity using machine learning and graph theory.
Salma Hamza [8] has proposed in her thesis a pragmatic approach to measure the qual-
ity of software applications based on software components. This model allows to predict
software quality from metrics in the component domain such as component-level metrics,
application-level metrics and interface-level metrics.

3. Methodology

Kitchenham cites a more detailed list of quality aspects in this work : [9]. This list com-
posed by Garvin [10] summarizes these aspects in points of view. It defines the user’s
viewpoint, which sees quality as relevant to the user’s purpose; the manufacturer’s view-
point, which sees quality as conforming to specifications; the product’s viewpoint, which
sees quality as related to the inherent characteristics of the product; and the value-based
viewpoint, which sees quality as dependent on what a customer is willing to pay for it. Our
work focuses on the evaluation of software quality using source code measures and thus
has a product quality view. How can an abstract quality concept such as maintainability or
reliability be objectively evaluated? To answer this question we proceed in 5 steps:

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 3



• Definition of quality requirements in terms of quality factors (maintainability, func-
tional capability) according to an ISO 9126 quality model.

• Association of quality metrics, and calculation of formulas for factor values and qual-
ity criteria. Definition of the satisfaction rates for the quality factor. The factor is
accepted or not according to a threshold value.

• Acquisition, pre-processing and construction of the learning and test data set.

• Construction of the quality prediction model. It is done in the Weka environment.

• Evaluation of the performance of the quality prediction model.

The first step is to define the quality requirements in terms of quality factors. Factors such
as maintainability represent high level attributes in quality models such as ISO 9126[11].
These attributes are not directly measurable and need to be broken down into criteria.
The decomposition process is applied until the attribute entities are obtained and are mea-
surable. These attributes can be simple or derived. The ISO 9126[11] defines six quality
factors grouped into internal and external quality factors, i.e:

• internal factors: functional capacity, maintainability;

• external factors: ease of use, portability, efficiency and reliability

However, each characteristic is relevant to each different point of view. In what follows, we
evaluate quality from the software developer’s point of view, this means that we evaluate
the internal factors of the product and more precisely the maintainability of the software.
Thus the factor is broken down into criteria and attributes as shown in the following table:

Criteria Attributes Measured properties
Modularity encapsulation, cohesion,

coupling

Modifiability

Documentation Comment

Localization of
changes

Cohesion, abstraction,
polymorphism

Testability
Structure complexity, abstraction, in-

heritance
Concision Complexity, cohesion, cou-

pling
Stability Code structure complexity, abstraction,

code size

Analysability
Structure Complexity

Coupling coupling
Table 1: Maintainability Criteria and Attributes [7]

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 4



In the previous table we have refined the maintainability factor into criteria and then
each criterion into a measurable entity through code metrics, thus moving the metric to a
central position in the software quality assessment process. In the quality model instanci-
ated by Bansiya [3], we distinguish two main types of metrics: simple metrics and derived
metrics. He succeeds in assigning design metrics to design properties. It combines the
metrics in a meaningful way. Bansiya[3] uses weighted design properties to construct a
quality attribute. It sets up several formulas so the weightings and the combination of the
properties are defined by Bansiya[3]. After decomposing the maintainability factor into
criteria and the criteria into measurable attributes. We can deduce the following formula
for maintainability:

Maintenability=α ∗Analysability+ β ∗Changeability+ λ ∗ Stability+ Θ ∗ Testability
Where the weights α, β, λ,Θ are obtained through the weighting process used by Bansiya[3].
Thus in this work we will use the following formulas for the different criteria of maintain-
ability:
Analysability = 0.5 ∗WMC + 0.5 ∗ CBO
Changeability = 0.25 ∗ LCOM + 0.25 ∗DIT + 0.25 ∗RFC + 0.25 ∗ CBO
Stability = 0.5 ∗WMC + 0.5 ∗ LOC
Testability = 0.25 ∗DIT + 0.25 ∗ CBO + 0.25 ∗ LCOM + 0.25 ∗ LOC

These different criteria are based on a set of metrics. The metrics are chosen according
to the attributes and measured properties described in [7] and [12, 13, 14].

4. Results and experimentation

In this section we present the implementation of the quality assessment model we have
developed. To do so, we use the following tools and environments:

• The CK (Chidamber-Kemerer metrics) tool for the extraction of code metrics[15]

• Weka for the machine learning system. Machine learning will be used to extract
knowledge. This knowledge will allow the optimization of the quality model by
more precisely quantifying the dependencies between the quality criteria and a set
of metrics.[16].

