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Abstract 

A tethered system represents a flexible multi-body system in which components and bodies such as a 

mothership, probes and equipment, are connected by flexible tether cable. In exploration of the marine 

environment for expanding scientific discoveries and industrial applications, a new design of a tethered 

system using a drone and cable is considered. When using such a system, it is assumed that the 

mothership moves harmonically while changing the tether length, for example when the drone is 

hovering. This can cause the system resonance, which may result in large deformations and 

displacements of the tether and large movement of the equipment. Furthermore, the natural frequencies 

of the system vary depending on the change in tether length. Therefore, clarifying and predicting the 

system vibration phenomena with time-varying tether length is needed. 

In this study, the effects of small vibrations of the mother ship on a tethered system during changing the 

tether length are studied by using the Absolute Nodal Coordinate Formulation (ANCF), which is widely 

used for flexible body dynamic simulation [2]. In ANCF, the position vector 𝐫 in the inertia frame for 

an arbitrary point on a flexible tether modeled as a beam is described using the shape function 𝐒, which 

is constant over time and depends on only 𝜉 , and the nodal coordinates 𝐞 , differently from the 

conventional ANCF, as follows: 

 𝐫 = 𝐒𝐞, (1) 

 𝐞 = [𝑒1 𝑒2 𝑒3 𝑒4 𝑒5 𝑒6 𝑒7 𝑒8]T (2) 

  where 𝜉 = 𝑥 𝑙𝑒⁄ ; 𝑥 is the coordinate of the arbitrary point along the beam axis in the deformed 
configuration; 𝑙𝑒 is the length of the element; 𝑒1, 𝑒2, 𝑒5, and 𝑒6 represent the absolute coordinates of the 
nodes at the left end and right end of the element, respectively; and  
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in which  r1 and r2 are the components of the vector 𝐫 that defines the global position vector of the arbitrary 

point defined by Eq. (1). By using the Lagrange equation, the equation of motion for an element of the 

beam is obtained eventually as follows: 

 𝐌𝒆�̈� + 𝐐𝒊𝒆
+ 𝐐𝒍𝒆

+ 𝐐𝒕𝒆
= 𝟎 (4) 

where 𝐌𝒆 is the mass matrix, 𝐐𝒊𝒆
 is the inertia force and 𝐐𝒍𝒆

 and 𝐐𝒕𝒆
 are the elastic force vectors due to 

axial strain and bending respectively. 

In addition, the time-varying length of the flexible body is expressed using Variable-domain Finite Element 

(VFE) method [1]. In this model, the element length 𝑙𝑒 is expressed as the length of a flexible body 𝐿(𝑡) 

divided by the number of elements 𝑁, 

 
𝑙𝑒 =

𝐿(𝑡)

𝑁
, 𝐿(𝑡) = 𝐿0 ± ∫ 𝑉(𝑡) 𝑑𝑡 (5) 

where, 𝐿0 is the initial length of the flexible body and 𝑉(𝑡) is the length change velocity.  

The analytical model in which a rigid body of mass 𝑀𝑡 = 0.01 𝑘𝑔 is connected to the bottom end of a 

flexible body is used in this study. At the initial state, the flexible body and tether are in the vertical 

configuration, with the initial length 𝐿0 = 1.0 𝑚, and also the upper end point of flexible body is at the 

origin of the absolute nodal coordinate system. Then the upper end moves harmonically in the 𝑋 direction 

as 𝑥 = 𝑥0 sin 𝜔𝑡 where 𝑥0 is the amplitude and 𝜔 is the frequency, while changing its length with 

velocity 𝑉(𝑡). The X coordinate of the flexible body end point and the result of Short Time Fourier 

Transform (SSFT) analysis of the time response record when 𝜔 is constant is shown in Fig.1. Here, the 



natural frequencies of the system are defined by the frequency equation (7). The frequency of the 𝑛th 

bending mode is calculated by equation (8). 
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Figure 1 (a) shows the response of the system in terms of the displacements of the tether end point. The 

frequency of each bending mode varies with the length of tether and the resonance occurs when 𝜔 is near 

the value in the natural frequency. Fig.1 (b) shows the spectrogram obtained by STFT over the time 

interval shown. 

        
                                (a)                                                                             (b) 

Figure 1: The displacements when 𝑥0 = 0.01𝑚, 𝜔 = 12.56𝑟𝑎𝑑/𝑠 while changing the length from 1.0m to 

0.6m. The time-varying frequencies of the first, second and third bending modes are shown in the right 

figure, where each value vary as follows: 𝑓1 = 1.54~3.89, 𝑓2 = 10.13~26.83, 𝑓3 = 29.14~78.37. 

 

Figure 2 shows the relationship between the velocity and maximum amplitude of the response. The 

results for the system under harmonic excitation (red dashed line) demonstrate that the maximum 

amplitudes are increasing with the decreasing speed of the tether. On the other hand, it is known that in the 

classical spaghetti problem, the larger the velocity the higher the amplitude [3] as shown by the black dashed 

line in Figure 2. These relationships lead to the optimal velocity that reduces the effects of resonance and 

spaghetti problem. 

      
(a)                                                                                 (b) 

Figure 2: (a) Relationships between the length change and max value of the amplitude. (b) zoomed 

area of the relationship. 
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