For the conduct of our experiment, we use data sets from four software projects namely
Vuze (Azureus Java BitTorrent client) v5.2.0.0 [18], apache-ant-1.10.7-src[19], glassfish-
5. 0.1[17] and the KC1 repository entitled "Software Defect Prediction" which is one of the
defect data sets of the NASA Metric Data Program (MDP)[20]. We perform the experiment
with the following algorithms:

• the naive bayes classifier

• decision trees: J48, RandomTree

• linear regression

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 5



• the M5P algorithm

Data set with percentage (80,20)
Software
project

Correctly classified in-
stances

Misclassified in-
stances

KC1 89.6552% 10.3448%
APACHE ANT 96.2766% 3.7234%
AZEURUS 98.6749% 1.3251%
GLASSFISH 94.9836 % 5.0164%

Table 2: Results of the classifications obtained by the
NaiveBayes Classifier on 4 software projects

Data set with percentage (80,20)
Software
project

Correctly classified in-
stances

Misclassified in-
stances

KC1 100% 0%
APACHE ANT 99.2021% 0.7979%
AZEURUS 99.6466 % 0.3534%
GLASSFISH 100 % 0%

Table 3: Classification results obtained by the Ran-
domTree decision tree on 4 software projects

Data set with percentage (80,20)
Software
project

linear equation correlation
coefficient

KC1 MAINTENABILITY = 0.0506 * CBO + 0.0506
* DIT + 0.0506 * LOCM + 0.0337 * RFC +
0.0833 * WMC + 0.1667 * STABILITY + 0.1152
* CHANGEABILITY + 0.1825 * TESTABILITY +
0.1667 * ANALYSABILITY +

1

APACHE
ANT

maintenabilite =
0.0887 * cbo + 0.1037 * wmc + 0.047 * dit
+ 0.0203 * rfc + 0.047 * lcom + 0.0886 * loc
+ 0.1666 * analysability + 0.126 * stability +
0.1435 * testability + 0.1687 * changeability

1

AZEURUS maintenability = 0.087 * cbo + 0.103 * wmc +
0.045 * dit + 0.02 * rfc + 0.045 * lcom + 0.085
* loc + 0.165 * analysability + 0.129 * stability
+ 0.168 * changeability + 0.153 * testability

1

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 6



GLASSFISH maintenability = 0.1048 * cbo + 0.1407 * wmc
+ 0.0275 * dit + 0.0027 * rfc + 0.0275 * lcom +
0.0882 * loc + 0.0955 * analysability + 0.1232
* stability + 0.2392 * changeability + 0.1508 *
testability

1

Table 4: Results of the classifications obtained by the
linear regression algorithm on 4 software projects

From the prediction models obtained, we notice that decision trees are more efficient
on all four projects.
We therefore present the decision trees obtained by the RandomTree algorithm respectively
on:
About the KC1 project

Figure 1: Decision tree obtained on the KC1 project

By examining the tree produced by the KC1 project, we discover the following rules
about maintainability:

1. CHANGEABILITY < 33.75 and STABILITY < 12.25

2. CHANGEABILITY < 33.75 and STABILITY >= 12.25 andMAINTENABILITY <
19.97

3. CHANGEABILITY >= 33.75 and WMC < 17.5 and MAINTENABILITY <
20.19

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 7



Taking these rules into account, maintainability depends on the WMC metrics and the
changeability and stability criteria. By detailing these criteria, we deduce that maintain-
ability ultimately depends on the metrics LCOM, DIT, RFC, CBO, WMC, LOC.
Moreover, considering the M5P algorithm, we deduce the following maintainability for-
mula: MAINTENABILITY = 0.0506 * CBO + 0.0506 * DIT + 0.0506 * LOCM + 0.0337
* RFC + 0.25 * WMC + 0.1152 * CHANGEABILITY + 0.1825 * TESTABILITY In this
formula, maintainability depends on the metrics CBO, DIT, LCOM, RFC, WMC and the
changeability and testability criteria. By developing this formula we have the same met-
rics as those discovered by the rules from the decision trees.

5. Conclusion

In this article we presented our software quality assessment approach based on a super-
vised machine learning approach. This learning process allowed us to discover the knowl-
edge between the data. This knowledge allowed us to give a better approximation of the
maintainability formula. This work offers developers an objective and independent vision
of the concept of quality, but also allows them to build good quality products. It would
be interesting to extend the work in this field in order to find a quality model that would
allow the evaluation of all the quality factors of a given software. This could allow an
overall appreciation of software quality by the various actors involved in the process of
designing, developing, using and evolving software.

References

[1] "Le cauchemar du 737 MAX ne cesse de s’aggraver, Un rapport accablant
des enquêteurs de la Chambre US montre la pire défaillance de sécurité
dans l’avion cloué au sol à cause des problèmes logiciels", "Stan Adkens", =
"https://embarque.developpez.com/actu/296371/Le-cauchemar-du-737-MAX-
ne-cesse-de-s-aggraver-un-rapport-accablant-des-enqueteurs-de-la-Chambre-
US-montre-la-pire-defaillance-de-securite-dans-l-avion-cloue-au-sol-a-cause-des-
problemes-logiciels/", "2020 (consulté le 11, mars 2020)".

[2] Analyse et conception d’un modèle de qualité logicielle, Mordal, Karine, 2012.

[3] A hierarchical model for object-oriented design quality assessment, Bansiya, Jagdish
and Davis, Carl G., IEEE Transactions on software engineering, 28, 1, 4–17, 2002,
IEEE.

[4] Factors in software quality, volume I, McCall, JA and Richards, PG and Walters, GF,
NTIS Springfield, 1977.

8



[5] Software development cost estimation approaches?A survey, Boehm, Barry and Abts,
Chris and Chulani, Sunita, Annals of software engineering, 10, 1-4, 177–205, 2000,
Springer.

[6] Intelligence artificielle vulgarisée, Aurélien Vannieuwen-
huyze, Editions ENI, 978-2409020735, 2019, , , ,
http://gen.lib.rus.ec/book/index.php?md5=26f43e35c6fdb481829140c07fb85925.

[7] Contribution à l?étude de la qualité du logiciel, Sack, Pierre Marie Oum Oum, 2009,
Université du Littoral Côte d’Opale.

[8] A pragmatic approach to measure the quality of Component–Based Software Applica-
tions, Hamza, Salma, https://tel.archives-ouvertes.fr/tel-01256822, 2014LORIS356,
Université de Bretagne Sud, 2014, Dec, Software component ; Quality metrics ;
Quality model ; Predictive model ; Composant logiciel ; Métriques de qualité ;
Modèle de qualité ; Modèle prédictif, Theses, https://tel.archives-ouvertes.fr/tel-
01256822/file/2014TheseHamzaS.pdf, tel-01256822, v1.

[9] Software quality: the elusive target [special issues section], Kitchenham, Barbara
and Pfleeger, Shari Lawrence, IEEE software, 13, 1, 12–21, 1996, Ieee.

[10] Assessing software quality attributes with source code metrics, Jetter, Andreas and
Gall, Harald and Pinzger, Martin and Knab, Patrick, 2006, Citeseer.

[11] "L’état de l’art : l’ingénierie des besoins", "Yves Constantinidis", "https://yves-
constantinidis.com/doc/yves-758.htm", "2013 (consulté le 3, fevrier 2020)".

[12] A mapping study on design-time quality attributes and metrics, Arvanitou, Elvira
Maria and Ampatzoglou, Apostolos and Chatzigeorgiou, Alexander and Galster,
Matthias and Avgeriou, Paris, Journal of Systems and Software, 127, 52–77, 2017,
Elsevier.

[13] Empirical evidence on the link between object-oriented measures and external qual-
ity attributes: a systematic literature review, Jabangwe, Ronald and Börstler, Jürgen
and Šmite, Darja and Wohlin, Claes, Empirical Software Engineering, 20, 3, 640–
693, 2015, Springer.

[14] A metrics suite for object oriented design, Chidamber, Shyam R and Kemerer, Chris
F, IEEE Transactions on software engineering, 20, 6, 476–493, 1994, IEEE.

[15] Java code metrics calculator (CK), Maurício Aniche, 2015, consulté 21 juin 2020,
Available in https://github.com/mauricioaniche/ck/.

[16] Leatn Weka : Simple easy learning, tutoriallspoint.com, 2020, consulté 29 juin 2020,
https://www.tutorialspoint.com/weka/index.htm.

9



[17] "GlassFish The Open Source Java EE Reference Implementation", "",
"https://javaee.github.io/glassfish/download", "2017 (consulté le 15,mai 2020)".

[18] "Vuze (Azureus Java BitTorrent client) for Mac OS X v5.2.0.0",
"www.afterdawn.com", "https://www.afterdawn.com/software/source-
codes/index.cfm?54", 2013, (consulté le 14 ,juin 2020).

[19] "Index of /ant/source", "Apache Fondation", "https://downloads.apache.org/ant/source/",
"2020 (consulté le 18 ,mai 2020)".

[20] "PROMISE Software Engineering Repository: Public Datasets", "A. Gunes Koru",
"http://promise.site.uottawa.ca/SERepository/datasets-page.html", "2005 (consulté
le 02, fevrier 2020)".

10


